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Abstract: Traumatic spinal cord injury (SCI) results in wide-ranging cellular and systemic dysfunction
in the acute and chronic time frames after the injury. Chronic SCI has well-described secondary
medical consequences while acute SCI has unique metabolic challenges as a result of physical
trauma, in-patient recovery and other post-operative outcomes. Here, we used high resolution mass
spectrometry approaches to describe the circulating lipidomic and metabolomic signatures using
blood serum from mice 7 d after a complete SCI. Additionally, we probed whether the aporphine
alkaloid, boldine, was able to prevent SCI-induced changes observed using these ‘omics platforms’.
We found that SCI resulted in large-scale changes to the circulating lipidome but minimal changes in
the metabolome, with boldine able to reverse or attenuate SCI-induced changes in the abundance
of 50 lipids. Multiomic integration using xMWAS demonstrated unique network structures and
community memberships across the groups.

Keywords: spinal cord injury; lipidomics; boldine

1. Introduction

Traumatic spinal cord injury (SCI) is a devasting event that leads to loss of sensation
and voluntary movement, impaired bowel and bladder function, and the inability to
properly regulate blood pressure and body temperature [1]. The first few days to weeks after
SCI are also notable for unique metabolic disturbances that include transient hyperglycemia
and other markers of metabolic dysregulation [2,3]. Our recent metabolomics analyses of
mouse gastrocnemius muscle paralyzed by spinal cord transection revealed a transient
decrease in tissue glucose levels at 7 d consistent with altered intramuscular regulation of
glucose uptake and/or metabolism [4,5]. The relationship of the muscle metabolic profile
after SCI and systemic metabolic function is likely related.

Improvements in mass spectrometry technology and methodological techniques, cou-
pled with advances in bioinformatics, have greatly improved the resolution of detecting
small compounds such as metabolites, including lipids, from biological tissues. These
metabolomics-based approaches allow for identification of molecular signatures associated
with a change to the physiological system that may identify a mechanism to target with an
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intervention. For example, a growing body of evidence indicates that circulating metabo-
lites and lipids play important roles in organismal physiology and in responses to stresses
such as exercise [6,7]. Understanding the effects of acute SCI on serum profiles of such
signaling molecules can be accomplished in an unbiased manner using large-scale molecu-
lar phenotyping platforms based upon mass spectroscopy. Circulating factors from blood
plasma/serum have been demonstrated to be affected by SCI severity in both pre-clinical
and clinical models. In rats with mild or severe SCI, modeling of plasma metabolomic
data from nuclear magnetic resonance (NMR) fingerprinting identified sets of metabolites
associated with neural injury and energy dysregulation in the severe SCI group [8]. In
humans with acute SCI (1–3 d post-injury), metabolite levels in the cerebrospinal fluid
and serum were associated with severity of injury, with each tissue having potentially
unique biomarker signatures [9]. Thus, high-resolution molecular phenotyping provides
direction for identifying novel mechanisms behind cellular and organismal dysfunction to
aid implementation of translatable therapies.

Finding efficacious molecular interventions that improve health and function after
SCI remains a challenge. We recently demonstrated daily treatment of boldine, an apor-
phine alkaloid derived from the Chilean boldo tree (Peumus boldus), improves locomotor
recovery, spares white matter, promotes axonal sprouting at the lesion site, and promotes
large-scale changes in the spinal cord transcriptome associated with neurogenic recovery
when compared to vehicle-treated mice across 28 d post-contusion SCI [10]. Boldine has
anti-oxidative and anti-inflammatory actions that have been attributed to its ability to
block connexin (Cx) hemichannels (HC) [11], which are non-selective pore proteins mainly
localized to the cytoplasmic membrane that allow small molecules such as calcium ions,
ATP, and glutamate to pass into and out of the cell. CxHC can form gap junctions (GJ) by
binding to a CxHC on an adjacent cell thereby coupling cells electrically and chemically.
Boldine does not block the formation or function of GJ [12], making its translatable potential
more promising compared to other CxHC inhibitors.

