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Abstract: Heatwaves, along with their affiliated illnesses and mortalities, are increasing in frequency
and severity under climate change. Spatial analyses at the level of census output areas can produce
detailed maps of heatwave risk factors and potential correlated damages, thus contributing to practical
policies to reduce the risk of heatwave illnesses. This study analyzed the 2018 summer heatwave
in Gurye and Sunchang counties in South Korea. To compare damages and analyze the detailed
causes of heatwave vulnerability, spatial autocorrelation analyses were conducted, incorporating
weather, environmental, personal, and disease factors. Gurye and Sunchang, although similar in
demographics and region, exhibited large differences in heatwave damage specifically in the number
of heat-related illness cases. In addition, exposure data were constructed at the census output area
level by calculating the shadow pattern, sky view factor, and mean radiant temperature, revealing
a higher risk in Sunchang. Spatial autocorrelation analyses revealed that the factors most highly
correlated with heatwave damage were hazard factors, in the case of Gurye, and vulnerability factors,
in the case of Sunchang. Accordingly, it was concluded that regional vulnerability factors were better
distinguished at the finer scale of the census output area and when detailed and diversified weather
factors were incorporated.

Keywords: Korea; heatwave damage; heatwave vulnerability; heatwave risk; heat-related illnesses

1. Introduction

With the growing interest in climate change and extreme weather, researchers have
explored the response and adaptation to climate change, with particular emphasis on
vulnerable areas. With global warming increasing, heatwaves have also been intensifying,
causing many heat-related illnesses and deaths. From 1973 to 2019, the daily maximum
temperature and number of heatwave days (daily maximum temperature > 33 ◦C, definition
of heat wave by the Korea Meteorological Administration by 2020) increased by 1.5 ◦C
and 6.9 days, respectively. In 2018, when heatwaves were designated as natural disasters,
31.5 heatwave days were recorded, three times greater than the yearly average (10.5) from
1986 to 2017 [1]. Specifically, the average numbers of heatwave-induced illnesses and
deaths per year between 2011 and 2017 were 1132 and 11, respectively, and by 2018 these
values had considerably increased to 4526 and 48, respectively [2]. Climate change is
expected to further exacerbate the severity of heatwaves, as it is expected that the global
average temperature will increase by 1.9–5.2 ◦C by the end of the 21st century [3], with the
annual frequency of heatwaves increasing two- to seven-fold by 2050 [4]. Such an increase
in heatwave frequency and intensity will cause inevitable damage to society, including
the loss of human lives and health, and economic losses. For example, human casualties
caused by heatwaves and droughts accounted for 91.6% of weather-related disasters from
the late 1980s to 2003 in the US, and an estimated 35,000 deaths and over USD 13 billion in
damage occurred in Europe in 2003 during severe heatwaves [5]. In particular, when the
daily maximum temperatures exceed 33 ◦C, the mortality rate tends to sharply increase [6].
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Heatwaves cause heat-related illnesses, such as allergies, asthma, exhaustion, fainting, and
dehydration [6]; they also increase the incidence of various diseases by weakening the
body’s thermoregulatory function [7]. Numerous studies have related heatwave damage
to vulnerable populations; for example, in an Australian study, it was reported that a
considerable number of elderly persons died as a result of heatwaves compared with
other age groups [8]. Further, because there are differences in the incidence of heat-related
illnesses between rural and urban areas, it has also been shown that heatwave damages
differ by global region [9]. From a regional perspective, heatwave-related damage occurs
disproportionately, even in regions belonging to a single administrative space [10]. To
achieve more effective adaptation and response to heatwaves, comprehensive approaches
considering regional characteristics in various fields are required [11].

In Dhaka, the capital of Bangladesh, a study was conducted to analyze the mitigation
of urban heat island effects and the maintenance of thermal comfort using the heat vulner-
ability index, along with the spatial distribution of urban heat island risk [12]. In recent
studies of heatwave vulnerability (exposure, sensitivity, and adaptive capacity), the focus
has been on heatwave exposure and adaptive capacity components; however, heatwave
vulnerability has a complex relationship with geographic and climatic factors, spatial and
temporal factors, and socioeconomic factors [13].

In particular, heatwave mortalities occur more frequently among persons aged ≥65 years
or in vulnerable classes who lack the economic capability to respond [6]. Regionally, each
location is associated with distinct damage risks, even in the same administrative district, due
to the large difference in radiant temperature in summer [14]; therefore, a spatial analysis
of damage risks is required. According to the Fifth Report of the Intergovernmental Panel
on Climate Change (IPCC), heatwave “risk” refers to the degree of impact caused by the
interaction among hazard, exposure, and vulnerability, on which the heatwave risk index
is based. As the spatial resolution of the index is limited to cities, counties, and districts,
identifying the detailed characteristics of regions where patients with heat-related illnesses
actually occur, and directly reflecting them in metrics recognized by local governments, re-
mains challenging. For example, Choi et al. [15] constructed statistical data on the degree
of exposure, sensitivity, and adaptive capacity to climate change of administrative neigh-
borhoods in Seoul, while analyzing the spatial distribution of heatwave vulnerability. The
authors found that the vulnerability index of each administrative neighborhood can serve
as important data for establishing heatwave adaptation policies. However, such data are
not available for all districts in South Korea, unlike Seoul, which has well-constructed
statistical data and excellent administrative power, and no analyses have been conducted
on regions smaller than districts. Bae et al. [14] created a heatwave map for census output
areas in Cheongju City and analyzed the spatial relationship between heatwave exposure
risk levels and the inhabitability of neighborhoods in which vulnerable populations reside,
ultimately revealing high vulnerability in the old city center. Spatial analyses at the level
of census output areas can produce a detailed map of heatwave risk factors and potential
correlated damages, and contribute to establishing practical policies to reduce the heatwave
risk. However, owing to limitations in data collection, variables for factors related to more
chronic disease in vulnerable persons were omitted.

