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Abstract: Relatively few studies on the adverse health impacts of outdoor air pollution have been
conducted in Latin American cities, whose pollutant mixtures and baseline health risks are distinct
from North America, Europe, and Asia. This study evaluates respiratory morbidity risk associated
with ambient air pollution in Quito, Ecuador, and specifically evaluates if the local air quality
index accurately reflects population-level health risks. Poisson generalized linear models using
air pollution, meteorological, and hospital admission data from 2014 to 2015 were run to quantify
the associations of air pollutants and index values with respiratory outcomes in single- and multi-
pollutant models. Significant associations were observed for increased respiratory hospital admissions
and ambient concentrations of fine particulate matter (PM2.5), ozone (O3), nitrogen dioxide (NO2), and
sulfur dioxide (SO2), although some of these associations were attenuated in two-pollutant models.
Significant associations were also observed for index values, but these values were driven almost
entirely by daily O3 concentrations. Modifications to index formulation to more fully incorporate the
health risks of multiple pollutants, particularly for NO2, have the potential to greatly improve risk
communication in Quito. This work also increases the equity of the existing global epidemiological
literature by adding new air pollution health risk values from a highly understudied region of
the world.

Keywords: air pollution; global health; health communication; Latin America; respiratory tract diseases

1. Introduction

According to the World Health Organization (WHO), air pollution (both household
and outdoor) is the largest environmental threat to human health, associated with 7.4 mil-
lion premature deaths every year. Low- and middle-income countries experience greater
exposure to unhealthy levels of air pollution compared to the global average [1]. However,
not all global regions experience the same concentrations or composition of outdoor air
pollution. For example, the concentrations and mixtures of outdoor air pollution in Latin
America might be distinct from North America, Europe, and Asia due to different natural
and anthropogenic sources of air and different meteorological and topographic features.
Similarly, the health response of the general public may be modified due to differences
in baseline health conditions, cultural or socioeconomic differences affecting exposure
pathways, or distinct genetic makeup. Unfortunately, there are few studies about air quality
and health in Latin America to demonstrate any such distinctions [2,3].

This study will address these issues by performing a health analysis in Quito, the
capital city of Ecuador, to determine local associations between air pollution and respiratory
hospitalization data. Quito is a valley city surrounded by mountains, increasing the risk
of temperature inversions, which, coupled with decades of fast population growth, have
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made the city highly susceptible to elevated air pollution episodes [4]. Vehicle emissions
are of particular concern, driven by high-sulfur fuels and an increasing demand for private
transportation [5]. However, recent air quality control efforts have resulted in improved air
quality measured by local monitoring stations. In fact, the literature available suggests that
air pollution levels may be lower in Latin America than in Europe, Asia, and North America.
In some of the most polluted parts of Latin America, satellite-derived data demonstrate
long-term trends of decreasing NO2 levels [6]. In Ecuador specifically, WHO’s Ambient Air
Pollution in Cities database reports that Quito has relatively good air quality compared
to other cities in the country and to other major cities in Latin America and around the
world in terms of the annual mean concentration of fine particulate matter [7]. This is
supported by data in Figure 1 showing satellite-derived NO2 data trends for the cities of
Quito and Guayaquil in Ecuador from 2005 to 2020 [8]. While the concentrations of certain
air pollutants in some major cities in South America have decreased since 2010, the region
still consistently exceeds the WHO guidelines and national standards [9].
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Many countries with varying levels of air quality choose to communicate current air
pollution conditions to the public using air quality indices, which encourage individuals
to modify their behavior in ways that reduce unhealthy air pollution exposures. Changes
in behavior in response to index alerts have been observed in numerous studies [10–12].
However, traditional risk communication tools, such as the U.S. Air Quality Index (AQI),
are designed to highlight days where pollution levels are above regulatory levels and are,
therefore, limited in capturing the risks associated with lower levels of air pollution. As



Int. J. Environ. Res. Public Health 2023, 20, 6326 3 of 13

air quality has been improving in some regions, strong evidence suggests that even air
pollution below standard regulatory levels is associated with increased health risk [13–15].