Boldine may also affect skeletal muscle after SCI. CxHC are not normally present on
the surface of skeletal muscle but appear de novo during denervation or various models
of stress [13–15]. A critical role for CxHC in denervation atrophy was demonstrated by
findings that genetic ablation of Cx43 and Cx45 in skeletal muscle blocked denervation
atrophy [13] and that denervation-related changes in resting membrane potential and
membrane permeability were blocked by CxHC blockers such as D4 [16]. The possibility
that de novo sarcolemmal expression of CxHC contributes to muscle loss, dysfunction
or metabolic derangements following SCI is suggested by the observation of increased
membrane expression of Cx39, Cx43 and Cx45 in gastrocnemius muscle harvested at 56 d
after complete spinal cord transection [13].

Further support for a role of de novo expression of CxHC in changes in skeletal
muscle following SCI comes from our recent work that interrogated the transcriptomic,
metabolomic, and DNA methylomic profiles of muscle paralyzed by SCI [5]. At the
metabolomics level, boldine prevented or attenuated SCI-induced changes in the abundance
of amino acids such as proline, phenylalanine, leucine, and isoleucine. Intriguingly, boldine
seemed to block the fall in muscle levels of glucose, suggesting systemic metabolic function
may be improved. This is supported by recent evidence that demonstrated boldine was
able to improve systemic blood glucose levels in a streptozotocin-induced diabetes model
in mice and rats [17]. We also noted boldine prevented an increase in muscle glutathione
levels, suggesting a role in preventing generation of reactive oxygen species. Whether
these effects of SCI on the skeletal muscle metabolome are related to changes in the serum
metabolome/lipidome are unknown. Additionally, how boldine alters serum lipidomic
and metabolomic profiles after SCI is also unknown. We therefore carried out untargeted
metabolomics and lipidomics analysis of the serum of mice treated with boldine or vehicle
that had been collected 7 d after a complete spinal cord transection. We then performed
multiomic integration in an attempt to find multiomic interrelationships among groups.
Our studies revealed large-scale changes to the circulating lipidome with slight changes
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in the metabolome. Importantly, boldine overturned and/or reduced changes in lipid
levels after SCI. Additional multiomic integration studies demonstrated unique network
structures.

2. Methods
2.1. Animals

We have previously published animal descriptions and treatment outcomes (e.g.,
weight, muscle loss, etc.) for this cohort of mice [5]. Briefly, 4-month-old C57BL/6 male
mice were purchased from Charles River and kept in an AAALAC-accredited animal
facility at the James J. Peters VAMC. C57BL/6 mice were used as they tolerate SCI well,
are ubiquitously used across the scientific field, and make up the background for a large
number of transgenic mice. Male mice were selected for the studies since males make
up for ~80% of the total SCI population [18] and ~95% of the US Veteran population [19].
The 7 d timepoint was selected as we previously demonstrated this timepoint had greater
responses in boldine-associated changes in the muscle metabolome and transcriptome
following SCI [5]. Animals were kept on a standard light-dark cycle with ad libitum access
to chow and water and were randomized to a laminectomy control group (Sham, n = 4)
or laminectomy + T10 spinal cord transection with vehicle (SCIv, n = 6) or boldine (SCIb,
n = 6) treatment. The study was reviewed and approved by the IACUC of the James J.
Peters VAMC (Protocol CAR-16-54).

