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Abstract: Malaria is a prevalent disease in several tropical and subtropical regions, including Brazil, 

where it remains a significant public health concern. Even though there have been substantial efforts 

to decrease the number of cases, the reoccurrence of epidemics in regions that have been free of 

cases for many years presents a significant challenge. Due to the multifaceted factors that influence 

the spread of malaria, influencing malaria risk factors were analyzed through regional outbreak 

cluster analysis and spatio-temporal models in the Brazilian Amazon, incorporating climate, land 

use/cover interactions, species richness, and number of endemic birds and amphibians. Results 

showed that high amphibian and bird richness and endemism correlated with a reduction in malaria 

risk. The presence of forest had a risk-increasing effect, but it depended on its juxtaposition with 

anthropic land uses. Biodiversity and landscape composition, rather than forest formation presence 

alone, modulated malaria risk in the period. Areas with low endemic species diversity and high 

human activity, predominantly anthropogenic landscapes, posed high malaria risk. This study 

underscores the importance of considering the broader ecological context in malaria control efforts. 

Keywords: malaria; Amazon biome; INLA; land use/cover interactions; bird and amphibian 

richness-endemics; landscape composition; biological diversity; spatio-temporal modeling 

 

1. Introduction 

Malaria is a tropical and subtropical endemic disease that affects several countries 

worldwide. In South America, malaria cases were reduced by 58% during 2000–2020, from 

1.5 to 0.65 million cases [1]. Yet, malaria remains an important public health problem, far 

from elimination in several regions. Venezuela, Brazil, and Colombia make up 77% of all 

cases in South America, and 68% of those cases are due to the Plasmodium vivax parasite. 

While significant efforts have been made to control malaria in Brazil, it continues to pose 

a public health concern, particularly due to the growing reintroduction of epidemics in 

areas that have been free of cases for several decades [2].  

Even though Anopheles darlingi is the predominant malaria vector in Amazonian 

countries [3], there are 61 Anopheles species in Brazil, mostly distributed in the Amazon 

area belonging to the subgenera Anopheles, Kerteszia, and Nyssorhynchus, some of which 

inhabit other biomes such as the “Atlantic Forest” and the “Pantanal” wetlands, of which 

18 species were reported infected with Plasmodium parasites; while the highest vector 

species richness is located in the Amazon biome, with Nyssorhynchus and Anopheles being 

the most diversified subgenera [4]. That way, in Brazil, transmission remains highly 

clustered in the Amazon basin, with 99.5% of the total cases [5,6].  
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Deforestation plays a crucial role in the rise of malaria cases in the Amazon region 

[7–9]. The link between deforestation and malaria incidence is influenced by multiple 

factors. For instance, at the interface between primary forest and human se�lements 

[10,11], the rapid adaptation of disease-carrying vectors to newly modified environments 

[12,13] shifts in the food chain and impacts the population of Anopheles mosquitoes, 

causing the decline of Anopheles predators [14,15]. 

Deforestation arises from expanding urban infrastructure, agricultural practices, 

livestock farming, mining, and other human activities. These developments increase the 

interface between human se�lements and natural land cover types, where potential 

disease vectors reside. Consequently, there is a risk that these vectors, having come into 

contact with humans infected with malaria, could subsequently infect other people. Thus, 

spatial modeling of land use and cover is considered an important tool to understand how 

malaria increases or decreases and offers valuable insights into causal relationships due 

to the distribution of people and changes in vector habitat quality [16–18]. The significance 

of incorporating landscape-based approaches, such as landscape configuration, into eco-

epidemiological models is noteworthy. This goes beyond solely considering the quantity 

of each category and extends to encompass the interactions between different landscape 

elements [19].  

Understanding the role of biodiversity in malaria prevalence, particularly in relation 

to the dilution effect, is crucial alongside acknowledging the impact of deforestation. By 

exploring the connections between predator abundance, competitive species, and non-

competitive hosts, we can gain insights into how biodiversity influences disease 

transmission dynamics, such as increased predator populations that could suppress 

disease-carrying vectors or the presence of non-competitive hosts; thus, reducing malaria 

transmission [20]. 

The effects of human-induced changes and biodiversity reduction impacts on disease 

prevalence have already been studied for hantavirus [21,22], Lyme disease [23], and 

schistosomiasis [24]. Consequently, in diverse ecosystems, the transmission of diseases is 

disrupted due to a dilution of infectious agents across different species. In other words, if 

there are more species in an ecosystem, there are more opportunities for a pathogen to 

infect a non-host species (interrupting the pathogen cycle), which reduces the 

concentration of the pathogen in the environment and, consequently, its transmission to 

the host species [25]. Overall, the dilution effect highlights the importance of preserving 

biodiversity as a means of reducing the incidence of infectious diseases [26]. 

