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Abstract: The global economy has suffered losses as a result of the COVID-19 epidemic. Accurate
and effective predictive models are necessary for the governance and readiness of the healthcare
system and its resources and, ultimately, for the prevention of the spread of illness. The primary
objective of the project is to build a robust, universal method for predicting COVID-19-positive cases.
Collaborators will benefit from this while developing and revising their pandemic response plans. For
accurate prediction of the spread of COVID-19, the research recommends an adaptive gradient LSTM
model (AGLSTM) using multivariate time series data. RNN, LSTM, LASSO regression, Ada-Boost,
Light Gradient Boosting and KNN models are also used in the research, which accurately and reliably
predict the course of this unpleasant disease. The proposed technique is evaluated under two different
experimental conditions. The former uses case studies from India to validate the methodology, while
the latter uses data fusion and transfer-learning techniques to reuse data and models to predict the
onset of COVID-19. The model extracts important advanced features that influence the COVID-19
cases using a convolutional neural network and predicts the cases using adaptive LSTM after CNN
processes the data. The experiment results show that the output of AGLSTM outperforms with
an accuracy of 99.81% and requires only a short time for training and prediction.

Keywords: machine learning; deep learning; data analytics; LSTM; epidemic disease outbreak;
COVID-19

1. Introduction

Many local governments, like the Indian government, have loosened health-related
restrictions as the global coronavirus pandemic approaches its 3rd year. The majority of
people are currently thought to be immune to SARS-CoV-2 due to vaccination or sponta-
neous infection, but data and experience show that new variants are evolving, leading to
limited outbreaks and unexpected consequences for preventative and therapeutic meth-
ods. Humanity has contracted a virus at a time when people are breaking new ground in
technology and battling the problem of the climate catastrophe. The coronavirus infection
epidemic is now categorized as a pandemic by the World Health Organization (WHO),
and new variants with varied degrees of severity may manifest themselves every season.
A virus’s ability to spread depends on its susceptible sources, viral latency, and suscepti-
bility [1]. Human life and civilization could be seriously threatened by the development
of this disease [2,3]. When a disease outbreak starts, the ways it is evaluated are very
important for taking quick steps to stop the disease from spreading. Each epidemic in
a country or province usually grows at different rates over time. This is because of things
like seasonal changes and how the virus changes over time [4].

Over 600 million instances of COVID-19 infection brought on by new strains have been
reported globally since the pandemic started. Unsettlingly, things could perhaps get worse
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in the future. A recent study found that the virus-infected survivors had a high rate of
neuropsychiatric issues. Similarly, even 2 years after diagnosis, individuals with COVID-19
are more likely than those with other respiratory illnesses to develop neurological and
psychiatric disorders such as dementia, psychosis, etc. [5]. For their analysis, another study
examined the data of around 1.28 million people who received a COVID-19 diagnosis
between 20 January 2020 and 13 April 2022. The researchers contrasted their findings with
those of a similar group of people who had other respiratory conditions. The study looked
at 14 mental and neurological issues. Adults were shown to have a higher risk of mental
illnesses or anxiety after COVID-19; however, this risk returned to baseline levels within
two months for people with other respiratory infections. Even 2 years after the original
infection, the risk of cognitive impairment, often known as brain fog, dementia, psychotic
diseases, and epilepsy or seizures, remained high. Minors, adults between the ages of
18 and 64 years, and seniors aged more than 65 years were the age groups into which the
studied patients were divided by the researchers [6].

1.1. Increased Prevalence of Dementia in COVID-19-Infected Individuals

Those over 64 with COVID-19 infection exhibited a greater frequency of cognitive
abnormalities (15.4%) among the principal problems than those with other respiratory ill-
nesses (12.3%). Similarly, the COVID-19 infection raised the risk of dementia by
1.2 percentage points in the same age range. The study finds that elderly people who
are infected are more likely to experience insomnia, mental difficulties, etc. [7].

1.2. Threat by Different Variants

The neurological and mental outcomes during the delta and omicron waves were
equivalent, according to the study, which also assessed the possibility of illnesses through-
out the development of several COVID-19 variations [7]. Also, 2 years following the
COVID-19 infection, it is more likely that issues like dementia, cognitive impairment, etc.,
will be identified. According to a previous study by the same group at Oxford University,
mood disorders, strokes, or dementia were present in COVID-19-infected people six months
after infection. A further study that was published in the Lancet journal last year found that
COVID-19 was responsible for a spike in major depressive disorder and anxiety disorder
worldwide [8].