In the present study, the county of Gurye, in Jeollanam-do Province, and Sunchang,
in Jeollabuk-do, which have similar populations and geographical environments, were
selected as study areas in which to investigate the severe heatwave of the summer of
2018. To compare regional heatwave damages and analyze the detailed causes of heatwave
vulnerability at the level of census output areas, spatial autocorrelation analyses were
conducted, incorporating weather, environmental, personal, and disease factors. Heatwave
damage risk maps were prepared using the vulnerability and heat exposure information
obtained from the spatial autocorrelation analyses, and the detailed causes of heatwave
vulnerability at the level of census output areas were derived through a comparison of
the number of patients with heatwave-related illnesses. The results are useful for the
establishment of detailed heatwave response policies for local governments.
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2. Materials and Methods
2.1. Heatwave Damage Status Data

In this study, the heat-related illness data collected by the Korea Disease Control and
Prevention Agency (KDCA) and the customized research database of the National Health
Insurance Service (NHIS) were used to analyze the heatwave damage status in Gurye and
Sunchang in 2018. The KDCA data reflect the number of illnesses and deaths caused by
heatwaves, as documented by emergency room admissions in the summer of 2018, and are
reported by 519 institutions across the country. These data include the date and time of
symptoms; the gender and age of the patient; and the city, county, and district. Because
these data are limited to patients with heat-related illnesses who visited emergency rooms
(rather than outpatient visits), the total count may underrepresent the total number of
heat-related illnesses that actually occurred (Table 1). The heat-related illness surveillance
system follows the scope and definition of the Korean Standard Classification of Diseases
(KCD)-8 (Table 2). Data were collected based on the ‘locations of emergency rooms’ and
the ‘areas of symptoms’ from 2018. The customized research data provided by the NHIS
were derived from insurance claim amount information for all patients enrolled in medical
insurance, and the health information collected, stored, and managed by the NHIS was
provided after processing to be used for policy and research [9].

Table 1. Statistical data on health damages in heatwaves.

Data Data Provider Explanation

Heat-related
illnesses surveillance

Korea Disease Control and
Prevention Agency (KDCA)

Information on patients who
visited the emergency room
due to heat-related illnesses

and mortalities (T67)

Customized research data National Health Insurance
Service (NHIS)

Health information prepared
based on insurance premium
claim data submitted by all

medical institutions

Table 2. Main symptoms and disease codes of heat-related diseases (KCD–8th Revision).

Code Classification Major Symptoms

T67.0 Heatstroke and sunstroke Central nerve dysfunction

T67.1 Heat syncope Fainting, Dizziness

T67.2 Heat cramp Muscle spasm

T67.3
T67.4
T67.5

Heat exhaustion, anhydrotic

Raising body temperature,
Excessive sweating,

Sense of helplessness,
Vomiting

T67.7 Heat edema Edema

T67.8
T67.9 Other effects of heat and light

This study protocol was reviewed and approved by the Institutional Review Board (IRB)
of the Ministry of Health and Welfare of South Korea. As this was an observational study
without intervention and de-identified statistical data were used, the requirement for informed
consent was waived by the same IRB committee. All methods were carried out in accordance
with the Korean government’s guidelines for health and medical data utilization.

In 2018, there were 4526 cases of heat-related illnesses and 48 deaths reported by
the KDCA heat-related illness surveillance system. However, according to customized
research data from the NHIS, the number of heat-related illnesses was much higher at
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44,094, approximately 10 times more than what was reported by the KDCA. Therefore, we
analyzed the characteristics of the data sets from each institution.

2.2. Target Sites and Weather Factor Data

Baek et al. analyzed correlations using heatwave influence variables, such as sensitivity,
adaptive capacity, and exposure in 229 local governments across South Korea, as well as
patient data with heat-related illnesses from the KDCA in 2018 [16]. The authors used SPSS
to analyze the correlations between 25 influential variables and the number of patients with
heat-related illnesses, revealing 11 significant factors. Accordingly, the authors calculated
the 11-dimensional Euclidean distance for 229 × 229 local government pairs and selected
Gurye and Sunchang as the most similar control groups.

In the present study, detailed spatial distribution data were used to analyze the weather
status of heatwave days for the target regions. Automatic weather station (AWS) units
are operated by KMA. In addition, we utilized point data representing the surrounding
environment by selecting suitable locations based on the Weather Observation Standardiza-
tion Act; however, these points are not always adjacent to major residential areas. Thus,
grid-based temperature data that allow detailed analysis of neighborhood weather forecasts
of KMA were used. Yi et al. [17] used the KMA neighborhood weather forecast data (5 km
resolution) and the Gaussian process regression model (GPRM) to predict the impact of
heatwaves and calculated detailed weather data with a 1 km resolution by interpolating
sub-variables, such as the altitude above the sea level, inclination angle, distance from
the shoreline, land cover, depth of depressed topography, east–west slope, north–south
slope, and slope direction. The detailed weather data generated through GPRM are suitable
for the analysis of the impacts of heatwaves on pedestrian environments, as they yield
the daily maximum and minimum temperatures with higher accuracy than those of the
neighborhood weather forecasts in dry urban areas and farmlands. In the present study, the
number of heatwave days, duration of heatwave, and number of tropical nights in Gurye
and Sunchang in the summer of 2018 were calculated, compared, and analyzed using the
GRPM detailed weather field data (Figure 1a,b).

Figure 1. Cont.
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Figure 1. Distribution of maximum temperature (TMAX) in cities, counties, and districts (1–2 August
2018 (a,b)) and study areas (c,d).

2.3. Environmental, Personal, and Disease Factor Data at the Level of Census Output Area

Data at the level of census output area were constructed to analyze the detailed causes
of heatwave vulnerability in Gurye and Sunchang (Figure 1c,d). A census output area is the
minimum statistical area constructed based on the basic unit district considering the popula-
tion scale (optimal 500 persons), socioeconomic homogeneity (housing type and land price),
and area geometry (statistical geographic information service, SGIS, of Statistics Korea,
https://sgis.kostat.go.kr/ (accessed on 21 May 2023)). The size of the census output area
corresponds to approximately 1/30th of Eup-Myeon-Dong, which are small administrative
districts in Korea, and is the minimum statistical area for which Statistics Korea provides
information. There are 50 census output areas in Gurye and 58 in Sunchang. The statistical
data at the level of census output areas include the infant population; elderly population;
population density; average age; aging areas; old-age dependency ratio; number of old
houses; and agricultural, forestry, and fishery populations.