Several predators can significantly control populations of disease-carrying 

mosquitoes in both aquatic and terrestrial ecosystems. The aquatic predators of 

mosquitoes are composed of different taxa, such as tadpoles, but a few other species have 

also been identified as effective predators [15]. For example, fish [27] have been identified 

as very effective predators, particularly Poecilia reticulata and Gambussia affinis, with the 

most important group being macroinvertebrates such as Belostomatidae, Notonectidae, 

and Odonata [28,29]. The most common and effective terrestrial predators are Arachnyda, 

in addition to mammals such as insectivorous bats [30] and birds such as the flycatcher 

[31]. Although the majority of groups that regulate mosquito populations have been 

briefly discussed, it is worth noting the connectivity of a pristine ecosystem. Ecosystem 

disruptions can lead to an ecological imbalance resulting in a decline in the ecosystem’s 

ability to control disease-carrying mosquito populations. 

Three main factors determine the distribution and biological cycle of malaria: (1) 

anthropological factors such as migrations, economic activities (hunting, fishing, and 

agriculture), race, age, and gender; (2) environmental factors such as temperature, relative 

humidity, altitude, and precipitation [32]; (3) ecological factors such as vegetation types, 

biological interactions, and nutrient availability, among others. Previous studies 

evaluated biological factors, land use–land cover (hereafter LULC) influence [33–36], and 

malaria spatial pa�erns [37]. However, the combined impacts of land use, biodiversity, 
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and environmental factors on a macroecological scale (biome) have not been studied yet 

in Brazil. 

Here, we examined malaria cases and the impact of LULC, local biodiversity, and 

other environmental factors as drivers of malaria risk in the Amazon. Specifically, we 

aimed to understand: (i) how land use types can increase or decrease malaria risk, (ii) how 

the combination or interaction of different land use types can affect malaria risk, (iii) 

whether biodiversity would dilute malaria in higher species number regions, and (iv) how 

climatic variables correlate with malaria. We expected that Amazonian municipalities 

with high levels of anthropogenic land use (high habitat modification) and low biological 

richness had higher malaria prevalence. This information will contribute to the 

understanding of the spatio-temporal dynamics of malaria across Amazonia, in addition 

to improving regional and municipal prevention plans directing efforts towards areas 

characterized by specific landscape, climate, and biodiversity pa�erns that amplify the 

risk of malaria. 

2. Materials and Methods 

2.1. Dataset 

This study was conducted using data for the Brazilian municipalities within the 

Amazon boundaries, where municipality polygons acted as our sampling units (see 

Figure S1). The Amazon boundaries used here were taken from a map provided by the 

Instituto Brasileiro de Geografia e Estatística [38].  

2.2. Malaria Cases and Population Data 

Human annual malaria cases (infection location) for each municipality from 2007 to 

2018 were provided by Brazil’s Epidemiological Surveillance Information System for 

Malaria [39]. Due to the low amount of P. ovale and P. malariae (mostly African and Asian 

distribution) cases, the models were restricted to P. vivax and P. falciparum. Mixed-

infection cases (coinfections with P. falciparum and P. vivax) were added to both falciparum 

and vivax cases. The cases were downloaded without stratification by age, sex, or race. The 

Annual Parasite Index (API) was calculated as annual cases/population × 1000. The total 

population size was downloaded directly from the Instituto Brasileiro de Geografia e 

Estatística [40].  

2.3. Land Use–Land Cover (LULC) 

LULC rasters with 100 m cell-size resolution were downloaded from “Projeto 

MapBiomas” collection 5.0 to reconstruct landscape structure annual information for 

2007–2018, based on Landsat images [41]. Data were extracted through Google Earth 

Engine, with 13 LULC classes: forest plantation, mining, sugar cane, wetland, temporary 

crops, grassland, other non-forest formation, savanna, river, lake and ocean, urban 

infrastructure, pasture, and forest formation. We obtained the area of each LULC 

classification for each municipality in hectares from 2007 to 2018 using zonal statistics in 

QGIS 3.8.2. Then, the LULC areas were divided by the municipality area in order to 

calculate the proportion of each LULC class for each municipality. Finally, in order to 

characterize the municipalities and their land use change dynamics throughout the years 

analyzed, the % change in the most important uses in terms of anthropic activities and 

natural habitats were plo�ed on maps.  

2.4. Environmental Variables  

We assigned a climatic zone to each municipality to establish the four rainiest 

months, the four driest months, the four warmest months, and finally, the four coldest 

months. We used two climatic variables from the historical monthly weather data from 

Worldclim from the years 2007 to 2018 with a spatial resolution of 2.5 min (pixel area ~21 
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km2), the average maximum temperature (°C), and monthly precipitation (mm) [42]. Each 

climatic zone is formed by a 250,000 km2 grid = 500 km × 500 km (see Figure S2A).  