2.2. Laminectomy and Spinal Cord Transection

We have previously published detailed methods for mouse laminectomy and complete
spinal cord transection surgeries [20]. In brief, mice were weighed then anesthetized using
inhalation of 2–3% continuous-flow isoflurane. Hair along the back was shaved and the
skin cleaned with 70% ethanol and betadine. An incision was made from T7-11 and the
spinal column was exposed by blunt dissection and removal of the para-vertebral muscles.
The vertebral arch of the T10 vertebral body was removed and the dura exposed. The
incision site for the sham animals was then closed in layers using sutures for the muscle
layer and surgical staples for skin. For the SCI animals, a micro-scalpel was passed through
the spinal cord. Any residual tissue bridges were cut by a second pass of the scalpel when
necessary. An inert gel foam was used to separate the severed spinal cord sections and the
incision site was closed as described above. All animals were placed in a clean cage with
Alpha dri+ bedding. Standard chow (Research Diets, D12450J: 10% fat, 20% protein, 70%
carbohydrate; 3.82 kcal/g energy density) and Bio-Serv fruit treats were placed on the cage
floor for easy access for all animals. All mice were single-housed for the remainder of the
study.

2.3. Post-Operative Care and Boldine Administration

Animals were placed on 37 ◦C recirculating water heating pads for 24 h post-surgery.
They received a cocktail of ketophen (5 mg/kg) and Baytril (5 mg/kg) subcutaneously
daily for 3 d post-surgery, with a total daily volume of 1 mL of lactated Ringer’s, also
administered subcutaneously, to prevent dehydration for all 7 d. Bladders were expressed
2 times per day. Boldine (50 mg/kg/d) was administered as previously reported [5,10]
starting at 3 d post-injury. Briefly, boldine was dissolved in a mix of DMSO and peanut
oil. The mixture was then added to peanut butter (PB) so that 1.0 g of total bolus of
PB/boldine mix had the required dose of boldine. The final concentration of DMSO was
less than 2.5%. Animals were familiarized with 1.0 g of PB for a week prior to surgery.
All animals consumed 100% of their daily PB/boldine mix within 1 h and continued to
do so throughout the remainder of the study. SCIv and Sham groups received daily equal
amount of the PB mix without boldine.
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2.4. Metabolomics and Lipidomic Sample Processing and Data Analysis

Blood was collected via ventricular puncture, allowed to clot at room temperature
for 30 min, then spun down at 4 ◦C at 2000× g for 20 min. Serum was then collected and
stored at −80 ◦C. 120 µL of serum was sent in two aliquots (60 µL per platform) on dry ice
overnight to West Coast Metabolomics, a regional NIH Resource Core, at the University
of California-Davis for untargeted primary metabolomics and complex lipidomics. All
samples went through one freeze-thaw cycle that occurred during aliquoting for shipment.
Metabolomics analyses were completed using reverse phase gas chromatography time-
of-flight (TOF) mass spectroscopy in both positive and negative mode. Lipidomics was
completed using quadrupole TOF in positive mode. Complete sample processing, data
acquisition and data processing have been reported in detail [21]. Each individual platform
was analyzed independently using Metabloanalyst 5.0 [22]. Data were first filtered to
eliminate any feature with missing data (i.e., all samples had quantifiable data). Then both
‘omics platforms’ were filtered by selecting features with <40% relative standard deviation
(RSD) of quality control samples. Data were visually checked for outliers using principal
components analyses (PCA). Both ‘omics platforms’ were normalized to the respective
feature median, log transformed, then pareto scaled. We have used these parameters to de-
scribe the metabolomics profile in post-SCI muscle tissue [4,5,23]. All spectra were matched
to known metabolites using the BinBase algorithm [24] while unconfirmed molecules were
matched to numerical BinBase IDs with identical spectra and retention times. Differences
in individual features were tested using one-way ANOVAs with Benjamini-Hochberg false
discovery rate (FDR) < 0.10 as the threshold for meaningful group differences. Tukey’s
multiple comparisons post-testing was used when appropriate. Figures were generated
using MetaboAnalyst 5.0 and the R package complex_heatmap (v2.13.1). The data matrices
used to perform all lipidomic and metabolomic analyses can be found in Tables S1 and S2,
respectively. Each respective table contains group means and standard deviations to better
understand feature variability.