1.3. Technological Advancements

People have been given technology, and if we use it wisely, we can at least help doctors
and government officials fight conditions that are like pandemics. One such technological
innovation that could be useful during the pandemic is the forecasting and prediction
of the infection condition beforehand. In the past ten years, machine learning (ML) has
become an important area of study because it has been used to solve numerous types of
real-world issues that are very difficult and complicated [9]. The basic flow of machine
learning approach is depicted in Figure 1. The World Health Organization (WHO) officially
refers to the novel coronavirus SARS-CoV-2, also known as COVID-19, and researchers
created an early warning model for its transmission [10]. Over the world, COVID-19 has
presented a serious threat and affected many human lives. The virus, which has been
around for two years, is still having an impact on our lives and comes in a variety of forms
with many symptoms that are particularly challenging to list all at once. The management,
governance and readiness of the healthcare department and its suppliers, and ultimately
the prevention of disease spread, depend on accurate and effective models [11]. The
major goal of this research in this regard is to develop a model that can forecast COVID-
19-positive cases. All shareholders will benefit from this while developing and revising
their pandemic response plans. For precise COVID-19 spread prediction, the research
recommends an adaptive gradient LSTM (AGLSTM) model utilizing multivariate time
series data. The RNN (Recurrent Neural Network), LSTM (Long Short Term Memory),
LASSO (Least Absolute Shrinkage and Selection Operator), Ada-Boost (Adaptive Boosting),
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Light Gradient Boosting, and KNN (K- Nearest Neighbors) models are also used in the
research to successfully and reliably predict the spread of this terrible disease.
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Figure 1. Machine Learning Approach.

This research aims to fulfill the following objectives:

1. Research and analysis of COVID-19 multivariate data;
2. To come up with a general method for predicting the COVID-19 outbreak that is based

on data and machine learning;
3. To compare and evaluate how well different prediction methods, such as LASSO, Ada-

Boost, Light Gradient Boosting, KNN, RNN, LSTM, and Adaptive Gradient LSTM,
can predict the number of deaths, the number of positive cases, and the number of
recovered cases;

4. To benefit from a potent activation function that helps obtain the best performance;
5. To profit from the established advantages of deep learning techniques in processes

that assist in epidemic disease outbreaks and health decision-making.

The research suggests using an adaptive gradient LSTM (AGLSTM) model with multi-
variate time series data to accurately predict how COVID-19 will spread. The framework
of the model is presented in Figure 2. In the study, models including LASSO, Ada-Boost,
Light Gradient Boosting, KNN, RNN, and LSTM are also used to forecast the spread of
this contagious disease. The proposed models were carefully analyzed using a sizable
multivariate COVID-19 dataset and the entire workflow of the proposed model is depicted
in Figure 3. Our experimental results show the higher performance of the proposed models.

Due to how complicated the COVID-19 outbreak is, its uncertainty, and how many
countries do not have important data because they do not have as many ways to collect
data as a country like India, the main concern is not only how accurate the models are,
but also how well they can be used in a wide range of situations [12]. This work attempts
to solve this complex problem in this environment with the least amount of training and
prediction time possible. By reusing previously developed prediction models, we also take
data fusion and transfer learning into consideration. This is because; deep neural networks
and deep ensemble learning training require large amounts of computational time, massive
data, and computer resources. In fact, the focus of this work is data fusion, a method that
integrates data to create knowledge that is more accurate, consistent, and informative,
while real data could be inaccurate, unclear, inconsistent, and insufficient [13]. We can
develop precise predictions that might run into problems when gathering COVID-19 data
by concentrating on data fusion.
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The article is organized in the following manner. Section 2 discusses the research works
that employ machine learning and deep learning models for the prediction of COVID-19.
The proposed state-of-the-art using multivariate data for the prediction of COVID-19 is
outlined in Section 3, which will be followed by the experimental setting used in this
research. Subsequently, the results of the conducted trials are given and discussed, and the
article ends with a conclusion, future work and limitation section.
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2. Literature Review