Within each climatic zone, we observed rainfall and monthly temperature, 

specifically focusing on the driest and rainiest four months. If the centroid of a 

municipality fell within a climatic zone, we assigned the dry or rainy season based on the 

observed pa�ern of corresponding months in that climatic zone (Figure S2B). After defin-

ing the dry and rainy seasons (each season composed of four months), we calculated the 

total rainfall and average temperature values. Thus, we obtained the following four cli-

matic variables: (1) total rainfall in the dry season, (2) total rainfall in the rainy season, (3) 

maximum temperature in the dry season, and (4) maximum temperature in the rainy sea-

son. The seasons observed were confirmed using the rainfall trends in the Amazon from 

the past eight decades [43]. Finally, the last environmental variable measured was the 

mean municipality altitude extracted from EarthEnv with 1 km2 cell-size resolution [44].  

2.5. Biological Diversity Variables  

We used data from birds and amphibian species richness and endemism as biological 

diversity proxy. We used them due to high-quality data availability for these three groups 

commonly used in macroecological studies [45–47]. These data were extracted from the 

Pa�erns of Vertebrate Diversity and Protection in Brazil database [48]. The bird and am-

phibian variables were fixed for all the years studied due to the absence of yearly infor-

mation and represented the zonal average by the municipality to make comparisons with 

the other variables and their possible impact on malaria risk. 

2.6. Model Building 

After the variable transformation (common logarithm), we analyzed variable distri-

bution to determine if they have a good representation across the study region. Skewed 

variables were eliminated from the analysis after graphical method confirmation through 

the histograms and normality plots (see Figure S3). We also performed a Spearman corre-

lation analysis (p < 0.05 of significance) (see Figure S4), finding the most correlated varia-

bles (>0.8 of correlation) and eliminating them from the analysis based on the most appro-

priate biological criteria (such as the elimination of savanna due to the high ecological 

similarity with grassland or the high correlation of mammal’s richness/endemics with am-

phibians and birds). The final selected variables are shown in Table 1.  

Table 1. Covariate description (values per municipality), including environmental, LULC classifica-

tions, and diversity after the correlation analysis and the selection based on the data distribution 

(see Figures S3 and S4). Each of these variables is described for the Amazon biome. A number of 

total and endemic mammal species were eliminated from the analysis due to the high correlation 

with birds. * For the details of the species maps methodology for each taxonomic group, see [48]. 

Variable Variable Type Description 

Altitude Topographic Municipality mean altitude, M.A.M.S.L. (static variable). 

Precipitation wet season Climatic Total mean precipitation in the wet season (mm).  

Precipitation dry season Climatic Total mean precipitation in the dry season (mm).  

Temperature wet season Climatic Mean maximum temperature (°C) in the wet season.  

Temperature dry season Climatic Mean maximum temperature (°C) in the dry season.  

Forest Formation 
Land use land 

cover 

Dense rainforest, evergreen seasonal forest, open rainforest, 

semi-deciduous seasonal forest, deciduous seasonal forest, 

wooded savanna, and alluvial open rainforest (floodplain forests 

and Igapó forests) (% of municipality). 

Grassland 
Land use land 

cover 

Regions within the Amazonia/Cerrado/Orinoco ecotone with a 

predominance of herbaceous strata (% of municipality). 
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Pasture 
Land use land 

cover 

Area of pasture, predominantly planted, linked to agricultural 

activity. Areas of natural pasture are predominantly classified as 

Grassland, which may or may not be grazed (% of municipality). 

Temporary crops 
Land use land 

cover 

Areas occupied with agricultural crops of short or medium 

duration, generally with a vegetative cycle of less than one year, 

which after harvest require new planting to produce, composed 

mainly of cocoa, rubber, cashew nuts, palm oil, and açaí (% of 

municipality). 

Urban Infrastructure 
Land use land 

cover 

Urbanized areas with a predominance of non-vegetated surfaces, 

including trails, roads, and buildings (% of municipality). 

River, lakes and ocean 
Land use land 

cover 

As the name denotes, rivers, reservoirs, dams, ocean in the East 

coast zone in the Amazon region, lakes, and other water bodies 

(% of municipality). 

Endemic amphibians * Diversity Mean endemic amphibians species number (static variable). 

Endemic birds * Diversity Mean endemic bird number species (static variable). 

Bird richness * Diversity Mean bird number of species (static variable).  

We initially used cluster analysis to identify the spatial pa�ern of malaria (random, 

aggregate, or uniform). Then, we utilized integrated nested Laplace approximation 

(INLA) analysis to validate the risk factors (LULC, environmental variables and local di-

versity) driving malaria risk. Cluster analysis is a technique used to identify groups or 

observations in a dataset based on the similarity of their a�ributes. In disease spatial anal-

ysis, cluster analysis can be used to identify spatial areas with a high prevalence or inci-

dence of a particular disease. INLA is a Bayesian method used for fi�ing models to spatial 

data. It is particularly useful for spatial analysis because it can handle complex spatial 

structures, including spatial correlation and time dependence, and can provide accurate 

estimates of uncertainty. In disease spatial analysis, INLA can be used to model the spatial 

distribution of a disease, taking into account the underlying spatial structure of the data 

and any potential confounding variable [49]. Using cluster analysis and INLA in parallel 

can provide a more comprehensive analysis of disease spatial pa�erns. 