To analyze the detailed causes of heatwave vulnerability, data that can be constructed
for each census output area were collected. According to the “Annual Report on the Status
of the Heat-Related Illnesses caused by Heatwaves in 2018”, published by the KDCA, the
most common location of heat-related illnesses was at ‘home’, comprising approximately
13.8% of the total and approximately 51.9% of indoor places. In the case of elderly people
(≥65 yr) in Seoul, 41.2% of heat-related illnesses over the last five years occurred at ‘home’.
In particular, old houses are affected by building insulation, which can reduce the change
in indoor temperature in response to the external environment dictated by meteorological
events [18]. In Korea, insulation standards were legally stipulated for the first time in
the “Enforcement Decree of the Building Act” of September 1979. In the present study,
the proportion of old houses by census output area, developed by the National Disaster
Management Research Institute, was applied and the map of this information indicated the
degree of aging for each census output area with respect to the Korea Safety Map on the
facility safety of old buildings via grades 1–10.

In addition, the distribution status of major diseases among health insurance sub-
scribers from the NHIS was used to reflect the number of patients with underlying diseases
who are particularly vulnerable to heat-related illnesses. The major diseases applied were
hypertension (disease codes: I10–I15), diabetes (E10–E14), hyperlipidemia (E78), cancer
(number of cancer patients registered for extended health insurance—V193), cardiac in-
farction (I21, I22), and stroke (I60–I64). The number of patients with underlying diseases
by census output area in Gurye and Sunchang was constructed per 200 m grid using the
distribution of the number of patients and then reflected in the spatial correlation analysis.

https://sgis.kostat.go.kr/
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2.4. Method to Calculate Perceived Heat Exposure Data

The solar radiation SOlar and LongWave Environmental Irradiance Geometry model
(SOLWEIG) was used to analyze the heat exposure status in the target regions, as developed
by the Urban Climate Group at the University of Gothenburg in Sweden [19]. Version 1.0
was released in 2009, and can be used to calculate the shading information as well as
the sky view factor (SVF) for each grid using detailed topography, building height, and
land cover information. With SOLWEIG, one can also model spatiotemporal changes in
three-dimensional radiation flux and mean radiant temperature, which are important for
heat vulnerability assessment (Figure 2). In this study, the SOLWEIG 2019a version was
used, which can apply parameters according to land cover. Ref. [20] confirmed that the
SOLWEIG model accurately simulated the actual radiation flux through observational
experiments, whereas Ref. [21] verified SOLWEIG for summer and winter, as well as clear
and cloudy days in the Jungnang area of Seoul, in addition to observing high performances
(R2 = 0.98) for the upward longwave radiation and an RMSE of 25.84 W·m−2. To use
SOLWEIG, information on detailed topography, building height, land cover, and vegetation
height is required. In this study, the terrain height was calculated using a digital elevation
model from the National Geographic Information Institute (published in 2013), and the
building height was calculated using the road name–address–building map (published
in February 2021) from the Ministry of the Interior and Safety (MOIS). In addition, land
cover was calculated using a land cover classification map of MOE (published in 2019) and
vegetation height information was calculated using the stock map (1:5000) of the Korea
Forest Service (published in July 2019) to construct 5 m resolution SOLWEIG input data for
Gurye and Sunchang (Figure 3).

For SOLWEIG simulation, hourly weather factors such as temperature, humidity, and
solar radiation (global/direct/diffuse solar radiation) in the target regions were required.
For the KMA observation data, solar radiation was observed only at Automated Synoptic
Observing System (ASOS) locations. As there are no ASOS locations in Gurye, and applying
the values from a single location has limitations when reflecting detailed regional charac-
teristics, the hourly temperature, humidity, and solar radiation (global/direct/diffuse solar
radiation) data of the local forecast model (LDAPS, Unified Model) operated by the KMA
were used in this study. LDAPS data maintain a spatial resolution of 1.5 km and consist of
70 layers up to approximately 40 km vertically. Specifically, hourly temperature, humidity,
global solar radiation (tdsws), direct solar radiation (swdir), and diffuse solar radiation
(swdif ) were extracted according to the corresponding grids of Gurye and Sunchang, and
converted to ASCII. The largest number of heat-related deaths occurred on 1 August 2018;
thus, it was selected as the case date. When the weather data were extracted, it was found
that the overall temperature was higher in Sunchang (a comparative average maximum
temperature of +2.4 ◦C, 16:00 to 18:00) and the surface temperature was also slightly higher
in Sunchang than in Gurye. Solar radiation was slightly higher in Sunchang after 13:00,
and the largest difference of 38.2 W·m−2 was observed at 14:00 with similar daily patterns
(Figure 4), although these differences were not significant.
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Figure 2. Flow chart of SOLWEIG model. * indicates the name and description of the dataset.

Figure 3. Input data shown on the following: (a) digital elevation model, (b) digital surface model
(building and ground), (c) canopy digital surface model, and (d) land cover in Gurye (above), and
Sunchang (below).

Figure 4. Time series distribution of meteorological data extracted from LDAPS (1 August 2018).
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2.5. Spatial Autocorrelation Analysis Method

To conduct a more comprehensive analysis of the underlying causes of heatwave
damage, we classified vulnerability factors into four categories: weather, environmental,
personal, and disease (Table 3). Vulnerability to heatwaves is higher in areas where more
susceptible classes are likely to live.

Table 3. Heatwave vulnerability factors.

Factors Determining Vulnerability to Heatwave Damage

Weather factors

Heatwave days
Duration of heatwave

Tropical night days
Shadow pattern value

Sky view factor

Environmental factors
Grade of old houses

Number of old houses
Number of nursing homes

Personal factors

Infant population
Elderly population
Population density

Average age
Aging index

Support fee for the elderly
Agriculture population

Disease factors The number of patients with underlying diseases
(hypertensive, diabetes, cancer, cardiac infarction, stroke)

To visualize the spatial distribution of each heatwave damage vulnerability factor,
and test for autocorrelation, seven stages were applied based on the Jenks natural breaks
classification method. This method reduces the variance within a grade based on the
average of all values, maximizes the variance between each grade, and is mainly used for
dividing 7–10 classes [22]. Data in the state maps are categorized using a modification of
the Jenks natural breaks classification method. The Jenks method clusters data into groups
that minimizes the within-group variance and maximizes the between-group variance. The
modification rounds the data cut-off points to assist map reading by a general audience [23].