Efforts have been made in many countries to develop health-based indices for use
as communication tools to the public [16–19]. Studies have evaluated these indices and
found that health-based indices in general represent health outcomes more accurately than
existing air quality indices [16,20,21]. Respiratory morbidity has improved through the
awareness and utilization of the Air Quality Health Index (AQHI) in Canada [22], and
a study in Shanghai found that an air quality health index, compared with the existing
air pollution index (API), shows much stronger associations with health outcomes and
therefore provides a more effective tool to communicate the air pollution-related health
risks to the public [16]. Recently, Mexico City also created and validated a multi-pollutant,
health-based air quality index, which is currently in use to communicate daily health risks
to the public [23].

The Municipality of the Metropolitan District of Quito (MDMQ) has designed a
numerical index, Quito’s Air Quality Index (IQCA), which is communicated to the public
every day in order to guide individual behavior modification decisions and reduce the
public health burden attributable to air pollution exposures. The IQCA is generated by
converting the measured concentrations of air pollutants to a common numerical and
color scale for all pollutants, with specific ranges tied to different impacts on human health.
However, this index has never been evaluated for its ability to accurately capture the overall
health risk to the Quito population. The need for a validation of air quality messaging
using local health data has been recommended by leading experts at the American Thoracic
Society [24], and directly informs the design of the present study.

The purpose of this work is two-fold: First, it evaluates the association between
respiratory health risks and outdoor air pollution in Quito. Second, it assesses whether
population-level respiratory health risks, the health outcome most likely to drive individual
behavior modification decisions [25–27], are associated with the IQCA values commu-
nicated daily to those living in Quito. This work not only benefits Quito directly by
providing location-specific risk values and communication improvements, but increases
global health research equity by adding new air pollution health risk values to the limited
epidemiological literature conducted in Latin America.

2. Materials and Methods
2.1. Exposure Data

Hourly air pollution data in Quito for the years 2014–2015 were obtained for all 9 mon-
itoring stations from Quito’s Atmospheric Monitoring Metropolitan Network (REMMAQ)
(see Figure 2). The individual pollution variables were aggregated into daily exposure
variables, at health-relevant averaging times: 24 h average for PM2.5 (µg/m3), 8 h maximum
average for ground-level O3 (ppb), 1 h maximum for NO2 (ppb), and 24 h average for SO2
(ppb). We handled the missing data through multivariate imputation by chained equations
(MICE) using predictive mean matching [28]. Guidance from in-country environmental
officials aided the selection of monitoring stations that best represent daily levels in the
region. Correlation coefficient cut-off values were used as inclusion criteria of monitoring
stations for data imputation. The cut-point values for each pollutant are: 0.6 for PM2.5 and
O3 and 0.4 for SO2 and NO2. All imputations were completed using R.

Hourly meteorological data were also obtained from REMMAQ stations and aggre-
gated into 24 h average variables. These were used in the analysis to control for the effects
of temperature and relative humidity, which have known associations with both respiratory
health outcomes and daily pollution concentrations [29–31]. Descriptive statistics of air
pollution and meteorological variable concentrations in Quito over our 2-year study period
are shown in Table A1.
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Figure 2. Locations of air pollution monitoring stations overlaid on population density in Quito.
The black triangles represent the 9 REMMAQ stations: Belisario, Carapungo, Centro, Cotocollao, El
Camal, Guamani, Los Chillos, San Antonio, and Tumbaco.

The IQCA (highest daily index value from either PM2.5 or O3) is published online
every day as guidance for the general population to modify their daily activities. The IQCA
is a numerical scale between 0 and 500, with intermediate ranges expressed in different
colors. The higher the IQCA value, the greater the level of air pollution and, consequently,
the greater the health concern. The daily IQCA values for all air pollutants were calculated
from daily concentrations of corresponding pollutants using equations from the technical
document provided by the MDMQ (see Table 1).
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Table 1. Equations used to calculate index values based on the concentration of a given pollutant.