The cluster analysis models were developed using a retrospective spatiotemporal 

model under permutation probability using a maximal cluster size of 50% of the total an-

nual municipality population using SaTScan™. The null hypothesis of no clustering was 

rejected when the simulated p-value was lower than or equal to 0.05. For the INLA analy-

sis, we used two models for P. vivax and two for P. falciparum, covariates models (see Table 

1) and interactions models with the landscape configuration (the land use combinations 

present in a defined area).  

To address the issue of highly uneven population distribution across the Amazonian 

municipalities, the malaria cases were standardized by utilizing the function ‘expected’ 

(expected cases) before incorporating them into INLA models, based on the population 

size and the observed cases of each municipality and each year and with spatial interpo-

lation techniques to smooth the observed incidence rates and generate a continuous sur-

face of expected rates [50]. Accordingly, we performed two models for each parasite, the 

first one with the covariates described in Table 1 and the second one with the LULC inter-

actions; that is, the relationship between multiple land use/land cover types and their com-

bined effect on malaria risk. Once we determined the influence of each combination of 

LULC on malaria risk through the INLA models, we created a 10 km × 10 km mesh with 

each cell representing a specific geographic area. Using this mesh, we constructed a zonal 

histogram to identify the LULC combinations present in each cell for each year. Finally, 

we created annual color-coded maps showing the associated malaria risk values for each 

LULC combination across the study area. 
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All the models were performed with non-informative priors. We included independ-

ent and identically distributed (iid) random effects often used to account for overdisper-

sion [51] and a Besag–York–Mollier spatial term where the observations and data in con-

tiguous municipalities may be spatially correlated compared to areas that are further apart 

[50,52].  

The model choice was based on the fit and adequacy, the cross-validation checks via 

conditional predictive ordinate (CPO) values, the log-likelihood, the dispersion, and the 

correlation between the mean fi�ed values and the observed cases. All analyses were per-

formed using the R language (R Core Team, 2022). Correlation analysis was performed 

using the R package Vegan [53]; the expected values were calculated with the SpatialEpi 

R package and the neighborhood matrix with the spdep R package. For the spatiotemporal 

models, we used the R package INLA 21.11.22 [49,54], and the coefficient plots were cre-

ated using the coefINLA R package [55]; for the maps, zonal statistics, and zonal histo-

grams, we used QGIS 3.8.2 (2018). 

3. Results 

3.1. Malaria Cases 

In total, 2,827,546 cases were reported. P. vivax cases were the most abundant (85.2% 

of cases), followed by P. falciparum (13.7% of cases) and mixed forms (0.9% of cases). In 

general, during the period 2007–2018, there was a decreasing trend for P. vivax and P. 

falciparum cases. The northern zone in the Amazon region concentrated the largest quan-

tity of cases (Figures S5 and S6) for both P. vivax and P. falciparum. In 2007, the Amazonas 

state (AM) registered the highest number of cases (total cases), 203,164 cases (7.1% of the 

total cases), which represented the maximum peak of cases among all states for all years 

from 2007 to 2018. 

However, there were areas with absence or rare cases where the relative risk maps 

showed positive risk (e.g., Codajás—AM, Altamira—PA, and Oriximiná—PA municipal-

ities). Another region that presented high API and relative risk was the northern area in 

the Amapá state, a state composed mainly of forest cover, grassland, and a big river cover 

due to the mouth of the Amazon River. Over the years, the API relative risk in the north-

west Amazon region has consistently increased. This area is mainly characterized by 

grasslands and pastures that may or may not be grazed and forms the ecotone between 

the savannahs of the Orinocense plains and the Amazon biome. Additionally, this region 

has experienced significant natural habitat modification in the past two decades (see Fig-

ure S8). Regarding P. falciparum, the pa�ern remains quite similar, albeit with fewer risk 

values and smaller clusters. The Amazon’s northwestern and northeastern regions also 

exhibited elevated API values and positive risk values (Figure S6). 

3.2. Spatial Clusters 

According to our analysis, we identified three distinct clusters for both P. vivax and 

P. falciparum, each with varying levels of risk, geographic coverage, time windows, and 

location (see Table 2). In addition to presenting differences in cluster size, they all had 

different years with the exception of cluster number 3 for both parasites (from 2007 to 

2008). The clusters associated with P. vivax had a larger number of expected and observed 

cases, indicating a higher incidence of this strain of the disease in the affected areas. Ad-

ditionally, our findings revealed that cluster number 2 for falciparum malaria had a con-

sistent location within regions that experienced notable natural cover transformation over 

the past two decades, specifically in the Para state (Northeast Amazon zone). 
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Table 2. Results of the cluster analysis for P. vivax and P. falciparum. The clusters shown here were 

significant (p < 0.00001), and the risk value was calculated by measuring the ratio between observed 

cases and expected cases. Its geographical extension and location can be observed in Figure S7. 