In the spatial analysis, Global Moran’s I in ArcGIS v.10.3 was used. Specifically,
Moran’s I indicates whether the spatial arrangement of factors is purely coincidental
or whether areas with similar variances spatially form a series of patterns for a specific
phenomenon [24]; Equation (1):

I =
n

∑j ∑i
×

∑i ∑j ωij (xi−x) (xj−x)

∑i(xi − x)2 (1)

where the product of the deviation is calculated from the overall mean of the target variable
in region i (xi) and the neighboring variable in region j (xj); n is the number of census
output areas; and wij is the weight that constitutes the spatial weight matrix. Moran’s I
coefficient maintains a positive value if the adjacent region has similar characteristics,
thereby indicating a positive spatial autocorrelation, whereas the value is negative if
the adjacent region has different characteristics, indicating a completely negative spatial
autocorrelation. Spatial autocorrelation factors were extracted accordingly for the heatwave
damage vulnerability factors.

Hierarchy analysis is a method of constructing and analyzing complex decisions using
mathematics and psychology. It was developed by Thomas L. Saaty in the 1970s [25] and
recognizes that if the goals or evaluation criteria of decision-making are multiple and
complex, they are hierarchized. Thus, the approach decomposes the main factors into the
detailed sub-factors and calculates the importance through pairwise comparison of these
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sub-factors [26]. Using the heat exposure risk weights derived through hierarchy analysis,
heat exposure based on mean radiant temperature representing human heat vulnerability
and risk was overlapped to identify areas with high risk of heatwaves and vulnerable areas,
and their characteristics were analyzed.

3. Results and Discussion
3.1. Number of Heat-Related Illnesses and Heatwave Risk Characteristics in Gurye and Sunchang

A comparison was made between the number of patients with heat-related illnesses
in the KDCA and NHIS data sets. The KDCA data set, collected from emergency rooms,
reported sixteen patients in Gurye and three in Sunchang. In contrast, the NHIS data set,
collected from all medical institutions, showed 27 patients in Gurye and 152 patients in
Sunchang. Ultimately, the number of patients with heat-related illnesses was substantially
different depending on the counting method of each institution.

In the case of both Gurye and Sunchang, detailed indicators corresponding to hazard,
exposure, and vulnerability were calculated and compared according to the heatwave risk
criteria suggested by the IPCC (Table 4). Specifically, hazard indicates the severity of climate
change, and its subsequent physical impact through the daily maximum temperature; the
number of days when the daily maximum temperature ≥ 33 ◦C; and the relative humidity.
Here, hazard was calculated using the ASOS data of KMA. In Gurye, which notably has no
ASOS locations, the data from the closest Suncheon location were used. Exposure represents
the degree to which humans or objects are spatially or environmentally subjected to climate-
change-based damages and specifically pertains to persons ≥ 65 years, the elderly living
alone, and recipients of basic livelihood security. Vulnerability is an indicator of the degree
of sensitivity to climate change damage or the degree of insufficient response capacity,
and involves the urbanized area ratio, financial independence, as well as the number of
emergency medical institutions per unit population. The resident registration demographic
data of MOIS (https://jumin.mois.go.kr/ (accessed on 21 May 2023)) were used for the
population, whereas the data provided in the National Statistical Portal of Statistics Korea
(https://kosis.kr/ (accessed on 21 May 2023)) were used for statistical information, such as
the elderly living alone, basic livelihood security recipients, urbanized area ratio, and green
area ratio. The weight calculated through analytic hierarchy process (AHP) by the Ministry
of Environment (MOE) was 0.37 for hazard, 0.36 for exposure, and 0.27 for vulnerability;
thus, the hazard index produced the highest weight. Comparatively, when the detailed
heatwave risk indicators of MOE were compared, there was no significant difference in
hazard index between Sunchang and Gurye, even though the daily maximum temperature,
number of heatwave days, and number of tropical nights were slightly larger, while relative
humidity was approximately 7% lower in Sunchang. Similarly, no significant difference in
exposure was observed for most factors. With respect to vulnerability, the green area ratio
was approximately 15% higher in Sunchang, whereas all remaining factors were similar
across both locations.

https://jumin.mois.go.kr/
https://kosis.kr/
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Table 4. Detailed indicators of the number of people with thermal diseases, and the risk of heatwaves in Gurye and Sunchang (2018).

Patients with Heat-Related Illness Exposure Vulnerability

Gurye Sunchang Gurye Sunchang Gurye Sunchang

KDCA 16 3 Ratio of elderly population 31.4% 31.8% Urbanized area ratio 2.46% 2.04%

NHSI 27 152 Ratio of infants and toddlers 2.0% 3.2% Green area ratio 74.41% 90.24%

Ratio of elderly living alone 7.4% 8.6% Water area ratio 2.62% 2.52%

Hazard
Ratio basic livelihood recipients 5.0% 3.5%

Gross regional domestic product
(GRDP)

553,644
(million won)

720,399
(million won)Gurye Sunchang

TMAX 30.0 ◦C 31.6 ◦C Total population 27,117 29,209 Financial independence
(before the reorganization) 18.5% 14.8%

Heatwave days 29 40 Female population 13,191 14,156 Financial independence
(after the reorganization) 6.3% 6.3%

Tropical night days 2 4 Male population 13,926 15,053 Ratio of people covered by health insurance 95.7% 96.4%

Relative humidity 82.3% 75.6% Population density 61.18 people·km−2 58.9 people·km−2 Number of shelters in the heat 176 159
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3.2. Weather Factors in the Census Output Areas in 2018

To compare the weather factor characteristics across the two regions, the number of
heatwave days, duration of heatwave, and number of tropical nights at the level of census
output areas were compared for 92 days in the summer of 2018 (June–August) using GPRM.
The number of heatwave days ranged from 0 to 36 (average, 27.8 days) in Gurye and 22
to 39 (average, 36.5 days) in Sunchang (Figure 5). Unlike the number of heatwave days
in Gurye (29) announced by the KMA, spatial differences were observed depending on
the census output area. In particular, for a census output area with extensive forest cover,
the number of heatwave days was found to be zero. In Sunchang, the differences in the
number of heatwave days among the 58 census output areas was small, as all values were
≥30 for most areas. Specifically, the smallest number of heatwave days in Sunchang (22)
was different from that of Gurye (0). Heatwave duration is correlated with increasing heat
stress, as high temperatures are maintained, and range from 0 to 19 days (average, 12.6) in
Gurye, with low differences among areas. In Sunchang, the number duration ranged from
9 to 29 days (average, 21.9), and values were also generally similar among all census output
areas. Both the number of heatwave days and the duration showed significant differences
in the census output area distribution of Gurye and Sunchang according to the GPRM. The
total number of heatwave days in Gurye in 2018, according to the KMA data, was 29; in
comparison, the census output area results showed a maximum of 36 days, representing a
significant difference (Figure 5).