Contaminant (µg/m3) Mathematical Expressions for Each Concentration (C) Range

O3, 8 h maximum
0 < C ≤ 100 100 < C ≤ 200 200 < C ≤ 600 600 < C

index values = C index values = C index values = 0.5C + 100 index values = 0.5C + 100

NO2, 1 h maximum
0 < C ≤ 200 200 < C ≤ 1000 1000 < C ≤ 3000 3000 < C

index values = 0.50C index values = 0.125C + 75.00 index values = 0.1C + 100 index values = 0.1C + 100

SO2, 24 h average
0 < C ≤ 62.5 62.5 < C ≤ 125 125 < C ≤ 200 200 < C

index values = 0.8C index values = 1.333C − 66.667 index values = 0.125C + 175 index values = 0.125C + 175

PM2.5, 24 h average
0 < C ≤ 50 50 < C ≤ 250 250 < C

index values = 2C index values = C + 50 index values = C + 50

2.2. Health Data

Hospital admission data for the years 2014–2015 for respiratory diseases in Quito were
obtained from city managers, with air-pollution-relevant diagnostic codes kept in order to
determine the associations of short-term pollution exposure and acute respiratory morbidity
in Quito. The included diagnostic codes met the following ICD-10 definitions: acute
upper respiratory infections, excluding the common cold (J01–06); pneumonia, unspecified
organism (J18); other acute lower respiratory infections (J20–J22); other diseases of the
upper respiratory tract (J30–J39); chronic lower respiratory disease, including COPD and
asthma (J40–J47); other respiratory diseases principally affecting the interstitium (J80–J84);
suppurative and necrotic conditions of the lower respiratory tract (J86); and other diseases
of the pleura (J90, J92–J94). More recent years of health data through 2020 were available
for analysis but were held back at the request of in-country collaborators in order to have
independent data available for evaluation and validation of potential modifications to their
air quality index as part of future work.

After screening with our inclusion criteria, there were a total of 19,966 respiratory
hospital admissions during the study period. Daily hospital admission counts were calcu-
lated for age groups 0–17 years (children), 18–64 years (adults), 65+ years (elderly), and a
combined category of all ages. The descriptive statistics by age group and year are shown
in Table A2.

2.3. Model Design

Poisson generalized linear models were used to assess the associations of individual
air pollutants with respiratory hospital admissions in Quito. Such models provide an
effective method for analyzing nonlinear time-series and are widely used to analyze the
health impacts of air pollution. The regression model included an indicator for day of week,
a smooth function of time with four degrees of freedom (df) per calendar year to control for
seasonality and long-term trends, a smooth function of same-day temperature (three df), a
smooth function of lag days 1–3 temperature (three df), and a smooth function of same-day
relative humidity (three df). Associations between air pollution and hospital admissions
were examined for individual lag days 0–3 and average lag days 0–3. In presenting the
results, excess risks and 95% confidence intervals (CI) were calculated for an interquartile
range (IQR) increase in the individual air pollutants. Sensitivity analysis was completed
using alternative degrees of freedom and the results indicated that the associations were
not substantially changed. All analysis was completed using R [32].

The individual index values for all four air pollutants were calculated, respectively,
and included in the model. The IQCA (the highest index value of the four pollutants) was
also included in the model as an individual variable. The IQCA was largely driven by
ozone during the 2-year study period: 575 days were driven by O3 and 155 days were
driven by PM2.5. Individual index values from NO2 and SO2 were much lower than those
from O3 and PM2.5, and thus were not represented in the IQCA variable.
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Two-pollutant models were run to identify potential improved predictors among air
pollutants. Two-pollutant models used the same basic structure as the single-pollutant
models, with the inclusion of two pollutant variables with six different combinations: PM2.5
and O3, PM2.5 and NO2, PM2.5 and SO2, O3 and NO2, O3 and SO2, NO2 and SO2.