P. vivax P. falciparum 

Cluster Time 
Observed 

cases 

Expected 

cases 
Risk Cluster Time 

Observed 

cases 

Expected 

cases 
Risk 

(1) 2013–2017 353,973 
231,923.5

8 
1.53 (1) 2013–2018 83,331 47,915.42 1.74 

(2) 2010–2011 163,179 86,675.19 1.88 (2) 2009–2012 65,919 38,388.91 1.72 

(3) 2007–2008 136,239 81,743.78 1.67 (3) 2007–2008 21,794 9446.12 2.31 

3.3. LULC Change  

During 2007–2018 there was notable land use modification (Figure 1). The forest for-

mation in the northern area of Mato Grosso, as well as in nearly all of Acre, Rondonia, and 

Amazonas states, showed a decline. Porto Velho—RO had one of the highest negative 

trends in all of the Amazon region. In 40 municipalities, there was a reduction in approx-

imately 10% to 22% of forest cover in the period. Grasslands had a cover reduction as well, 

but differently from forest formation, the higher percentage change was in the southwest 

and southeast parts of the Amazon region (Mato Grosso, Tocantins, and Maranhão states). 

Temporary crops had a notable increase within the agriculturally expansive states (Mato 

Grosso, Maranhão, and Pará). We want to remark that changes in percentages within 

larger municipalities correspond to a greater number of hectares, as the analyses were 

conducted considering the proportion of each land use (land use area/municipality total 

area * 100).  

 

Figure 1. The (left) and (center) column shows LULC percentage change (%) during the period 

2007–2018 at the municipality level; the negative values represent a decrease, and positive values 
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represent an increase in the land use–land cover area of each covariate. The (right) column shows 

the average species richness maps at the municipality level. 

3.4. Diversity Variables  

Based on the zone statistics (mean by municipality for the variables of richness and 

endemic species), the states of Acre, western Amazonas, and northern Roraima contained 

the highest values of bird richness. In the state of Mato Grosso, the southern region also 

showed a high number of bird species due to the strong influence of the Pantanal wet-

lands. Para and eastern Maranhão showed high mean endemic bird species numbers; the 

other states showed smaller numbers of endemic species and zero values for Acre and 

some municipalities of Amazonas, Roraima, and Amapá. Finally, the Tocantins state ex-

hibited the highest number of endemic amphibians (Figure 1). 

3.5. Covariate Significance 

After identifying over-dispersion in both P. vivax and P. falciparum cases, we opted to 

employ zero-inflated negative binomial error distribution for the covariates model and 

the negative binomial family for the interactions models. For the P. vivax covariate model, 

the cpo values ranged from 0 to 0.99 with a mean of 0.43. For the P. falciparum covariate 

model, the cpo values ranged from 0 to 0.99 with a mean of 0.62. Tables S9, S10, and Figure 

2 show the average and range values for each covariate. There was a difference in the 

effects of each covariate for P. vivax and P. falciparum risk. Forest formation had an increas-

ing effect on the relative risk for both Plasmodium species. Endemic amphibians, endemic 

birds, grassland, pasture, temporary crops, and urban infrastructure had a decreasing ef-

fect on the relative risk of P. vivax. For P. falciparum, endemic birds, pasture, temporary 

crops, and urban infrastructure had a decreasing effect on the relative risk. 

 

Figure 2. Coefficient plots of posterior distributions effect sizes with the median (dark blue and 

green lines) and 95% credible intervals (light blue and green shades) of each covariate for (A) Plas-

modium vivax cases in blue and (B) Plasmodium falciparum cases in green; the significant effects 

are represented in boldface and marked with an asterisk. 

3.6. Interactions Models and Effect Maps 

We found 50 unique landscape configuration combinations from 2007 to 2018 (see the 

example for 2018 in Figure S9). In the INLA interaction models, we estimated the mean 

effect for every possible combination (57 combinations for the six LULC categories used), 

of which we found four positive and seven negative significant landscape configurations 

for the P. vivax model and one positive and one negative significant configuration for the 

P. falciparum model (see Table S11). For P. vivax, the landscape configuration that showed 

the highest average effect was (1) Grassland * River Lake and Ocean, (2) Pasture * Grass-

land * Temporary crops, (3) Forest Formation * River Lake and Ocean, and (4) Pasture * 
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Forest Formation * Grassland. The other seven combinations all had a decreasing effect on 

estimated risk, with the strongest negative effect being for Forest formation * Urban infra-

structure. In the case of P. falciparum, we found only two landscape combinations that 

were significant. This is the main reason why we did not make maps representing the 

average effect in each 10 x 10 square since we would have only two colors, which would 

not be informative: (1) Grassland * River Lake and Ocean with increasing risk effect and 

(2) Forest Formation * Grassland * River Lake and Ocean with negative mean effect. All of 

these interaction effects and single land use effects were mapped for each year (see Figure 

3) for P. vivax in order to see in more detail each effect on the spatial interaction pa�ern in 

all the analyzed years. For P. falciparum, the cpo values ranged from 0 to 0.99 with a mean 

of 0.51; in the case of P. vivax, the values ranged from 0 to 0.98 with a mean of 0.31. 