2.5. xMWAS

xMWAS [25] was used for multiomic integration using the framework of the mixOmics
package [26] and multilevel community detection for network generation [27]. Features
were selected using sparse projection of latent structures (sPLS) in regression mode. sPLS
allows for simultaneous variable selection across both data matrices with better inter-
pretability of constructed latent variables when compared to PLS [26]. The lipidomics data
matrix was set as the ‘X matrix’ and was used to predict outcomes in the metabolomics
data set (Y matrix). Features were filtered with an RSD < 0.40, with sPLS calculating pair-
wise correlations between data matrices. Statistical thresholds for selection were Pearson
correlations > |0.40| and a p value < 0.05. The data sets used for xMWAS inputs were
normalized and scaled as described above. Molecular communities were detected using
the multilevel community detection algorithm. Absolute changes in eigenvector centrality
(|∆EIC|) were measured to find and compare important nodes within the network of each
comparison, with |∆EIC| > 0.30 set as a meaningful change in feature importance.

3. Results
3.1. Lipidomics

We identified 928 lipidomic features that were detected in every sample. RSD filtering
removed 40 lipids, resulting in 888 lipids for further analyses. PCA, which maximizes
variance to generate unsupervised loading scores, and sPLS-discriminant analysis (sPLS-
DA), which maximizes supervised co-variance, led to unique clusters among groups
(Figure 1A). Following one-way ANOVA analyses, 229 lipids had an FDR < 0.10, of which
92 lipids were annotated and 137 unannotated. The proportion of each annotated class
is presented in Figure S1A, with triglycerides (TGs, 30%), phosphatidylcholine (PC, 25%)
and sphingomyelin (SM, 15%) being the most represented classes. No annotated long
chain free fatty acid met FDR thresholds for differential abundance (Figure S1B). The top
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100 differentially abundant lipids based on FDR are shown as a heatmap in Figure 1B.
Of the 229 differentially abundant lipids, 160 were similarly affected in magnitude and
direction of change in both SCI groups compared to Sham (Tables S1 and S2). Of particular
interest were lipids for which there were meaningful differences between SCIb and SCIv
groups as determined using Tukey’s multiple comparisons post-test. There were 50 lipids
that met these post-test criteria. Of these, 10 were TGs, 6 PCs, 4 phosphatidylethanolamines
(PE), 4 phosphatidylinositols (PI), 1 ceramide (CER), 1 cholesterol ester (CE), and 24 that
were not annotated. Figure 1C highlights the unique set of PIs that met FDR criteria that
were altered by the administration of boldine.
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Figure 1. Changes in the circulating lipidome after SCI. (A) PCA and sPLS-DA plots showing unique
clustering of groups across the top two components for each respective plot. (B) Clustering heatmap
of the top 100 differentially abundant lipids (FDR < 0.10) showing mainly SCI-induced changes
compared to sham controls. (C) Unique and consistent boldine-associated changes in differentially
abundant circulating phosphatidylinositols. PCA and sPLS-DA plots are shown with 95% confidence
interval range. Box plots are median values that have been log transformed and pareto scaled, with
the yellow diamond equaling the mean. Statistically different Tukey’s multiple comparison post-tests
are denoted with ‘a’ = p < 0.05 compared to ‘Sham’, ‘b’ = p < 0.05 compared to ‘SCIb’ and ‘c’ = p < 0.05
compared to ‘Sham’.

