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Abstract: Social distancing measures and shelter-in-place orders to limit mobility and transportation
were among the strategic measures taken to control the rapid spreading of COVID-19. In major
metropolitan areas, there was an estimated decrease of 50 to 90 percent in transit use. The secondary
effect of the COVID-19 lockdown was expected to improve air quality, leading to a decrease in
respiratory diseases. The present study examines the impact of mobility on air quality during the
COVID-19 lockdown in the state of Mississippi (MS), USA. The study region is selected because
of its non-metropolitan and non-industrial settings. Concentrations of air pollutants—particulate
matter 2.5 (PM2.5), particulate matter 10 (PM10), ozone (O3), nitrogen oxide (NO2), sulfur dioxide
(SO2), and carbon monoxide (CO)—were collected from the Environmental Protection Agency, USA
from 2011 to 2020. Because of limitations in the data availability, the air quality data of Jackson,
MS were assumed to be representative of the entire region of the state. Weather data (temperature,
humidity, pressure, precipitation, wind speed, and wind direction) were collected from the National
Oceanic and Atmospheric Administration, USA. Traffic-related data (transit) were taken from Google
for the year 2020. The statistical and machine learning tools of R Studio were used on the data to
study the changes in air quality, if any, during the lockdown period. Weather-normalized machine
learning modeling simulating business-as-scenario (BAU) predicted a significant difference in the
means of the observed and predicted values for NO2, O3, and CO (p < 0.05). Due to the lockdown, the
mean concentrations decreased for NO2 and CO by −4.1 ppb and −0.088 ppm, respectively, while it
increased for O3 by 0.002 ppm. The observed and predicted air quality results agree with the observed
decrease in transit by −50.5% as a percentage change of the baseline, and the observed decrease in
the prevalence rate of asthma in MS during the lockdown. This study demonstrates the validity and
use of simple, easy, and versatile analytical tools to assist policymakers with estimating changes in
air quality in situations of a pandemic or natural hazards, and to take measures for mitigating if the
deterioration of air quality is detected.

Keywords: COVID-19; air quality; transportation and mobility; python programming; statistical
descriptive analysis; machine learning modeling

1. Introduction

Emissions released in the air by industries, motor vehicles, forest fires, power plants,
and construction sites contain harmful pollutants. Among these pollutants, the primary
air contaminants of health concern are particulate matter 2.5 microns in size (PM2.5),
particulate matter 10 microns in size (PM10), nitrogen dioxide (NO2), ozone (O3), sulfur
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dioxide (SO2), and carbon monoxide (CO) [1,2]. PM2.5 can get into the lungs or can be
absorbed into the blood and affect human health [3,4]. Air quality plays a dominant role
in controlling respiratory diseases such as asthma, lung cancer, and chronic obstructive
pulmonary disease (COPD). The World Health Organization (WHO) reports that ambient
air pollution led to 4.2 million deaths worldwide in the year 2016 [5]. Of the total, 25% of
deaths were caused by COPD, and 26% were caused by respiratory infection. Respiratory
illness caused by coronavirus (COVID-19) can also be aggravated by air pollution [6,7].

The WHO declared COVID-19 as a pandemic on the 11th of March 2020 [8] due to
the increasing COVID-19 incidence in different places worldwide [9]. Lockdown measures
were taken by different countries initially during the period from March to June 2020 to
mitigate the spread of COVID-19 incidence [10–12]. A recent survey of the literature shows
an increase in the study of the effects of the COVID-19 pandemic lockdown measures on
human living [13,14]. Because of its large-scale influence in every area of business and
life, there has also been an increase in the study of the effect of the COVID-19 pandemic
lockdown on air quality and health. A few examples of similar studies are worth noting.