Figure 5. Number of heatwave days during the summer of 2018 in Gurye and Sunchang.



Int. J. Environ. Res. Public Health 2023, 20, 5992 12 of 19

3.3. Heat Exposure in the Pedestrian Environment

In the heat exposure analysis of the pedestrian environment, the distribution at the
level of census output areas was analyzed by calculating the shadow pattern, SVF, and
mean radiant temperature. Specifically, shadow pattern was calculated every 30 min from
immediately after sunrise (06:00) to immediately before sunset (19:30), and the resulting
time unit, as well as the daily average shadow pattern (ranging between 0 to 1). As
the shadow pattern approached zero, more shadows were generated via the surrounding
terrain, vegetation, and buildings over the grid. Comparatively, SVF quantifies the influence
of obstacles that obscure the sky, describing complex geometric characteristics and the
incidence relationship with solar radiation. An SVF value of 1 occurs on flat ground
with no nearby obstacles, whereas a value of 0 is obtained when the sky is completely
obscured by nearby terrain, buildings, or vegetation. In the present study, a 5 m resolution
SVF was calculated for Gurye and Sunchang according to the methods of Yi et al. [21].
The longwave and shortwave radiation fluxes, as well as the mean radiant temperature
(used for final heat vulnerability assessment) were calculated based on the shadow pattern
and SVF information. The mean radiant temperature depicts the average temperature
of the surrounding surface that exchanges heat with the human body through radiation,
indicating the sum of the shortwave and longwave fluxes of the non-uniform surfaces that
surround a human body. In Europe, mean radiant temperature is primarily used to assess
thermal comfort [27].

On 1 August 2018, when the largest number of heatwave-related deaths occurred,
the average daytime mean radiant temperature (Tmrt) ranged from 29.0 ◦C to 53.8 ◦C
(average, 34.1 ◦C) in Gurye and from 30.8 ◦C to 56.3 ◦C (average, 37.3 ◦C) in Sunchang.
The maximum and minimum mean radiant temperatures of Sunchang were similar to
those of Gurye; however, the average mean radiant temperature was 3.2 ◦C higher in
Sunchang. From the calculated mean radiant temperature distribution, excluding forested
and river areas, only urbanized and agricultural areas (where many people reside) were
extracted using a land cover map and compared (Figure 6). Here, the daily mean radiant
temperature (average daytime Tmrt) ranged from 29.0 ◦C to 53.9 ◦C (average, 35.6 ◦C) in
Gurye and from 30.8 ◦C to 56.3 ◦C (average, 39.2 ◦C) in Sunchang, whereas the mean radiant
temperature of Sunchang was found to be 3.6 ◦C higher than that of Gurye, resulting in a
larger difference than the average over the entire area. For the spatial distribution analysis,
the shadow pattern, SVF, and mean radiant temperature calculated in SOLWEIG were
converted according to census output area using the zonal statistics method (Figure 7).

Figure 6. Average daytime Tmrt in urbanized agricultural areas of Gurye (a) and Sunchang (b).
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Figure 7. Distribution of shadow patterns, sky view factor, and mean radiant temperature in Gurye
and Sunchang.

3.4. Spatial Autocorrelation of Heatwave Damage Vulnerability Factors

We present in Table 5 the Moran’s index, p-values, and cluster distribution character-
istics calculated through the global spatial autocorrelation analysis. A negative value for
Moran’s I indicates the dispersion of high or low attribute units. The spatial autocorrelation
analysis results for each vulnerability factor were found to differ between Gurye and Sun-
chang. In Gurye, vulnerability factors with a Moran’s index of ≥0.5 included the number
of heatwave days, duration of heatwave, number of tropical nights, access to medical insti-
tutions, urbanization rate, capacity of the hot shelter, access to the hot shelter, population
density, and number of cardiac infarction patients. In Sunchang, shadow pattern, SVF,
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number of old houses, urbanization rate, capacity of the hot shelter, access to the hot shelter,
grade of old houses, average age, cardiac infarction, and stroke met this criterion (Table 5).
As for the detailed indicators of heatwave risk, the hazard factors showed a high correlation
in Gurye, whereas the vulnerability factors exhibited a high correlation in Sunchang.

Table 5. Moran’s index for each heatwave vulnerability factor in Gurye and Sunchang (Moran’s
I > 0.5 written in bold).

Hazard Exposure

Gurye Sunchang Gurye Sunchang

Heatwave days
0.526

(p < 0.000001)
0.402

(p < 0.000001) Infant population
0.192

(p < 0.000001)
0.427

(p < 0.000001)

Clustered Clustered Clustered Clustered

Duration of heatwave

0.591
(p < 0.000001)

0.017
(p = 0.454450) Elderly population

0.242
(p < 0.000001)

0.475
(p < 0.000001)

Clustered Random Clustered Clustered

Tropical night days
0.704

(p < 0.000001)
0.437

(p < 0.000001) Population density
0.601

(p < 0.000001)
0.265

(p = 0.001243)

Clustered Clustered Clustered Clustered

Shadow value

0.383
(p < 0.000001)

0.739
(p < 0.000001) Average age

0.167
(p < 0.000001)

0.580
(p < 0.000001)

Clustered Clustered Clustered Clustered

Sky view factor
0.036

(p = 0.236856)
0.703

(p < 0.000001) Aging index
0.254

(p < 0.000001)
0.457

(p < 0.000001)

Random Clustered Clustered Clustered

Vulnerability
Support fee for the elderly

0.189
(p < 0.000001)

0.493
(p < 0.000001)

Number of old houses

0.008
(p = 0.556152)

0.501
(p < 0.000001) Clustered Clustered

Random Clustered

Agriculture population
0.057

(p = 0.401805)
0.050

(p = 0.392016)
Number of local health and

medical institutions

0.077
(p < 0.000001)

0.044
(p = 0.467206)

Clustered Random Random Random

Access to medical institutions

0.696
(p < 0.000001)

1.155
(p < 0.000001) Hypertensive

0.064
(p < 0.000001)

0.177
(p < 0.000001)

Clustered Clustered Clustered Clustered

Grade of old houses

0.180
(p < 0.000001)

0.738
(p < 0.000001) Diabetes

−0.035
(p = 0.756316)

−0.064
(p = 0.594331)

Clustered Clustered Random Random

Urbanization rate

0.992
(p < 0.000001)

1.448
(p < 0.000001) Hyperlipidemia

0.008
(p = 0.550881)

−0.015
(p = 0.974844)

Clustered Clustered Random Random

Capacity of the hot shelter
0.584

(p < 0.000001)
0.790

(p < 0.000001) Cancer

0.102
(p < 0.000001)

0.359
(p < 0.000001)

Clustered Clustered Clustered Clustered

Access to the hot shelter

0.557
(p < 0.000001)

1.080
(p < 0.000001) Cardiac infarction

0.753
(p < 0.000001)

1.104
(p < 0.000001)

Clustered Clustered Clustered Clustered

Stroke

0.230
(p < 0.000001)

0.651
(p < 0.000001)

Clustered Clustered

Regarding the hazard factors of heatwave risk corresponding to weather factors,
heatwave duration and SVF showed the largest differences between Gurye and Sunchang.