3.2. Metabolomics

There were 953 metabolites detected in all samples. RSD filtering removed 111 metabo-
lites, leaving 842 metabolites for analyses. PCA demonstrated overlap of the 95% confidence
interval among all groups though the SCIv group was very tightly clustered. However,
sPLS-DA was able to generate distinct group clusters (Figure 2A). 35 metabolites had a
nominal p value < 0.05, though all had an FDR > 0.10. A heatmap of the top 50 metabolites
as shown by nominal p value is shown in Figure 2B. For exploratory analyses of just the
SCI groups, comparisons using independent samples t-tests resulted in 29 metabolites with
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a nominal p value < 0.05. While the SCIb vs. SCIv comparison found no metabolites with
FDR < 0.10, consistent patterns for group differences were observed as shown by a heatmap
of the 29 metabolites (Figure 2C). In a further exploratory analysis, we compared the list
of 29 serum-based metabolites to the metabolites we previously found were altered by
boldine in the skeletal muscle of these animals [5]. We found only one shared metabolite:
an unannotated feature with BinBase ID 66261.
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Figure 2. Metabolomics of serum after 7 d after a complete spinal injury. (A) PCA plot showing
major overlap of the ‘Sham’ and ‘SCIb’ groups, with the sPLS-DA plot showing unique clusters.
(B) Clustering heatmap of the top 50 metabolites as ranked by nominal p value from one-way
ANOVAs. (C) Clustering heatmap of metabolites with a nominal p value < 0.05 in exploratory
comparisons of ‘SCIv’ and ‘SCIb’ mice.
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3.3. xMWAS

Multiomic integration revealed unique network structures and community member-
ship for each group (Figure 3). Major outcomes of the network analyses are summarized in
Table 1. sPLS selected 1112 features from the Sham group, with the network mapped across
8 communities with a modularity measure of 0.61. The SCIv group had 576 molecules
selected and mapped across 7 communities with a modularity measure of 0.58 and the SCIb
group had 887 features selected and mapped across 4 communities with a modularity mea-
sure of 0.33. Each community detected across all groups consisted mostly of unannotated
lipids and metabolites (~60–70%) and a number of functional categories with low (1–5%)
relative representation. However, in the Sham group, community 1 was 13% PCs, while
communities 2 and 3 had 16% and 13% proportion of TGs, respectively. The SCIv group
had two communities with >10% proportion of PCs: community 1 (17%) and community 3
(11%). The SCIb group had <10% for all annotated groups.
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Figure 3. Multiomic integration and network generation using xMWAS. Features were selected using
sPLS in regression mode with correlations > |0.40| and p values < 0.05. Distinct communities as
generated by the multilevel community detection algorithm are shown in different colors for each
respective network without a shared color arrangement across networks (i.e., an orange community
in one network is not equivalent to an orange community in another). Red edges are positive
correlations between nodes, with blue edges being negative. Lipids are shown as square symbols and
metabolites as circles.
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Table 1. Community features and membership proportions following xMWAS.

xMWAS Data Summary

Sham

Total features Number of annotated groups Top community proportion (%) Top Annotated Proportion (%)
Community 1 189 13 Unannotated lipids (56%) Phosphatidylcholines (13%)
Community 2 75 10 Unannotated lipids (45%) Triglycerides (16%)
Community 3 116 16 Unannotated metabolites (31%) Triglycerides (13%)
Community 4 143 17 Unannotated metabolites (38%) Triglycerides (6%)

Phosphatidylcholines (6%)
Community 5 56 9 Unannotated lipids (50%) Phosphatidylcholines (21%)
Community 6 166 15 Unannotated metabolites (59%) Sugars (4%)
Community 7 104 10 Unannotated lipids (54%) Phosphatidylcholines (7%)
Community 8 262 14 Unannotated metabolites (83%) Amino acids and biogenic amines (4%)

Matrix modularity 0.61

SCIv

Community 1 94 12 Unannotated lipids (41%) Phosphatidylcholines (17%)
Community 2 56 8 Unannotated lipids (59%) Phosphatidylcholines (4%)
Community 3 89 12 Unannotated lipids (40%) Phosphatidylcholines (11%)
Community 4 27 6 Unannotated lipids (67%) Phosphatidylcholines (4%)

Phosphatidylethanolamines (4%)
Sphingomyelin (4%)