 

Figure 3. INLA median effect on the credible intervals in the P. vivax risk based on the LULC inter-

action model (100 km2 mesh maps). Lower value cells (blue) and higher values cells (red) are based 

on the landscape configuration (see Supplementary Materials) for all years (2007–2018). 

4. Discussion 

Our findings suggest that the risk of malaria is influenced by a complex interaction 

of ecological and anthropogenic factors that determine non-random distribution. One no-

table factor is the richness and endemism of amphibians, mammals, and birds, which ap-

pears to reduce the risk of malaria. Additionally, the presence of forests was associated 

with increased malaria risk, but this relationship was dependent on contact with anthropic 

land uses. The covers of anthropic activities were found to reduce malaria risk, possibly 

due to vector habitat loss and the homogenization of the landscape. However, when these 

land use covers came into contact with other land uses such as water cover and natural 

habitats of the vector, the effect was the opposite, and the risk of malaria increased (such 

as pasture together with grassland and temporary crops that each one of them and inde-

pendently had a reduction effect in the cases of malaria, which in the interaction models 

showed an effect of increasing the risk of malaria). 
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The detected clusters suggest that malaria case distribution was far from random and 

displayed the same trend with past investigations showing high malaria rates in the mu-

nicipalities Mâncio Lima—AC, Rodrigues Alves—AC, and Cruzeiro do Sul—AC [37] and 

the other municipalities that make up each of the clusters, mainly the Amazonas, North-

ern Acre, and the western zone of Para states. Cluster analysis and Bayesian analysis pre-

sent similarities in the spatial pa�ern, where the largest clusters contain municipalities 

with the highest risk values due to highly suitable conditions for malaria transmission.  

Of the 53 Brazilian municipalities located on the border with Peru, Colombia, Vene-

zuela, Suriname, Guyana, and French Guiana, 39 presented high-risk values consistent 

with the investigation of [4], which reviewed the spatialization of malaria in Brazil. This 

reaffirms the importance of carrying out early control and prevention alerts, such as bor-

der and tri-border control efforts between Peru, Colombia, and Brazil. Due to the combi-

nation of high migration rates and their remote locations from larger health centers and 

political, administrative centers, it is anticipated that these municipalities will be the most 

affected areas in the future. Various Brazilian government efforts such as the distribution 

of bed nets, indoor residual spraying (IRS), early diagnosis and treatment, health educa-

tion and community engagement, and malaria-vector surveillance and monitoring have 

been proposed to combat this. 

P. vivax and P. falciparum spatial pa�erns were differentiated. Those differences are 

still not completely understood and might be due to multiple reasons. For instance, the 

Duffy gene is randomly distributed in the population and more frequently found in Afro-

descendants from the West African region [56]. The difference in the Plasmodium species 

niches [4], the Plasmodium species' time of gametocyte production, and their lifespan [57] 

or relapses is a blood-stage infection only observed in P. vivax and P. ovale, arising from 

the activation of hypnozoites after the primary infection [58]. On the other hand, the Bra-

zilian government launched a campaign in 2003 for the prevention and control of malaria 

(acronym in Portuguese PNCM) where its process and result indicators are specifically 

the percentage of P. falciparum cases, autochthonous cases of P. falciparum, and parasitic 

index falciparum annual (IFA), among others concerning this differential control effort 

[59]. Finally, the presence of significantly expanded regions is likely a result of incomplete 

treatment usage, as well as the rising resistance of both Plasmodium to treatments and mos-

quitoes to insecticides.  

Although climatic variables are critical in driving malaria transmission risk at local 

scales, no detectable effect was found for our dataset at the municipality level for explain-

ing annual risk. At the biome level, the spatial and temporal scale at which the climatic 

variables were measured can affect the inferred malaria cases–climatic influence [60]. De-

spite inter-annual variations in precipitation and temperature, it could be possibly inade-

quate in influencing the risk of malaria at the regional scale. Instead, it is suggested that 

the occurrence of malaria cases is more likely influenced by intra-annual variations, which 

should be studied at a higher resolution by analyzing climatic variables on a monthly or 

two-month basis [61]. Furthermore, the differential sizes of municipalities, with some be-

ing considerably large, pose challenges in representing their climatic spatial variation with 

a single metric, consequently diminishing their significant impact on malaria risk. Alt-

hough microscale environmental characteristics are lost when we aggregate data for a year 

at the municipality level (such as the differences in the land use temperature), biome-scale 

models are a fundamental tool because epidemiological data are frequently reported at 

the administrative regions [62]. In addition, the primary socio-ecological processes that 

lead to the rise and resurgence of zoonotic diseases may take place on a biome-scale level 

[63–65]. 