3. Results

Significant associations between air pollution exposures and daily respiratory hospital
admissions were commonly observed among multiple pollutants, age groups, and lag days.
Figure 3 shows the excess risks of respiratory hospital admissions in Quito, corresponding to
an IQR increase in air pollutant concentrations, by lag structure and age group. Significant
associations between PM2.5 and health outcomes were observed across multiple lag days
among all ages and children, with the maximum excess risk observed on average on lag
days 0–3 among children, indicating an excess risk of 9.2% (95% CI: 1.2, 18) for an IQR
increase in PM2.5.
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Figure 3. Excess risks of respiratory hospital admissions in Quito corresponding to an IQR increase
in air pollutant concentrations, by lag structure and age group. Open diamonds indicate significant
results and black circles indicate insignificant results at the 0.05 level.

Exposures to increased levels of ambient O3 were also significantly associated with
respiratory hospital admissions during the study period, with more significant associations
observed for all ages compared to PM2.5. Similar to PM2.5, significant associations were
mainly observed in children, but the health effects of O3 were also observed in older age
groups with the peak impact of O3 occurring in adults on lag day 3 (10.7% excess risk with
95% CI: 4.1, 17.6). O3 was the only air pollutant that showed significant and near-significant
associations with health outcomes among older adults (ages 65+).

Significant associations with respiratory hospital admissions were also observed for
NO2. Significant associations were observed across multiple individual lag days for all ages
and across all lag days in children. Among adults, there were positive but not significant
associations observed across all individual lag days, and the average lag days 0–3 captured
the significant associations with an excess risk of 10.2% (95% CI: 0.5, 20.9).
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Associations between respiratory hospital admissions and SO2 were only observed
in children, but the magnitude of the associations observed for average lag days 0–3 in
children were the largest among all four air pollutants, with an excess risk of 16.3% (95% CI:
7.8, 25.4). No significant associations were observed among adult and elderly age groups.

Moving from individual pollutants to the local air quality index, significant associ-
ations between index values and daily respiratory hospital admissions were commonly
observed among multiple pollutants, age groups, and lag days. As shown in Figure 4,
associations between respiratory hospital admissions and index values followed the same
pattern as their corresponding air pollutants. The effect of the daily IQCA followed a
similar pattern as the O3 index values, which is anticipated, as most of the IQCA values
came from O3 (575 out of 730 values). The remaining 155 IQCA values were based on the
PM2.5 index.
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across all four pollutants. Of the 730 days included in this analysis, 575 days were driven by O3 with
the remaining 155 days driven by PM2.5.

The results of the two-pollutant models are presented in Figure A1. In general, the
associations observed for PM2.5 were attenuated in most two-pollutant models, while
the associations with NO2, and to a lesser extent O3, remained significant and largely
unchanged, regardless of which second pollutant was also included in the analysis.

4. Discussion

One of the primary goals of an air quality index is to easily and effectively communi-
cate the daily health risks of outdoor air pollution exposures to the public, especially to
individuals with increased susceptibility, whom the index is designed to help. The index
should take into account the effects of multiple pollutants at both high and relatively low
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concentrations, therein capturing the overall health risk to a population exposed to many
different air pollutants.

Overall, O3 and NO2 were consistently associated with significant increases in
population-level respiratory morbidity among both children and adults over multiple
lag days. Average lag structures captured effects that occurred over multiple days follow-
ing exposure among children. Significant results were most commonly observed among
children, but this may be due in part to the higher number of hospital admissions in this
age group (see Table A2) and children’s heightened susceptibility to air pollutants, as
evidenced in previous studies [33–35]. Specifically, children have higher ventilation rates,
engage in more physical activity, and spend more time outdoors than adults and thus
inhale more pollutants relative to their body size. Children also have unique physiologies,
including still-developing lungs, immature immune systems, and smaller peripheral air-
ways which put them at increased risk of experiencing adverse health impacts from air
pollution exposure [34,36–38].