Amino acids and biogenic amines (4%)
Community 5 119 11 Unannotated lipids (48%) Phosphatidylcholines (7%)
Community 6 136 18 Unannotated lipids (51%) Phosphatidylcholines (6%)
Community 7 55 10 Unannotated lipids (42%) Amino acids and biogenic amines (7%)

Phosphatidylcholines (7%)
Matrix modularity 0.58

SCIb

Community 1 294 20 Unannotated lipids (45%) Triglycerides (5%)
Community 2 244 19 Unannotated metabolites (48%) Phosphatidylcholines (7%)
Community 3 302 15 Unannotated metabolites (77%) Amino acids and biogenic amines (4%)
Community 4 47 11 Unannotated metabolites (45%) Triglycerides (6%)

Matrix modularity 0.33
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The major changes in network feature importance in the ‘SCIv vs. Sham’ comparison
and ‘SCIv vs. SCIb’ comparisons are shown in Table 2. The ‘SCIv vs. Sham’ comparison
resulted in 76 features with |∆EIC| > 0.30 and the ‘SCIb vs. SCIv’ comparison resulted in
127 features with a |∆EIC| > 0.30. The top features across both of these comparisons were
mostly unannotated. Within the top annotated features with |∆EIC| > 0.30 for the ‘SCIv
vs. Sham’, multiple PCs were identified. However, within the ‘SCIv vs. SCIb’ comparison,
the top annotated lipids were mostly SM, with additional changes in annotated metabolites
related to sugars and amino acids.
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Table 2. Changes in eigenvector centrality for each of the main group comparisons.

xMWAS Features with |∆EIC| > 0.30

SCIv vs. Sham
Top lipids |∆EIC| Top annotated lipids |∆EIC| Top metabolites |∆EIC| Top annotated metabolites |∆EIC|

PC 37:2 1.00 PC 37:2 1.00 BinBase ID 64546 1.00 sedoheptulose 7-phosphate 0.38
1.96, 640.59 (rt, m/z) 0.97 SM 46:6 0.87 BinBase ID 390122 0.99 spermidine 0.38
2.90, 922.01 (rt, m/z) 0.97 CER d34:0 0.84 BinBase ID 379194 0.95 urea 0.34
0.93, 482.40 (rt, m/z) 0.94 PE P-36:1 or PE O-36:2 0.66 BinBase ID 42357 0.87
0.19, 135.01 (rt, m/z) 0.9 LPC 16:0 0.66 BinBaseID 3173 0.83

SM 46:6;2O 0.89 PC 40:7 0.65 BinBase ID 210272 0.80
CER d34:0 0.84 PC 39:6 0.64 BinBase ID 7542 0.72

0.19, 153.02 (rt, m/z) 0.78 PC 40:8 0.62 BinBase ID 16792 0.71
0.62, 522.35 (rt, m/z) 0.67 PC 40:5 Isomer B 0.6 BinBase ID 4794 0.65

PE P-36:1 or PE O-36:2 0.66 PC 40:5 Isomer A 0.59 BinBase ID 120987 0.65

SCIb vs. Sham
Top lipids |∆EIC| Top annotated lipids |∆EIC| Top metabolites |∆EIC| Top annotated metabolites |∆EIC|

0.18, 257.97 (rt, m/z) 1.00 SM d42:2 Isomer A 0.88 BinBase ID 42357 0.84 mannose 0.44
2.07, 952.59 (rt, m/z) 0.97 SM d38:1 0.86 BinBase ID 3173 0.79 creatinine 0.44
2.36, 882.62 (rt, m/z) 0.95 LPC 16:0 0.65 BinBase ID 379194 0.77 valine 0.43
2.16, 936.60 (rt, m/z) 0.93 SM d41:2 Isomer B 0.64 BinBase ID 4794 0.65 glucose 0.42
1.72, 689.54 (rt, m/z) 0.89 PC 40:8 0.62 BinBaseID 120987 0.64 phosphate 0.42
1.46, 764.55 (rt, m/z) 0.89 SM d40:2 Isomer B 0.60 BinBase ID 64546 0.80 proline 0.41