Anthropic land uses such as pasture, temporary crops, and urban infrastructure had 

a reducing effect on malaria transmission risk. However, in the interaction models, vari-

ous landscape combinations had an increasing effect on malaria transmission where those 

anthropic land uses were present (e.g., Pasture * Forest formation * Grassland in P. vivax), 

thus corroborating that human activities such as ca�le ranching, grazing, or mining (not 
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analyzed in this model but with much existing information on the positive influence on 

malaria infections) by themselves do not represent all the risk, but rather, the contact 

zones and landscape configuration of the areas where the main vectors inhabit; hence, it 

would be suitable to consider implementing buffer zones between human-driven activi-

ties and forested areas to address this concern. Several investigations have shown that 

deforestation, changes in land use, and anthropic activities are related to malaria trans-

mission in the Amazon, in some cases with increasing effect [13,36,66], in others reducing 

effect [67], demonstrating that the LULC influence is highly context-specific [68].  

Although the Anopheles species populations per se do not have a perfect correlation 

with malaria cases, habitat suitability mediated by the environment is a factor that deter-

mines the probability of contact between humans and the pathogen [33]. The prediction 

and habitat suitability maps of the primary vectors of malaria (A. darlingi and A. nunezto-

vari) throughout the Amazon biome [34] show areas of high suitability in common with 

areas of increasing effect on the risk of the maps made from the effect of landscape inter-

actions (e.g., eastern Amazon state), where forest cover or water was always present, there 

were optimal places for oviposition, and favorable conditions existed for the development 

and growth of mosquitoes [3]. Despite the adaptability of certain Anopheles species to 

modified environments [10,16,69], the majority of malaria-transmi�ing species still de-

pend on the presence of forests for their life cycle [70]. On the other hand, it is important 

to mention that malaria cases are influenced not only by forest cover but also by the activ-

ities on it, such as forest clearance [10,16] and changes in habitat suitability due to forest 

disturbance [69]. Finally, the areas with more forest cover are the areas with higher defor-

estation rates [71].  

Zoonotic disease transmission is also subject to changes in landscape heterogeneity 

and configuration due to the changes in contact zones, distribution, and availability of 

vectors, pathogens, and hosts [72]. According to long-term mathematical modeling, ma-

laria population dynamics in developing forest areas show that cases behave as a convex 

declining curve, the cases increasing until reaching a peak and descending until reaching 

a lower point close to zero due to the reduction in forest formation and the social incomes 

related to health facilities [35]. We believe that the effects of landscape interactions are 

correlated with the heterogeneity of the habitat; in this sense, in cells with a greater num-

ber of land uses (greater diversity of habitats) and with the presence of preserved forest, 

the contact between the infected vector and human greatly increases and is reduced as 

landscape homogenization occurs with a predominance of anthropogenic land uses. On 

the other hand, it is worth mentioning that although the reduction in forests is a factor 

that could affect the populations of some Anopheles species, the appearance of vectors 

adapted to modified environments can play a fundamental role in the transmission of 

homogenized environments in addition to other diseases mediated by anthropophilic vec-

tors such as dengue, zika, chagas, yellow fever, etc. [73]. 

In relation to the influence of bird and amphibian richness/endemic species on the 

prevalence of malaria, the intermediate disturbance hypothesis is something that could 

support ecosystems with a medium anthropic intervention that presents high values of 

species richness [74]. As mentioned earlier, it is worth noting that municipalities with sig-

nificant variations in their spatial characteristics may also demonstrate elevated levels of 

both malaria cases and species diversity. In other words, areas with high spatial hetero-

geneity, such as complex landscape configurations, may have a higher likelihood of ma-

laria outbreaks. Accordingly, the relationship between malaria cases and species richness 

(speaking of predator diversity and non-competent hosts) could be correlative but not 

causal [64]. Additionally, it is crucial to highlight the limitations associated with the utili-

zation of endemism/richness data, specifically concerning spatial sampling bias and po-

tential errors inherent in spatial interpolation methods. Conversely, it should be noted 

that remote and underexplored regions may exhibit seemingly “low” values of rich-

ness/endemism not necessarily due to inherent ecosystem characteristics but rather due 

to limitations in standardized sampling efforts. However, several investigations support 
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the hypothesis of a dilution effect with an explanation of the underlying mechanisms that 

could help to reduce cases. In Central America, the decrease in amphibian populations 

caused by the pathogenic fungus Batrachochytrium dendrobatidis has been found to have a 

direct correlation with the rise in malaria cases. This aligns with the finding that a higher 

number of endemic species in an area can reduce the risk of malaria transmission [75].  

While the exact contribution of birds to human malaria infections remains unclear, 

the impact of native bird species on malaria cases may be a�ributed to a comparable mech-

anism, as observed in the study conducted by Swaddle et al. [26]. Their findings revealed 

that an increase in bird diversity resulted in a decrease in the incidence of West Nile virus 

due to the host competition. Moreover, the non-competent host hypothesis could explain 

the importance of the bird and mammal community. The greater the diversity, the larger 

the number of non-competitive hosts for various types of pathogens [76]. The bird richness 

was highly correlated with the mammal richness, and it is possible that mammals also 

play a fundamental role in malaria control, e.g., the high diversity of warm-blooded hosts 

decreased malaria cases in the Atlantic Forest in Brazil [20], demonstrating the importance 

of the availability of several hosts to reduce the probability of infection of humans by being 

bi�en by infected mosquitoes.  