A study of the effects of quarantine and social distancing in four megacities (Sao Paulo
in Brazil, Paris in France, and Los Angeles and New York in the United States) on four air
pollutants—CO, O3, PM2.5, and NO2—showed a decrease in their levels during March
2020 compared to their ambient concentrations in 2015–2019 [15]. Venter et al. [16] reported
that during the lockdown, there was a reduction in the population-weighted concentration
of nitrogen dioxide and particulate matter levels by about 60% and 31%, respectively,
in 34 countries, with mixed effects on ozone. They pointed out that the reductions in
the transportation sector emissions were largely responsible for the NO2 anomalies. In
a comprehensive study on 87 capital, industrial, and polluted cities around the world,
Sarmadi, M et al. [17] observed large changes in the air quality index (AQI) variation
before and after the onset of the COVID-19 pandemic—the overall changes of AQI-PM2.5,
AQI-PM10, and AQI-NO2 in 2020 were −7.36%, −17.52%, and −20.54% compared to 2019.
Among 11 cities globally, Shi, V et al. [18] reported that PM2.5 did not show a decrease
in many cities except in Wuhan, Rome, and Los Angeles, and exhibited a more complex
response to the lockdown measures. They pointed out that the COVID-19 lockdown
restrictions showed changes in the air pollutant levels, but the changes were smaller than
expected. Jiang, Z et al. [19] showed that NO2 and PM2.5 decreased by 27 % and 15 %,
respectively, in southern California in the 5 weeks after the stay-at-home orders. Campbell
et al. [20] used ground, satellite-based observations of NO2, and National Air Quality
Forecasting Capability (NAQFC) modeling to study the COVID-19 lockdown over the US.
They showed that there were widespread decreases in NOx emissions among different
states. Hammer et al. [21] mapped global PM2.5 concentrations from January to April 2020
using a combination of satellite data, simulation, and ground-based observations. They
examined the PM2.5 concentrations during the lockdown periods in 2020 compared to the
same periods from 2018 to 2019 and found a widespread decrease in PM2.5 over different
regions. A study on Los Angeles air quality [22,23] reported a decrease in the concentrations
of air pollutants during the COVID-19 lockdown. Yummin et al. [24] also demonstrated
short-term health effects in China associated with the decrease in air pollutants during the
COVID-19 lockdown.

The present study aims to examine the impact of mobility on air quality during the
COVID-19 lockdown in MS. The study region was selected because of its non-metropolitan
and non-industrial settings, unlike states such as Texas, New York, Ohio, Michigan, and
California with heavy traffic and industries. Hence, it is interesting to study the impact
of the COVID-19 lockdown on air quality in the region. The study hypothesizes that,
in principle, the COVID-19 lockdown does affect the environment and air quality even
in non-metropolitan and non-industrial environments. Statistical and machine learning
tools were used to analyze the air quality data to capture changes in the air quality, if
any, due to the COVID-19 lockdown. Machine learning modeling was used to predict
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air pollutant concentrations during the lockdown period, by subtracting the influence of
weather changes that might mask the true emission changes [18,25–32].

2. Materials and Methods

Air quality data in the study region were obtained from the US Environmental Pro-
tection Agency (EPA) [33] for the period from 2011 to 2020 because of the availability of
the data. The air quality data consist of the concentrations of six pollutants—PM2.5, PM10,
O3, NO2, SO2, and CO. Because of the limited number of air quality collecting stations and
large missing data, the air quality data are assumed to be representative of the entire region
of the state.

Weather data were collected from the National Oceanic and Atmospheric Admin-
istration (NOAA) [34]. The weather data consist of the values of six meteorological
variables—temperature, humidity, pressure, precipitation, wind speed, and wind direction.

Traffic is related to vehicle emissions such as nitrogen oxide (NOX), CO, and black
carbon (BC) that affect air quality. Traffic-related data (transit) for the study region were
collected from Google community mobility reports [35–37] and from ‘Our World Data’ [38].
The COVID-19 lockdown in MS, USA was implemented from 15 March to 1 June 2020 [39]
in terms of transportation restrictions.

This study was carried out to examine whether the COVID-19 lockdown affected
the environment and air quality even in a region of non-metropolitan and not industrial
settings. Exploratory data analysis was carried out using statistical methods. Machine
learning modeling using weather normalization simulating BAU was carried out to make
predictions of air quality. The computations of statistical analysis and machine learning
modeling were performed using R programming in R-Studio [40] running on a PC with an
Intel CORE i7 processor, 16 GB RAM, and 500 GB hard drive memory.

3. Results

The results of the time series study are given in Section 3.1, and the results of the
machine learning model are given in Section 3.2.

3.1. Time Series Study and Results

The observed data on air pollutants, weather, and mobility were studied and organized
as follows:

3.1.1. Time series study of air pollutants
3.1.2. Monthly and day-of-the-week variations of air pollutants
3.1.3. Time series study of weather
3.1.4. Time series study of mobility in MS, 2020

3.1.1. Time Series Study of Air Pollutants

The time series of air pollutants are shown as a grid plot arranged in subplots of six
rows in Figure 1. From the top, row 1, row 2, row 3, row 4, row 5, and row 6 show the time
variations of PM2.5, PM10, NO2, O3, SO2, and CO, respectively. The units of measurement
for the air pollutants are µg/m3, µg/m3, ppm, ppb, ppb, and ppm for PM2.5, PM10, O3,
NO2, SO2, and CO, respectively.