Int. J. Environ. Res. Public Health 2023, 20, 5992 15 of 19

While both the duration of heatwave and SVF were significantly different among the
census output areas and did not show clustered characteristics that were evident in Gurye,
there were marked high-value clusters in Sunchang (Figure 8). Among the hazard factors
corresponding to weather factors, SVF and heatwave duration, which showed promising
discrimination ability, as expressed through the largest differences between the two regions,
are notably not provided by Statistics Korea or any other institutions but were calculated in
the present study. Accordingly, it appears that the vulnerability factors of the regions can be
distinguished under analyses at the census output area level due to the more detailed and
diversified weather factors incorporated compared to previous studies. Specifically, the
added factors representing the degree of bodily sensation in the pedestrian environment,
which reflect the high-resolution ground surface data and surrounding environmental
characteristics, were shown to be the most influential.

Figure 8. Gurye and Sunchang SVF values and duration of heatwave.

In Sunchang, where the customized data set of the NHIS showed a larger number of
patients with heat-related illnesses, a total of 11 factors among the heatwave risk vulnerability
factors (two of five hazard factors, six of seven vulnerability factors, and three of thirteen
exposure factors) showed higher spatial autocorrelation. In Gurye, where a larger number of
patients with heat-related illnesses was reported, a total of nine factors among the heatwave
risk vulnerability factors (three of five hazard factors, four of seven vulnerability factors, and
two of thirteen exposure factors) showed higher spatial autocorrelation (Table 5).

In Sunchang, the shadow pattern and SVF, which represent bodily sensation among
the weather factors of the hazard category, were both found to be high. Further, there was a
strong correlation between the number and grade of old houses, which are the environmen-
tal factors of the vulnerability category. The infant population, elderly population, aging
index, and support fee for the elderly were high among the personal factors of the vulnera-
bility category, whereas cardiac infarction and stroke were high among the disease factors.
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For Gurye and Sunchang, similar vulnerability and exposure factors were represented by
MOE (Table 4). It was found, however, that the vulnerability index varies depending on
how detailed and diverse the environmental factors are within the vulnerability category
and if the personal and disease factors are within the exposure category (i.e., whether
factors that represent personal characteristics were created spatially). The heatwave risk
maps of Gurye and Sunchang were calculated using the mean radiant temperature and
spatial autocorrelation analysis results, which can represent the degree of heatwave risk by
reflecting the high-resolution ground surface and surrounding environmental characteris-
tics (Figure 9). These maps were used to identify areas with high heatwave damage risks
by reflecting vulnerability factors with high spatial autocorrelation. The applied weight for
each vulnerability factor was 0.37 for hazard, 0.27 for vulnerability, and 0.36 for exposure.

Figure 9. Heatwave risk in (a) Gurye and (b) Sunchang.

The heatwave risk map was plotted using the mean radiant temperature, representing
thermal vulnerability, and the value of the vulnerability factor to which weights for each
factor were applied. The spatial scale unit is the census output area and the risk grade of
the heatwave map is divided into grades 1 to 5, using the Jenks grade calculation method,
with “5” indicating the highest risk of heatwave.

Grade 5 risk was mainly distributed in urban areas of Gurye. Among the 50 census
output areas, 11 showed grade 5, which corresponds to 3.1% of the total regional area.
Comparatively, in Sunchang, seven out of fifty-eight census output areas were identified
as grade 5, corresponding to 10.4% of the total area. The portions of census output areas
that exhibited grade 5 in Gurye and Sunchang were 22% and 12%, respectively. Sunchang
is a larger land area than Gurye, and census output areas with grade 4 were primarily
distributed around the grade 5 locations. Although census output areas with grades 1 and 2
were widely distributed in Gurye, grades 1–4 were relatively sporadically distributed in
Sunchang. In Gurye, the proportions of grades 4 and 5 were found to comprise 38% (19) of
the number of census output areas and 7.2% of the total area. Comparatively, in Sunchang,
the proportions of grades 4 and 5 comprised 34.5% (20) of the census output areas (20) and
21.4% of the total area. Accordingly, the proportion of the area with high heatwave risk
was approximately three times higher in Sunchang than in Gurye, with the more widely
distributed risk area in the former indicating that if residential areas are located in locations
with high heatwave risk, the proximate living areas are also likely to exhibit such risk.

3.5. Characteristics of Heat-Related Illness in Gurye and Sunchang

The number of heat-related illness patients in 2018, as recorded by the Korea Disease
Control and Prevention Agency (KDCA), was sixteen in Gurye and three in Sunchang,
more than five times higher in Gurye (Table 6). In Gurye, 14 cases of heat illness occurred
outdoors and, among heat illnesses, there were eight cases of T67.0 (heat stroke) in Gurye
and no reported heat illnesses in Sunchang. Based on the KDCA patient counting method,
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it can be seen that more heat-related emergency cases occurred in Gurye than in Sunchang.
According to the National Health Insurance Service (NHIS), the number of heat-related
illness patients in 2018 was approximately three times more in Sunchang than in Gurye
(26 in Gurye and 77 in Sunchang). Among them, nine cases of T67.0 (heat stroke) occurred
in Gurye and forty-seven in Sunchang. The number of reported cases is somewhat different
than what was reported by the KDCA: the number of cases in Sunchang was higher in
the NHIS count, which is the number of heat-related patients who visited hospitals and
received treatment. The KDCA data, related to emergencies, are highly related to the
occurrence of acute and emergency cases; the NHIS data, related to hospital visits, are data
collected when people voluntarily go to the hospital. As the cases are counted differently
in the two data sets, it is necessary to select and use the data most suitable for the purpose.