SM d42:2 Isomer A 0.88 PC 40:5 Isomer A 0.59 BinBase ID 7542 0.56 ribose 0.41
1.95, 908.57 (rt, m/z) 0.86 PC 40:4 0.56 BinBase ID 390122 0.55 phenylalanine 0.40
1.33, 762.53 (rt, m/z) 0.86 SM d41:1 0.50 BinBase ID 342919 0.51 sedoheptulose 7-phosphate 0.38

SM d38:1 0.86 SM d42:1 0.48 BinBase ID 161365 0.46 glutamine 0.36

Abbreviations: CER = ceramide, EIC = eigenvector centrality, LPC = lyso-phosphatidylcholine, PC = phosphatidylcholine, PE = phosphatidylethanolamine, SM = sphingomyelin, rt =
retention time, m/z = mass:charge.
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4. Discussion

Conclusions supported by our data are that a mid-thoracic spinal cord transection
results in large changes in the abundance of serum lipids with ~25% of all detected lipids
affected by SCI 7 d after injury. Of the 28 TGs with an FDR < 0.10, all of them were
downregulated in both SCI groups when compared to the Sham group, suggesting that
either hepatic production of TGs is reduced or that peripheral breakdown of TG into
free fatty acids is increased. Interestingly, boldine was able to attenuate the decrease in
serum levels of 10 of these TGs (TGs 48:2, 50:1/2/4, 51:3, 52:4/5, 53:2/3/4). Of note, not a
single free fatty acid had an FDR < 0.20, meaning despite major reductions in circulating
TGs, free fatty acid levels were stable after SCI. Boldine was also able to lower serum
levels of PI species to values similar to those observed in sham controls. The effects of
SCI on the circulating metabolome were less clear with mean changes observed based on
nominal p values, though none of these passed our FDR threshold. Taken together, SCI
primarily affected the lipidome with some demonstrated efficacy of boldine able to reduce
the magnitude or fully prevent SCI-induced changes in abundance.

Outside of the overall changes in the lipidome due to SCI, an interesting outcome of
our study is the reduced circulating abundance of four PIs (PI 34:1, 34:2, 36:1 and 36:2) in the
SCIb animals compared to SCIv, and to an extent, even the sham animals. These individual
species have not been described after SCI or other neurological trauma but they have been
studied in mice fed a high-fat diet. Serum PI 34:1 and 36:1 were upregulated in response to
a chronic high-fat diet in mice and associated with elevated levels of blood glucose and
pro-insulin [28], though the same animals had reduced levels of PI 34:2 and 36:2. While the
literature implicates the alteration of PI levels in disrupting glucose metabolism through
some PI mechanism, why boldine in particular would reduce these PI species after acute
SCI is unknown. PIs are key components of the nuclear membrane, and present to a
lesser extent in the plasma membrane [29]. One possibility is boldine was able to reduce
accumulation of cytosolic calcium, leading to established intracellular mechanisms such
as reduced PKC or phospholipase activity, which may affect turnover and packing of PI
species [30]. Similarly, boldine was able to reduce abundance of a set of PCs compared to
SCIv as well as sham animals (PC 34:0, 36:1, 37:6 and 38:1/2). PCs are the most abundant
membrane phospholipids [31] suggesting that these phospholipids may be coming from
either cell breakdown or increased membrane turnover. However, we are not able to
identify where these phospholipids originated from our data.