The results of the descriptive statistics on the air pollutant data are shown in Table 1.
The quantities describing the distribution of data are minimum (Min), maximum (Max),
median, mean, first quartile (25%), third quartile (75%), and missing data (NAN). The first
three quartiles determine the interquartile range, which is a measure of the variability of
data around the median. The mean values of PM2.5, PM10, O3, NO2, SO2, and CO are
10.36 µg/m3, 18.7 µg/m3, 0.0355 ppm, 13.69 ppm, 1.59 ppb, and 0.31ppm, respectively. The
maximum values of these pollutants are 40.70 µg/m3, 135.0 µg/m3, 0.0880 ppm, 48.30 ppb,
39.10 ppb, and 1.90 ppm, respectively.
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Figure 1. Time series of air pollutants arranged in subplots consisting of six rows. From the top, row
1, row 2, row 3, row 4, row 5, and row 6 represent the time variation of PM2.5, PM10, NO2, O3, SO2,
and CO, respectively. The units of measurement for the air pollutants are µg/m3, µg/m3, ppm, ppb,
ppb, and ppm for PM2.5, PM10, O3, NO2, SO2, and CO, respectively.

Table 1. Summary statistics of air quality.

Item PM2.5
(µg/m3)

PM10
(µg/m3)

O2
(ppm)

NO2
(ppb)

SO2
(ppb)

CO
(ppm)

Min. 0.00 0.00 0.00 0.00 00.0 0.00
1st

Quartile 7.00 13.0 0.0200 7.00 0.50 0.20

Median 9.60 17.0 0.0350 11.20 0.90 0.30
Mean 10.36 18.7 0.0355 13.69 1.59 0.31

3rd
Quartile 12.80 22.0 0.0440 18.60 1.70 0.40

Max. 40.70 135.0 0.0880 48.30 39.10 1.90
NA N 1374 2240 375 562 383 459

During the study period, the correlations between the air pollutants are presented
in Table 2. The highest correlation is 0.82 between PM2.5 and PM10. The correlation
between NO2 and PM2.5 is 0.20. Overall, a positive correlation is observed between the air
pollutants, though small.

Table 2. Correlation between the air pollutants.

Item PM2.5
(µg/m3)

PM10
(µg/m3)

O3
(ppm)

NO2
(ppb)

SO2
(ppb)

CO
(ppm)

PM2.5 1.00 0.82 0.20 0.20 0.21 0.34
PM10 0.82 1.00 0.15 0.14 0.14 0.12

O3 0.20 0.15 1.00 0.19 0.11 0.10
NO2 0.20 0.14 0.19 1.00 0.10 0.55
SO2 0.21 0.14 0.11 0.10 1.00 0.29
CO 0.34 0.12 0.10 0.55 0.29 1.00
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3.1.2. Monthly and Day-of-the-Week Averages of Air Quality