The interpretation of findings of a multi-pollutant model can be complicated [39–41].
If the two pollutants in the same model are independent risk factors for the health outcome,
a two-pollutant model might help us to capture the total impacts of these two pollutants
as well as the synergistic (or antagonistic) effects. If one pollutant is a surrogate for the
other, the model might be able to indicate which pollutant serves as a better predictor of
the health risk, such as our two-pollutant models, which suggest that PM2.5 is a relatively
weak predictor for health risk in Quito. However, we should be careful making such
interpretations since this lower predictiveness could be caused by measurement errors or
variations unique to PM2.5 compared to the other gaseous pollutants. If both pollutants in
the model are just surrogates for some other pollutant, the model can still identify which
one is a better surrogate, and thus a better predictor. Specifically, our two-pollutant model
showed that NO2, and to a much lesser extent SO2, are consistently associated with health
outcomes primarily among children, yet were excluded from the IQCA reporting due to
their low individual index values.

This study constructed the single-pollutant index using the equations in the techni-
cal document provided by MDMQ to evaluate whether the index was associated with
population-level health risks. The findings of this study showed that significant associations
with respiratory morbidity were observed for all four air pollutants (PM2.5, O3, NO2, and
SO2) and their IQCAs. The IQCA, which was reported online every day to the public as
behavior modification guidance, was also predictive of respiratory morbidity risk among
the Quito population. It is derived exclusively by O3 and PM2.5, and driven primarily
by O3, whose pattern of effect is mimicked by the IQCA. However, only NO2 showed
consistent significant associations with health effects in both single- and two-pollutant
models among children. While NO2 would likely serve as a better predictor of respiratory
morbidity risk than PM2.5 or O3, it is presently excluded from the IQCA reporting due to
its low index values.

An effective air quality index should provide individuals with reliable information,
not just on high pollution days, but also on moderate- and low-pollution days. Cumulative
evidence suggests susceptible individuals still experience adverse health risks at low
levels of air pollution [13,14,42], yet commonly lack access to information that could guide
their daily behavior modification decisions. An air quality index is also most useful if
higher values are closely and consistently associated with increased population-level health
risks. However, the nature of traditional indices only allows for a single pollutant to
drive daily index values (typically the highest individual daily pollutant’s index value),
potentially underestimating the total health impacts and ignoring the impacts of multi-
pollutant interactions. Research in NYC has indicated that regulatory-based indices may
inadequately communicate the full spectrum of adverse health risks of air pollution when
there are health-relevant exposures to more than one pollutant at a time [43]. Although a
traditionally designed index may be useful on its own, incorporating multiple pollutants



Int. J. Environ. Res. Public Health 2023, 20, 6326 9 of 13

into index calculations allows the index to better reflect the real-world health risks of
air pollution.

Multi-pollutant health-based indices have been successfully implemented throughout
the world. In Guangzhou, China, Li et al. (2017) constructed and validated an air quality
health index based on the short-term associations of multiple air pollutants with mortality.
Their findings suggest that the health-based index is a better health risk communication
tool compared to the existing air quality index [20]. Cromar et al. [23] created and validated
a multi-pollutant, health-based air quality index using the same three criteria pollutants
in Mexico City, which is currently in use to communicate daily health risks to the public.
Recently, Gladson et al. [44] developed a health-based air quality index using simple
calculations based on daily index values from three criteria pollutants— PM2.5, NO2, and
O3—which reflects children’s respiratory risk and can be used throughout the world to
provide local air quality alerts.