Understanding the molecular relationships across multiomic profiles is key to identify-
ing novel targets for therapeutics as well as repurposing existing interventions to improve
clinical relevancy and translational potential. To improve our understanding of these
relationships in our current report, we chose to use xMWAS for multiomic integration,
community detection, and network analyses [25]. The network structure of the Sham group
was relatively distinct compared to the SCI groups. Community detection across all groups
consisted of mostly unannotated features and this is not surprising as our data sets were
largely comprised of unannotated features. The SCIb group had a poor modularity index
and large community membership, indicating that the algorithms had difficulty separating
the community features. This is likely related to the highly variable changes seen in the
metabolome in these animals. We next compared EIC among groups to determine whether
the importance of key features was changed in our main comparisons of ‘SCIv vs. Sham’
and ‘SCIb vs. SCIv’. EIC represents the weighted importance of a feature (i.e., number
of connections) and its connectedness to other important features. The majority of the
features with large changes in EIC were, again, mostly unannotated. However, there were a
number of annotated features that met our statistical cutoff of a |∆EIC| > 0.30, which, while
arbitrary, is more conservative than the cutoff (|∆EIC| > 0.10) for the original xMWAS pub-
lication [25]. When comparing the differences in EIC between annotated features selected in
each comparison, the top lipids in the ‘SCIv vs. Sham’ comparison were mostly PCs, while
the ‘SCIb vs. SCIv’ comparison was mostly SM. The changes in EIC related to SM species in
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the SCI animals are interesting as SM are key components of the membrane of myelinating
cells (e.g., oligodendorcytes). SM species are intricately linked to calcium signaling both as
being upstream initiators of signaling and downstream mediators [32]. Another intriguing
outcome in the ‘SCIv vs. SCIb’ comparison was that the top annotated metabolites were
sugars and amino acids. Proline, glucose, and phenylalanine were molecules we noted
to be differentially abundant following boldine treatment in paralyzed skeletal muscle
from these animals [5], as was glutamine, a well-known regulator of neuronal function that
is dysregulated after SCI [33]. The lack of molecular annotations for important features
identified using xMWAS results in our inability to fully appreciate the change in molecu-
lar landscape. However, it does highlight key biological process affected by SCI with or
without boldine, providing direction for future studies to improve translational potential.

A major limitation of untargeted approaches for lipidomic and metabolomic studies
is the lack of annotation for a large portion of molecules that get detected. In this report
unannotated features make up ~60% of detected lipids and ~75% of detected metabolites.
Among the differentially abundant lipids that met FDR criteria, ~60% were unannotated,
making complete understanding of our data difficult. While this may complicate complete
biological understanding, it is clear the magnitude of change observed in the lipidome
highlights a unique response to, and metabolic challenge during, acute SCI in mice. Another
limitation of our study was the inability to detect any group differences in metabolomics at
our FDR threshold. This was undoubtedly due to small sample size and the fact that two
animals in both the SCIb and Sham groups drove a large majority of the variance as we
noted in Figure 2A. While it could be justified these mice could have been outliers to be
removed from analyses, we could not identify any apparent technical or sample processing
issues that may have led to our variable results and, notably, identical serum aliquots were
used for the lipidomic analyses, which showed no major outliers. Due to our already small
sample sizes, we felt it was inappropriate to remove any of the animals despite them likely
being outliers. Additional limitations to our approach were potential unknown interactions
of DMSO and/or the high oil content of our vehicle in SCI animals compared to the sham
controls, as well as not recording exact amounts of food and water intake or having animals
explicitly fasted for a period of time before euthanasia.

In closing, our data clearly demonstrated the circulating lipidome is greatly affected
by acute SCI, and boldine was associated with preserving the levels of a subset of TGs, PEs,
PIs and PCs. Due to the nature of untargeted mass spectrometry, a large portion of our
data are unannotated, limiting complete and in-depth biological understanding of how SCI
affects the lipidome and metabolome. Additionally, while the metabolomic variability of
the SCIb and Sham animals resulted in minimal statistical differences among groups, some
differences at the nominal level were observed. We anticipate future studies will clarify
these outcomes.
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