The time variation of air pollutant concentrations before and after the lockdown
year (2020) and their difference as a function of monthly and day-of-the-week averages
are shown in Figures 2–7 for the air pollutants PM2.5, PM10, NO2, O3, SO2, and CO,
respectively. For each figure, column 1 and column 2 show monthly and day-of-the-
week averages, respectively. The time duration considered for the lockdown year is from
1 January to 31 December 2020. For the pre-lockdown period, the time duration considered
is from 1 January 2011 to 31 December 2019. The colors green, red, and blue represent
the periods during the lockdown year, before the lockdown year, and their difference,
respectively. During the lockdown period in 2020 (March to June), the difference line shows
a decrease in the pollutant concentrations except for PM10 and O3. PM2.5 shows a decrease
in some months and an increase in other months, and much the same occurs with the
rest of the pollutants, except for SO2, which shows a year-round value below zero. In
Figures 2 and 3, it is also observed that in the midweek (Wednesday and Thursday), the
difference line shows a decrease in the pollutant concentrations except for PM10. Perhaps
the lockdown largely restricted mobility during the week, compared to the weekend, when
people might have more mobility to procure weekly provisions.
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Figure 2. Time variation of PM2.5 concentrations before and after the lockdown year (2020), and
their difference as a function of monthly and day-of-the-week averages. The colors green, red, and
blue represent the periods during the lockdown year, before the lockdown year, and their difference,
respectively. The full lines and vertical bars represent mean and 95% confidence intervals, respectively.
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Figure 3. Time variation of PM10 concentrations before and after the lockdown year (2020), and
their difference as a function of monthly and day-of-the-week averages. The colors green, red, and
blue represent the periods during the lockdown year, before the lockdown year, and their difference,
respectively. The full lines and vertical bars represent mean and 95% confidence intervals, respectively.
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Figure 4. Time variation of NO2 concentrations before and after the lockdown year (2020), and their
difference as a function of monthly and day-of-the-week averages. The colors green, red, and blue
represent the periods during the lockdown year, before the lockdown year, and their difference.
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difference as a function of monthly and day-of-the-week averages. The colors green, red, and blue
represent the periods during the lockdown year, before the lockdown year, and their difference.
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Figure 6. Time variation of SO2 concentrations before and after the lockdown year (2020), and their
difference as a function of monthly and day-of-the-week averages. The colors green, red, and blue
represent the periods during the lockdown year, before the lockdown year, and their difference.
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Figure 7. Time variation of CO concentrations before and after the lockdown year (2020), and their
difference as a function of monthly and day-of-the-week averages. The colors green, red, and blue
represent the periods during the lockdown year, before the lockdown year, and their difference.

3.1.3. Time Series Study of Meteorological Trends

The time series of the meteorological parameters are shown as a grid plot arranged in
subplots of six rows in Figure 8. From the top, row 1, row 2, row 3, row 4, row 5, and row 6
show the time variation of temperature, humidity, wind speed, wind direction, pressure,
and precipitation, respectively. The units for the variables are Fahrenheit, percentage, mph,
degrees, in. Hg, and inches, respectively. The time series of the temperature, humidity,
pressure, and wind speed show general seasonality patterns. For example, the temperatures
are low in the winter and high in the summer. The relative humidity pattern is generally low
when the temperatures are high, showing a mirror image. The pressure and wind speed
show a general pattern of highs in the winter and lows in the summer. The precipitation
shows variability, but a high amount of rainfall is normally associated with cool seasons.
However, the impact of the weather on the air quality during lockdown can only be
established by eliminating seasonal contributions using machine learning.

The results of the descriptive statistics on the meteorological data are shown in Table 3.
The minimum and maximum values of the temperature, humidity, pressure, wind speed,
wind direction, and precipitation are 4.00 ◦F, 30.00%, 29.11 in Hg, 0.11 mph, 10.0◦, and
0.00 in; and 76.0 ◦F, 100.0%, 30.32 in Hg, 20.6 mph, 360◦, and 5.97 in, respectively, with their
mean being 55.44 ◦F, 71.55%, 29.70 in Hg, 6.07 mph, 196.3◦, and 0.17 in, respectively.

During the study period, the correlations between the meteorological variables are
presented in Table 4. In particular, the temperature has a positive correlation of 0.44 and
0.13 with humidity and precipitation, respectively, but shows a negative correlation of
−0.63, −0.10, and −0.08 with pressure, wind speed, and wind direction, respectively.
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Figure 8. The time series of meteorological parameters in a grid plot arranged as subplots of six rows.
From the top, row 1, row 2, row 3, row 4, row 5, and row 6 show the time variation of temperature,
humidity, wind speed, wind direction, pressure, and precipitation, respectively. The units for the
variables are Fahrenheit, percentage, mph, degrees, in. Hg, and inches, respectively.

Table 3. Summary Statistics of Meteorological Variables.

Item Temperature
(◦F) Humidity (%) Pressure

(in. Hg)
Wind Speed

(mph)

Wind
Direction
(Degrees)

Precipitation
(in)

Min. 4.00 30.00 29.11 0.11 10.0 0.00
1st Quartile 45.00 64.00 29.60 3.70 130.0 0.00

Median 59.00 72.00 29.68 5.70 180.0 0.00
Mean 55.44 71.55 29.70 6.07 196.3 0.17

3rd Quartile 69.00 80.00 −29.78 8.00 300.0 0.04
Max. 76.00 100.00 30.32 20.6 360.0 5.97
NA N 82 63 2 40

Table 4. Correlation Table: Meteorological Variables.