On the other hand, taking the avian malaria transmission system as a model, it is 

suggested that the structure of the bird community and the characteristics of the landscape 

are determining factors in explaining the prevalence of Plasmodium [77]. However, the 

conclusions from studies up to date are scale-dependent, with diverse host communities 

commonly inhibiting the spread of parasites on small scales but following a hump-shaped 

nonlinear relationship [78]. Our findings suggest that there is an effect of endemic birds 

and amphibians on the incidence of malaria in humans. This highlights the importance of 

identifying and analyzing the complex relationships among biological factors influencing 

the spread of this disease. However, understanding the pa�erns of the assemblage com-

position of the possible hosts (community structure, that is, a step beyond richness) 

through time is crucial to predict where and specifically how specific relationships be-

tween diversity and disease occur in natural systems [79]. 

Finally, it is important to mention the pitfalls when comparing multiple datasets, 

such as richness/endemics species maps, WorldClim data, and malaria cases from the 

SIVEP platform in Brazil. Firstly, differences in data collection methods (for the species 

maps), spatial resolution (10 km per pixel for species maps vs. 1 km for WolrdClim), and 

temporal coverage differences across these datasets can introduce inconsistencies and bi-

ases. Lastly, confounding factors, such as ecological or socio-economic variables, can in-

fluence the observed relationships between species richness, climate, and malaria cases, 

potentially leading to spurious associations. Careful consideration of these pitfalls is cru-

cial for cross-dataset comparisons to ensure reliable results. 

5. Conclusions 

Malaria is part of a complex system that includes several components with specific 

characteristics, including human and vector population dynamics, imperfect detection, 

recrudescence, and several other factors. Its pa�erns occur at multiple scales, such as local, 

regional, and biome. LULC and interaction analyses at the biome scale indicate that forest 

formations alone are not responsible for driving most of the transmission risk. The en-

demic species diversity context, in addition to landscape composition, modulates overall 

risk. Areas with humans living close to the forest, mostly areas with active deforestation, 

predominantly anthropogenic landscapes, and with smaller values of richness and en-

demic species, represent the typical pathogenic landscape of high-risk areas. It is essential 

to plan long-term sustainable development such as ecotourism, agroforestry, sustainable 

forestry, sustainable fisheries, and renewable energy. Those actions should occur without 

abruptly modifying ecosystem cycles and their components. The bird and amphibian di-

versity pa�erns suggest a potential effect in the case reduction. We recommend future 
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research with time replicates and community composition analysis to directly test the di-

lution effect and thus be able to develop evidence-based conservation and nature-based 

solutions.  
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studied area in order to extract the precipitation and temperature data for each season. A. The total 

mean rainfall for each month for each climatic zone (Y axis: 0–1500 mm of rain, X-axis: each month 

represented by color bars from January to December) shows the differences in the rain and dry 

seasons for the region. B. Municipalities centroids used to determine the climatic zone (Dashed lines 

limit); if the centroid falls into the square (500 x 500 km), the season is determined by the rain pa�ern 

of its corresponding climatic zone. Figure S3. Covariate’s histogram plots. Figure S4. Correlation 

plot based on Pearson correlation analysis (significance p value = 0.01), where the X-marked corre-

lations were non-significant. Figure S5. (GIF Plasmodium vivax). Plasmodium vivax maps in time se-

quence, in the left column, the RR (relative risk calculated by the INLA model), and in the right 

column, the API (Annual parasite index), for each municipality between the years 2007 and 2018. 

Figure S6. (GIF Plasmodium falciparum). Plasmodium falciparum maps in time sequence, in the left col-

umn RR (relative risk calculated by the INLA model), in the right column the API (Annual parasite 

index) for each municipality between the years 2007 and 2018. Figure S7. Detected outbreak clusters 

in the studied area. The map on the left represents the three clusters for Malaria vivax cases, and the 

map on the right represents the three clusters for malaria falciparum cases. Figure S8. Land use and 

land cover map for the year 2018 in the legal Amazon (100 m pixel resolution). Figure S9. Land use 

and land cover configuration for the artificial grid of 10 km * 10 km for 2018. Each le�er and color 

in the legend represents land use type and their unique combinations per cell. T: temporary crops, 

F: forest formation, G: grassland, P: pasture, R: river, lake, or ocean, and U: urban infrastructure. 

Table S9. Model estimates for the Plasmodium vivax risk. Table S10. Model estimates for the Plas-

modium falciparum risks. Table S11. Model estimates for the Plasmodium falciparum and Plasmo-

dium vivax interactions models. Each le�er represents the land use type. T: temporary crops, F: 

forest formation, G: grassland, P: pasture, R: river, lake, or ocean, and U: urban infrastructure. Table 

S12. First 40 municipalities with the higher predicted cases for the Plasmodium vivax interactions 

model with its state and IBGE code. 
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