Table 6. Number of patients by reporting institution (KDCA vs. NHIS) and heat-related illness code
(T67.x) in Gurye and Sunchang (2018).

Study
Area

KDCA
T67.0

NHIS
T67.0

KDCA
T67.1

NHIS
T67.1

KDCA
T67.2

NHIS
T67.2

KDCA
T67.3~5

NHIS
T67.3~5

KDCA
T67.3~5

NHIS
T67.3~5

KDCA
SUM

NHIS
SUM

Gurye 8 9 0 0 0 1 4 9 4 7 16 26

Sunchang 0 47 1 1 1 1 1 11 0 17 3 77

The time series change of the daily maximum air temperature and the number of
T67.0 cases (summed per week) from 1 June 2018 to 31 August 2018 were plotted (Figure 10).
The number of patients began to increase in both regions from 6 July 2018, when the
daily maximum temperature increased rapidly; in Gurye, cases occurred until August 3.
Heat illness outbreaks continued until August 31, while the temperature persisted at
approximately 35 ◦C.

Figure 10. Daily maximum temperature and occurrence of T67.0 cases, as reported by the National
Health Insurance Service (NHIS).

The cause of this continuous occurrence to late summer can be explained in relation
to the results analyzed in Section 3.4. As a result of calculating the heatwave risk map,
12 out of 50 counted by census output area in Gurye showed a heatwave risk level of
5, accounting for approximately 3.4% of the total area of the administrative district. In
Sunchang, seven out of fifty-eight counted by census output area showed a heatwave risk
level of 5 and it was analyzed that they accounted for approximately 10.4% of the total area
of the administrative district. Although the number of grade 5 counts in the census output
area in Sunchang is smaller than in Gurye, the area (spatially exposed area to heatwave
risk) is approximately three times wider.
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In the hazard factors (sky view factor and mean radiant temperature related to physical
residential environment among meteorological factors) and vulnerability factors, Sunchang
clearly showed clustered characteristics with high values. In Sunchang, which has more
areas and elements representing grade 5 heatwave risk, the number of patients with heat
illness (T67.x) was three times higher and those with severe T67.0 were five times higher
than the corresponding numbers in Gurye. On the basis of these results, it can be concluded
that physical factors can affect illness occurrence.

4. Conclusions

In the present study, the detailed causes of heatwave vulnerability were analyzed
at the level of census output areas in Gurye, Jeollanam-do, and Sunchang, Jeollabuk-
do, South Korea, as they had previously been selected as study areas for assessing the
severe heatwave-induced damages during the summer of 2018. Further, the causes of
the differences between the two counties were identified through spatial autocorrelation
analyses. Weather, environmental, personal, and disease factors at the level of census output
areas were constructed as heatwave damage vulnerability factors, and factors reflecting
the pedestrian environment and personal characteristics of residents were calculated to
increase the detail and diversity of the public data used.

Spatial autocorrelation analyses revealed that hazard factors were highly correlated
with heatwave risk in Gurye, whereas vulnerability factors exhibited a high correlation in
Sunchang. The duration of heatwave and SVF that exhibited the largest difference in the
spatial autocorrelation analyses comprised the variables distinct to this study. Accordingly,
it was concluded here that the vulnerability factors of the regions were distinguished when
heatwave vulnerability was analyzed at the census output area level due to the detailed and
diversified weather factors incorporated here that represent the degree of bodily sensation in
the pedestrian environment. Further, this also reflects the importance of incorporating high-
resolution ground surface and surrounding environmental characteristics in such analyses.

The enhanced method of analyzing causes of heatwave vulnerability at the census
output area level proposed here, as well as the corresponding results, can inform more
detailed heatwave response policies for local governments. In addition, because the number
of patients with heat-related illnesses differed depending on the data for each region, it
is necessary to analyze and interpret the detailed causes of heatwave vulnerability when
the heatwave damage statuses at the city, county, and district levels are analyzed. If
a comparative analysis is performed by drawing up detailed heatwave risk maps with
various types of heatwaves, it is thought that the characteristics of heatwave damage
occurrence according to the regionality and heatwave type can be identified.

Future analyses of the causes of heatwave damage should contain more detailed, and a
wider variety of factors that represent even the personal characteristics of local community
members, rather than solely the temperature-dependent risk levels provided by the Korea
Meteorological Administration (KMA) used to create heatwave alerts and warnings. In par-
ticular, it is necessary to develop various heatwave vulnerability assessment techniques by
adding an analysis that reflects multiple factors, even though it is difficult to quantitatively
assess some social factors at the individual level.

‘Adaptive capacity’, such as heat mitigation and heat adaptation in the target area,
was not applied to the heatwave risk map prepared in this study. The heatwave risk
map of more diverse regions and the analysis of heatwave response policies by local
government should be performed together, and it is thought that the additional application
of ‘socioeconomic’ factors such as income, education, and acclimatization will be necessary.

Author Contributions: C.Y. conceived and designed the experiments; H.K. performed the experi-
ments and analyzed the data; C.Y. and H.K. contributed to data collection and analysis tools; C.Y.
wrote the paper; Anonymous reviewers and editors gave scientific comments. All authors have read
and agreed to the published version of the manuscript.



Int. J. Environ. Res. Public Health 2023, 20, 5992 19 of 19

Funding: This research was supported by a grant(2020-MOIS35-002) of Policy-linked Technology
Development Program on Natural Disaster Prevention and Mitigation funded by Ministry of Interior
and Safety (MOIS, Republic of Korea).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Korea Meteorological Administration. Weather Data Open Portal. Available online: https://data.kma.go.kr/climate/heatWave/

selectHeatWaveChart.do (accessed on 21 May 2023).
2. Ministry of Environment. Press Release ‘The Risk of Heat Waves in Korea Will Also Increase over the Next 10 Years’; Ministry of

Environment: New Delhi, India, 2019.
3. IPCC. Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva,

Switzerland, 2021.
4. Fischer, E.M. Increasing probability of record-shattering climate extremes. Nat. Clim. Change 2021, 11, 689–695. [CrossRef]
5. Heo, B.Y.; Sim, J.H.; Choi, W.J. Major heatwave damage in the world. J. Korea Water Resour. Assoc. Water Future 2009, 42, 114–118.
6. Kim, D.O.; Chung, J.H.; Lee, J.S.; Lee, J.S. Characteristics of Heat wave Mortality in Korea. J. Korean Meteorol. Soc. 2014,

24, 225–234.
7. Kim, T.H.; Beak, J.I.; Ban, Y.U. Analyzing the Relationship between Health Damage Caused by Heat Wave and Socioeconomic

Factors. Crisisonomy 2016, 12, 67–78. [CrossRef]
8. Cheng, J.; Xu, Z.; Bambrick, H.; Su, H.; Tong, S.; Hu, W. Heatwave and elderly mortality: An evaluation of death burden and

health costs considering short-term mortality displacement. Environ. Int. 2018, 115, 334–342. [CrossRef]
9. Park, J.C.; Chae, Y.R. Analysis of heat-related illness and excess mortality by heat waves in South Korea in 2018. J. Korean Geogr. Soc.