Item Temperature
(◦F) Humidity (%) Pressure

(in. Hg)
Wind Speed

(mph)

Wind
Direction
(Degrees)

Precipitation
(in)

Temperature 1.00 0.44 −0.63 −0.10 −0.08 0.13
Humidity 0.44 1.00 −0.43 0.08 −0.01 0.44
Pressure −0.63 −0.43 1.00 −0.10 −0.09 −0.27

Wind Speed −0.10 0.08 −0.10 1.00 0.05 0.24
Wind Direction −0.08 −0.01 −0.09 0.05 1.00 0.00

Precipitation 0.13 0.44 −0.27 0.24 0.00 1.00

3.1.4. Mobility: Time Series Study and Results

Vehicle emissions are sources of air pollutants such as oxides of nitrogen (NOX),
CO, and black carbon (BC) that affect air quality. Hence, transit (traffic-related) data
were collected from the Google community mobility report [35–37]. Figure 9 shows the
time series of the transit data as a percentage change based on a baseline [18,37], and its
summary statistics are given in Table 5. The percentage changes in the mean, maximum,
and minimum values of transit are −2.79, 20.00, and −50.50, respectively. The observed
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decrease in transit of −50.5% is expected to have contributed to the changes in the air
quality during the COVID-19 lockdown.
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Table 5. Summary statistics of transit as percentage change by a baseline. Transit data were collected
from the Google community mobility report [35–37] for the year 2020.

Item Transit

Min. −50.50
1st Quartile −5.30

Median 0.36
Mean −2.79

3rd Quartile 4.00
Max. 20.00

3.2. Machine Learning Modeling: Business as Usual Scenario Model

Apart from the lockdown intervention on air quality, meteorological conditions also
play a role in affecting air pollutant concentrations. Favorable weather conditions such as
increased wind and rain lower the air pollutant concentrations more than on a normal day
of the week, whereas unfavorable conditions of low winds and a stable atmosphere may
elevate the concentrations. Quantifying the changes caused by the lockdown by comparing
the air pollutant concentrations before and after the intervention (such as in Table 3) may
lead to wrong conclusions, since the meteorological changes may mask the variation in
concentrations caused by the intervention. Hence, it would be difficult to determine
from the observed data whether the changes in the concentrations (increase or decrease)
are caused by weather conditions or by the traffic regulations implemented during the
lockdown. By using machine learning models, one can subtract the weather component
from the observation to obtain weather-normalized data that show the underlying causes of
the change in the concentrations simulating a business-as-usual scenario (BAU) [18,25–32].
Weather normalization can be achieved by using random forest (RF) regression models [41]
via the ‘randomForest’ package in R [42]. “RF” regression is a type of ensemble learning
method using many of what are known as “weak” predictors for building a forest of
decision trees to obtain a good prediction accuracy [32].

In the present study, the weather normalization of Grange et al. was implemented
using an RF model-based R programming package—rmweather [25–27]. The major instruc-
tions used to execute the model are as follows:

1. Install and run the packages in R studio [40].
2. Load and run the data set for each pollutant and the independent variables.
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a. Features or independent variables.

i. Meteorological variables—temperature, humidity, pressure, wind speed,
wind direction, and precipitation.

ii. Temporal variables—year, month, day, weekday, season.

b. Target variable—pollutant concentration.

3. Run the random forest model for training and create a meteorological normalized trend.

a. Define the training data set period.
b. Split the data and the training set; the test is for validation.

i. Input features—meteorological and temporal variables.

c. Run the RF model using weather normalization.

ii. For each day, resample the meteorological explanatory variables by
repeating a certain number of times (say 300).

iii. Aggregate the predicted values from each iteration to obtain the meteo-
rological normalized concentration.

iv. The estimated values represent the emission changes rather than the
changes due to meteorological effects.

v. Repeat resampling for every day in the data set.

d. Set the hyper-parameters of the model.

4. Check the model performance on the test part of the training set.
5. Plot variable importance and decide which variables are more important, and remove

insignificant variables if required.
6. Run the model prediction and check if the model has suffered from overfitting.
7. Check for partial dependencies and remove missing variables.
8. Run the weather-normalized and trained RF model on the test data set (lockdown

period) to obtain the predicted values of the pollutant concentrations.
9. Collect the observed and predicted pollutant values; compute the pollutant change

due to the lockdown, and plot for visualization.