In light of this study’s results and the success of health-based air quality indices
globally, it has been recommended that the MDMQ considers potential ways they could
modify the IQCA calculation to account for the observed health impacts of all ambient air
pollutants in this population. We anticipate this change will increase the health benefits
of individual behavior modification influenced by Quito’s air quality alerts, especially
in children.

It is important to note that the health impacts associated with NO2 in particular may
not be driven exclusively by its own direct health impacts. NO2 is a known surrogate for
other traffic-related and combustion-driven air pollution that impacts health but is not typi-
cally monitored, such as ultrafine particles. These pollutants follow similar concentration
patterns to NO2 when produced via the same processes (e.g., vehicle exhausts). The health
effects of the hundreds of products of combustion are likely being reflected in the health
effects linked to NO2 in the IQCA, as combustion is the primary source of NO2. In addition,
because NO2 was the only air pollutant that showed same-day health impacts in Quito,
reporting its index to the public might help people change their outdoor activities to avoid
breathing polluted air on the same day. It also had a robust health effect among adults
(excess risk at 10.1%, with 95% CI: 0.5 and 20.5). Furthermore, the significant associations
for NO2 remained consistent even when controlling for a second pollutant.

There are some limitations of this study. Data were only obtained for respiratory
hospital admissions, which usually have a much smaller number of daily cases compared
to emergency department (ED) visits and, thus, smaller statistical power. Additionally,
the data were not differentiated by at-risk populations, who may respond differently to
ambient pollutant concentrations, and who may be more likely to modify their behavior
based on air quality alerts.

5. Conclusions

This study successfully quantified the respiratory health risks associated with mon-
itored ambient air pollution in Quito, Ecuador and identified how individual pollutants
drive local risk communication. All four ambient air pollutants assessed in this study
showed significant positive associations with respiratory hospital admissions, although
some associations were attenuated in two-pollutant models. Quito’s risk communication
tool, the IQCA, effectively represents real respiratory health risks in the region, but is driven
heavily by O3 alone despite clear risk associations in other air pollutants, particularly NO2.
Consideration of the impacts of all pollutants in a potential reassessment of the IQCA
could help capture the overall health risk to the Quito population. This work contributes to
increased global research equity by adding an epidemiological study to the limited health
analyses conducted in Latin American cities.
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Appendix A

Table A1. Descriptive statistics of air pollution and weather data in Quito, 2014–2015. IQR: interquar-
tile range, SD: standard deviation.

Minimum Median Maximum IQR Mean SD

PM2.5 (µg/m3) 6.6 17.3 32.7 6.5 17.3 4.7
O3 (ppb) 8.3 21.3 38.8 7.2 21.9 5.3

NO2 (ppb) 11.3 22 37.2 6.9 22.5 4.9
SO2 (ppb) 0.5 1.6 3.7 1.1 1.7 0.8
Temp (◦C) 12.3 15.5 18.6 1.3 15.5 0.9

RH (%) 26.2 69.5 92.1 17.1 67.4 11.7
Precipitation (mm) 0.0 0.1 13.9 1.8 1.5 2.7

Table A2. Descriptive statistics of hospital admission data in Quito, 2014–2015. IQR: interquartile
range, SD: standard deviation.

Minimum
Daily Count

Median
Daily Count

Maximum
Daily Count

IQR of Daily
Count

Mean
Daily Count

SD of Daily
Count Total

2014 All ages 1 26 47 11 26.3 8.1 9600
0–17 years 0 12 25 8 12.3 5.4 4500
18–64 years 1 8 17 5 7.9 3.8 2900

65+ 0 6 14 4 6.0 2.6 2200
2015 All ages 1 29 55 15 28.4 10.0 10,366

0–17 years 0 10 28 6 11.0 5.0 4033
18–64 years 0 10 24 8 10.4 5.5 3796

65+ 0 6 16 4 7.0 3.2 2537
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Figure A1. Results of two-pollutant models showing associations with daily respiratory hospital 

admissions by age group (six combinations grouped by color). Open diamonds indicate significant 
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