2020, 55, 391–408.
10. Luber, G.; McGeehin, M. Climate change and extreme heat events. Am. J. Prev. Med. 2008, 35, 429–435. [CrossRef]
11. Kravchenko, J.; Abernethy, A.P.; Fawzy, M.; Lyerly, H.K. Minimization of Heatwave Morbidity and Mortality. Am. J. Prev. Med.

2013, 44, 274–282. [CrossRef]
12. Abrar, R.; Sarkar, S.K.; Nishtha, K.T.; Talukdar, S.; Shahfahad; Rahman, A.; Islam, A.R.M.T.; Mosavi, A. Assessing the Spatial Mapping

of Heat Vulnerability under Urban Heat Island (UHI) Effect in the Dhaka Metropolitan Area. Sustainability 2022, 14, 4945. [CrossRef]
13. Adnan, M.; Dewan, A.; Botje, D.; Shahid, S.; Hassan, Q. Vulnerability of Australia to heatwaves: A systematic review on

influencing factors, impacts, and mitigation options. Environ. Res. 2022, 213, 113703. [CrossRef]
14. Bae, M.K.; Kim, B.E.; Yi, C.Y. Analysis on the Spatial Relationship between the Residential Area of the Vulnerable Groups and the

Hazardous Area during the Heat Wave. J. Environ. Policy Adm. 2020, 28, 243–280.
15. Choi, Y.S.; Kim, J.W.; Lim, U. An Analysis on the Spatial Patterns of Heat Wave Vulnerable Areas and Adaptive Capacity

Vulnerable Areas in Seoul. J. Korea Plan. Assoc. 2018, 53, 87–107. [CrossRef]
16. Baek, J.H.; Lee, S.S.; Lee, J.Y.; Lee, W.H. A Study on Influence Parameters of Heat Wave in Literature. In Proceedings of the 2020

Korean Society of Civil Engineering Association Conference, Jeju, Republic of Korea, 21–23 October 2020; pp. 1286–1287.
17. Yi, C.; Yang, H. Heat Exposure Information at Screen Level for an Impact-Based Forecasting and Warning Service for Heat-Wave

Disasters. Atmosphere 2020, 11, 920. [CrossRef]
18. Mavrogianni, A.; Wilkinson, P.; Davies, M.; Biddulph, P.; Oikonomou, E. Building characteristics as determinants of propensity to

high indoor summer temperatures in London dwellings. Build. Environ. 2012, 55, 117–130. [CrossRef]
19. Lindberg, F.; Grimmond, C.S.B. The influence of vegetation and building morphology on shadow patterns and mean radiant

temperature in urban areas: Model development and evaluation. Theor. Appl. Climatol. 2011, 105, 311–323. [CrossRef]
20. Lindberg, F.; Onomura, S.; Grimmond, C.S.B. Influence of ground surface characteristics on the mean radiant temperature in

urban areas. Int. J. Biometeorol. 2016, 60, 1439–1452. [CrossRef]
21. Yi, C.H.; Kwon, H.K.; Lindberg, F. Radiation Flux Impact in High Density Residential Areas. J. Korea Assoc. Geogr. Inf. Stud. 2018,

21, 40–46.
22. Jenks, G.F. The data model concept in statistical mapping. Int. Yearb. Cartogr. 1967, 7, 186–190.
23. Brewer, C.A.; Pickle, L. Evaluation of Methods for Classifying Epidemiological Data on Choropleth Maps in Series. Ann. Assoc.

Am. Geogr. 2002, 92, 662–681. [CrossRef]
24. Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988.
25. Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [CrossRef]
26. Analytic Hierarchy Process. Available online: https://www.passagetechnology.com/what-is-the-analytic-hierarchy-process

(accessed on 21 May 2023).
27. Seong, J.H.; Lee, K.R.; Kwon, Y.S.; Han, Y.K.; Lee, W.H. A Study on Identification of the Heat Vulnerability Area Considering

Spatial Autocorrelation-Case Study in Daegu. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2020, 38, 295–304.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://data.kma.go.kr/climate/heatWave/selectHeatWaveChart.do
https://data.kma.go.kr/climate/heatWave/selectHeatWaveChart.do
https://doi.org/10.1038/s41558-021-01092-9
https://doi.org/10.14251/crisisonomy.2016.12.5.67
https://doi.org/10.1016/j.envint.2018.03.041
https://doi.org/10.1016/j.amepre.2008.08.021
https://doi.org/10.1016/j.amepre.2012.11.015
https://doi.org/10.3390/su14094945
https://doi.org/10.1016/j.envres.2022.113703
https://doi.org/10.17208/jkpa.2018.12.53.7.87
https://doi.org/10.3390/atmos11090920
https://doi.org/10.1016/j.buildenv.2011.12.003
https://doi.org/10.1007/s00704-010-0382-8
https://doi.org/10.1007/s00484-016-1135-x
https://doi.org/10.1111/1467-8306.00310
https://doi.org/10.1504/IJSSCI.2008.017590
https://www.passagetechnology.com/what-is-the-analytic-hierarchy-process

	Introduction 
	Materials and Methods 
	Heatwave Damage Status Data 
	Target Sites and Weather Factor Data 
	Environmental, Personal, and Disease Factor Data at the Level of Census Output Area 
	Method to Calculate Perceived Heat Exposure Data 
	Spatial Autocorrelation Analysis Method 

	Results and Discussion 
	Number of Heat-Related Illnesses and Heatwave Risk Characteristics in Gurye and Sunchang 
	Weather Factors in the Census Output Areas in 2018 
	Heat Exposure in the Pedestrian Environment 
	Spatial Autocorrelation of Heatwave Damage Vulnerability Factors 
	Characteristics of Heat-Related Illness in Gurye and Sunchang 

	Conclusions 
	References