For each pollutant, the model was trained on the past data of meteorological and
temporal variables for the period from 1 January 2011 to 29 February 2020. Beyond the
training period (29 February 2020), the trained model was used to predict the pollutant
concentration using observed meteorological variables to generate a “counterfactual” time
series that represents the estimation of concentrations under a business-as-usual scenario.

The RF model was run for each of the six air pollutants (PM2.5, PM10, O3, NO2, SO2,
and CO). The meteorological features of the model are temperature, humidity, pressure,
precipitation, wind speed, and wind direction. The temporal features consist of a trend
term (Unix date), a seasonal term (Julian day), a weekday, a week, and a month. The results
of the model are shown in Figures 10–15 for the observed and predicted results of PM2.5,
O3, PM10, SO2, NO2, and CO, respectively. In the figures, the blue line represents the
smoothened plot of predicted values with the confidence intervals shown by the green
shade. The boxplot distribution of the observed and predicted concentrations for each
air pollutant is shown in Figures 16 and 17 as subplots of three rows and two columns in
pairs of the observed and predicted concentrations for each pollutant. In Figure 16, starting
from the top, the observed and predicted results of PM2.5, PM10, and NO2 are represented,
respectively, by (row 1, column 1, and column 2), (row 2, column 1, and column 2), (row 3,
column 1, and column 2). In Figure 17, starting from the top, the observed and predicted
results of O3, SO2, and CO are represented, respectively, by (row 1, column 1, and column 2),
(row 2, column 1, and column 2), (row 3, column 1, and column 2). The boxplot distribution
summary statistics are shown in Table 6, where the underscore _obs and _prd represent
the observed and predicted values, respectively, of each of the pollutants. The RF hyper-
parameters used were kept the same for each model and were based on the best results—the
number of trees used is 300, the number of predictors randomly sampled to determine each
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split (mtry) is two, and the minimum node size is five (see Table 7). The model metrics are
also shown in Table 7. The root mean square error (RMSE) ranged between 7.56 and 0.008.
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Figure 16. Boxplot distribution of observed and predicted air pollutants during a lockdown as
subplots of three rows and two columns in pairs of observed and predicted concentrations for each
pollutant. Starting from the top, the observed and predicted results of PM2.5, PM10, and NO2 are
represented, respectively, by (row 1, column 1, and column 2), (row 2, column 1, and column 2),
(row 3, column 1, and column 2). The underscore _obs and _prd represent the observed and predicted
values, respectively, of each of the pollutants. The symbols PM25, PM10, and NO2, stand for the
pollutants PM2.5, PM10, and NO2, respectively. The units of PM2.5, PM10, and NO2 are µg/m3,
µg/m3, and ppb, respectively.
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Figure 17. Boxplot distribution of observed and predicted air pollutants during a lockdown as
subplots of three rows and two columns in pairs of observed and predicted concentrations for
each pollutant. Starting from the top, the observed and predicted results of O3, SO2, and CO are
represented, respectively, by (row 1, column 1, and column 2), (row 2, column 1, and column 2),
(row 3, column 1, and column 2). The underscore _obs and _prd represent the observed and predicted
values, respectively, of each of the pollutants. The symbols O3, SO2, and CO, stand for the pollutants
O3, SO2, and CO, respectively. The units of O3, SO2, and CO, are ppm, ppb, and ppm, respectively.

Table 6. Summary statistics of observed and model-predicted values of the air pollutants. The
underscored _obs and _prd represent the observed and predicted values, respectively, of each of the
pollutants. The symbols PM2.5, PM10, O3, NO2, SO2, and CO stand for the pollutants PM2.5, PM10,
O3, NO2, SO2, and CO, respectively.

Item PM25_Obs
(µg/m3)

PM25_Prd
(µg/m3)

PM10_Obs
(µg/m3)

PM10_Prd
(µg/m3)

O3_Obs
(ppm)

O3_Prd
(ppm)

NO2_Obs
(ppb)

NO2_Prd
(ppb)

SO2_Obs
(ppb)

SO2_Prd
(ppb)

CO_Obs
(ppm)

CO_Prd
(ppm)

Min. 3.10 6.35 7.00 12.98 0.018 0.024 1.40 8.27 0.300 0.430 0.000 0.132
1st

Quartile 6,82 8.98 14.00 17.44 0.031 0.031 5.95 12.59 0.600 0.688 0.100 0.190
Median 9.10 9.85 18.00 18.73 0.040 0.036 8.40 14.92 0.700 0.830 0.100 0.223
Mean 9.97 10.07 19.69 19.17 0.038 0.036 11.23 15.33 0.837 0.835 0.156 0.244

3rd
Quartile 11.50 10.87 22.0 20.60 0.046 0.042 14.00 17.60 0.900 0.971 0.200 0.278

Max. 40.70 15.85 135.0 28.85 0.056 0.051 33.00 24.33 5.200 1.439 0.500 0.466
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Table 7. rmweather model statistics and metrics.

Item PM2.5 PM10 NO2 O3 SO2 CO

R squared 0.332 0.298 0.310 0.489 0.188 0.488
RMSE 3.01 7.55 7.56 0.008 2.18 0.008

Statistical testing (t-test) was performed on the time series of the observed and pre-
dicted values for each pollutant to check if they were significantly distinct. The results of
the statistical testing are shown in Table 8. For the case of NO2, O3, and CO, it was found
that the means of the observed and predicted data are significantly distinct (p < 0.05). Due
to the lockdown, the mean concentrations decreased for NO2 and CO by −4.1 ppb and
−0.088 ppm, respectively, while the mean concentrations of O3 increased by 0.002 ppm (see
Figures 16 and 17.

Table 8. Significance table; statistical testing (t-test) between the means.

Item PM2.5 PM10 NO2 O3 SO2 CO

p-value 0.806 0.621 2.4 × 10−12 1.82 × 10−5 0.971 2.2 × 10−16

95% ci interval −0.863, 0.677 −0.634, 2.680 −5.141, −5.063 0.01, 0.003 −0.102, 0.106 −0.103, −0.072
Mean difference −0.095 0.523 −4.102 0.002 0.001 −0.087

For all the six air pollutants, the RF hyper-parameters used were kept the same—the
number of trees used is 300, the number of predictors randomly sampled to determine each
split (mtry) is two, and the minimum node size is five.

The units of PM2.5, PM10, O3, NO2, SO2, and CO are µg/m3, µg/m3, ppm, ppb, ppb,
and ppm, respectively. ‘ci’ stands for confidence interval.

4. Discussion

Onyeaka et al. [13] reported that there was a reduction of up to 30% in environmental
pollution as a result of half of the world’s population experiencing some form of lockdown,
with an attendant reduction in mobility of up to 90%. A study of air quality during COVID-
19 showed that the concentrations of PM 2.5 and PM10 decreased by 12% and 37% in Los
Angeles, and 24% in New York, while NO2 decreased by 25% in Sao Paulo, 38% in Los
Angeles, and 24% in New York [15]. In a comparative study of the impact of COVID-19
onset on air quality in several cities of the world, Washington, DC is reported to have a
reduction in PM 2.5 by about 10% [17]. Mohammed et al. [43] reported that NO2 emissions
were reduced by up to 30% based on the NASA satellite image over the northeastern USA
before and after the lockdown. Chen et al. [44] completed a study of quarantine in China
and found that PM2.5 dropped by 1.4 µg/m3 in Wuhan but decreased by 18.9 µg/m3

across 367 cities, and NO2 dropped by 22.8 µg/m3 and 12.9 µg/m3 in Wuhan and China,
respectively. Ghahremanloo et al. [45] reported a decrease in the percentage of PM 2.5
by 18%, 13.53%, and 20.7% in Boston, Detroit, and New York, respectively. In a study of
air quality in urban sites in Spain, a slight reduction in PM10 (−4.1%) and PM2.5 levels
(−2.3%) was observed during the lockdown, and a maximum reduction of above −50%
was observed for NOx, whereas a maximum increase of 23.9% was observed for O3 in
contrast with a decrease in NOx [46].

In the present study, weather-normalized RF machine modeling is used to take into ac-
count the influence of meteorological changes on the model. Lower temperatures (less than
45 ◦F) were observed with more frequent southerly winds than for other wind directions,
while higher temperatures (greater than 70 ◦F) were associated more with northern and
NW directions. Similar observations were also seen in the case of humidity. During the
lockdown, there were southerly and SW (southwest) winds that were stronger and had
greater frequency (number of occurrences) than in the pre-lockdown years. This would
have an effect on the air pollutions by dispersion frequency, or the number of times the
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wind blew in a given direction. The weather-normalized RF model estimates the pollu-
tant concentrations for the lockdown period by subtracting the weather influences and
predicting the pollutant concentrations under the BAU scenario.

Using weather-normalized RF machine modeling, it was observed that the means
of the observed and predicted air pollutant values are significantly distinct (p < 0.05)
for the case of NO2, O3, and CO. Due to the lockdown, the mean concentrations de-
creased for NO2 (Figure 12, row 3 of Figure 16) and CO (Figure 15, row 3 of Figure 17) by
−4.1 ppb and −0.088 ppm, respectively, while it increased for O3 (Figure 13, row of
Figure 17) by 0.002 ppm, leading to a partial improvement in the air quality due to the
lockdown. The decrease in the concentrations of NO2 reflects the restricted transit during
lockdown because NO2 and diesel soot are directly related to automobile vehicular traffic.
Since the RF model predictions are based on weather normalization, the decrease in NO2
and CO can be attributed to the lower emissions caused by less traffic during the lockdown.
There were changes in the mean concentrations of particulate matter, but they cannot
be accounted for since their p-values were found to be greater than 0.05. In the present
study, there was an increase in the mean concentration of O3 by 0.002 ppm, similar to that
observed by others [28,46]. Generally, ozone concentrations depend on its precursors such
as nitrogen oxide (NOx). Fewer NOx emissions may increase O3 because it was broken
down less frequently, but it is difficult to establish the lockdown impact on O3 based on
NOx emissions only. Normally, asthma prevalence is associated with particulate matter. In
MS, the percentage of adults reported as having asthma was 9.9% in 2019 but decreased
to 8.9% in 2020 [47] which agrees with the model prediction of a decrease in the mean
concentrations of PM2.5 (−0.1 µg/m3).

The methodology used in the present study is one of the two recent approaches
developed during the post-pandemic period [28]. The two approaches differ in the way
the effects of meteorology are analyzed to deduce pollutant changes during external
influences such as the lockdown. In the first approach, a base case is used with a reference
measurement period of the past, such as a similar period before the lockdown. Then, the
changes in pollutant concentrations are deduced from the difference between base cases
and the lockdown period. The method, although simple, does not completely eliminate
the meteorological effects. The second approach uses predictive machine learning models
to isolate lockdown intervention on the air pollutant concentration [25–31]. In the present
study, the second approach is applied by comparing the predicted results of 2020 with
actual observations made during the lockdown period. Hence, the results of the method
used are a true measure of the relative changes for the lockdown intervention compared to
the results obtained using the base case method. However, there are some other statistical,
artificial neural network models and classification regression machine models that can be
used to analyze the meteorological effects on air quality but were not explored presently
and would be attempted later if adequate data size is available.

The present study confirms the hypothesis that, in principle, the COVID-19 lockdown
affects the air quality even in non-metropolitan and non-industrial environments of MS. To
study the spatial distribution of air quality, it would be good to have air quality data from
multiple stations covering rural, urban, and traffic locations. Further, it is also required to
have non-missing hourly observations for each station for validating the machine learning
modeling accurately. In spite of these two limitations, the present study demonstrated an
easy and simple methodology of using versatile tools of statistical and machine learning
modeling for investigating the changes in air quality caused by pandemics or natural
hazards. The methodology and results show the importance of taking mitigating measures
for sustainable improvement in air quality.

5. Conclusions

Statistical and weather-normalized random forest modeling methods were used to
study the impact of the COVID-19 lockdown on air quality in MS. Weather-normalized
modeling mimics a business-as-usual scenario to establish the changes in the air quality as
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caused by the traffic regulations during the lockdown, by subtracting the weather compo-
nent from the values of the observed air pollutants. For the pollutants NO2, CO, and O3,
significant changes were found in their observed and predicted mean concentration values.
The mean concentrations decreased for NO2 and CO but increased for O3. The decrease
in the NO2 and CO concentrations reflects a partial improvement in the air quality due to
the lockdown. The observed decrease in the pollutant concentration and the predicted air
quality results show that the decrease in transit is associated with the decrease in asthma
prevalence due to the lockdown. The decrease in NO2 and increase in O3 suggest different
measures to mitigate these pollutants because one is a consequence of the other. The
study examines the effect of lockdowns to control the COVID-19 pandemic on air quality,
particularly in urban regions of non-metropolitan and non-industrial settings. The study
demonstrates the utility of simple, easy, and versatile analytical tools to generate scientific
data to assist policymakers in making informed decisions regarding the assessment and
management of air quality during a pandemic or natural disaster.
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