This section’s main goal is to assess some of the most significant recent relevant
attempts at COVID-19 outbreak prediction utilizing machine and deep learning methods.
This review of the literature focuses, in particular, on studies that forecast everyday events
that are verified or positive. M. Li et al. [14] suggest a machine learning technique for
estimating the daily numbers of cumulative confirmed cases, newly confirmed cases, and
death cases of COVID-19 in China from 20 January 2020 to 1 March 2020, using data
from the National Health Committee of China. A comparison of machine learning and
soft computing models for COVID-19 outbreak prediction in five counties was conducted
by S.F. Ardabili et al. [15]. Two machine learning models’ results—the multi-layered
perceptron and the adaptive network-based fuzzy inference system—were promising and
had a high capacity for long-term prediction. S. Bandyopadhyay et al. [16] used recurrent
neural networks (RNNs) to predict COVID-19 confirmed (positive), negative, released,
and death cases. RNNs can represent the prediction of temporal (sequential) data. Three
models—a combined LSTM-GRU model, a gated-recurrent unit (GRU) model, and a long
short-term memory (LSTM) model—were presented. According to experimental findings
on the COVID-19 dataset for South Korea from 20 January 2020 to 12 March 2020, the
combined model achieves the highest level of accuracy. A convolutional neural network
(CNN) model was proposed by C.J. Huang et al. [17] to predict the number of COVID-19
verified cases in China from 23 January 2020 to 2 March 2020, using information from
Growing News Network and WHO. According to experiments, the recommended CNN
model outperforms MLP (multilayer perceptron), LSTM, and GRU. For predicting the
number of novel coronavirus (COVID-19)-positive reported cases for 32 Indian states and
union territories, P.H. Kumar et al. [18] used deep learning-based models, specifically
LSTM variants such as deep LSTM, convolutional LSTM, and bi-directional LSTM models.
They found that bi-directional LSTM gave the best results, while convolutional LSTM gave
the worst. For predicting the number of new and recovered cases for six countries—Italy,
Spain, France, China, the United States, and Australia—A. Zeroual et al. [19] presented
a comparison of five deep learning models (basic RNN, LSTM, Bidirectional-LSTM, gated
recurrent units (GRUs), and VariationalAutoEncoder (VAE)). Their results demonstrated
the VAE’s superior performance over the other methods and the deep learning models’
promising potential in forecasting COVID-19 cases. A. Hernandez-Matamoros, et al. [20]
made a way to run and analyze the ARIMA model for 145 countries spread out over
6 continents. The goal was to link countries in the same area so that the spread of the virus
could be predicted. S. Chae et al. [21] previously compared DNN and LSTM models to
the auto-regressive integrated moving average (ARIMA) for the prediction of infectious
diseases, and the findings showed that DNN and LSTM models outperformed ARIMA.
Table 1 summarizes a quick comparison study and review of various deep learning models.
This validates our choice to use deep learning techniques, which have been shown to be
precise and efficient in predicting COVID-19 outbreaks. The study’s main contribution
is the creation of a standardized, data-driven, accurate, and generic COVID-19 outbreak
prediction technique. In the part after this one, we will discuss the models’ historical
contexts. It is discovered that machine learning is a useful method for simulating the
COVID-19 epidemic due to its highly complex structure and variance in behavior from
country to country.



Int. J. Environ. Res. Public Health 2023, 20, 5943 6 of 23

Table 1. Review of Literature.

Ref Methodology Adopted Data Type Data Source Results Purpose of Research

Kırbas et al. [22]

ARIMA, Nonlinear
Autoregression Neural

Network (NARNN) and
Long-Short Term
Memory (LSTM)

Cumulative confirmed cases
data of 8 different European
countries and the dataset is
considered till 3 May 2020

European Center for Disease
Prevention and Control

MAPE values of the LSTM
model are better than the

other models

To model and predict the
cumulative confirmed cases
and total increase rate of the
countries was analyzed and

compared. LSTM
outperforms other models.

Arora et al. [23]
Deep LSTM/Stacked LSTM,

Convolutional LSTM and
Bidirectional LSTM

Confirmed cases in India. 14
March 2020 to 14 May 2020

Ministry of Health and
Family Welfare

Bi-directional LSTM provides
better results than the other

models with less error

Daily and weekly predictions
of all states are done to
explore the increase in

positive cases

Chimmula and Zhang [24] LSTM confirmed cases in Canada
and Italy until 31 March 2020

Johns Hopkins University
and Canadian

Health Authority
Achieved 92% accuracy

To predict the number of
confirmed cases in Canada
and Italy and to compare

the growth

Shahid et al. [25]

ARIMA, support vector
regression (SVR), long

short-term memory
(LSTM), Bi-LSTM

22 January 2020 to 27 June
2020. 158 samples of the

number of confirmed cases,
deaths and recovered cases

Dataset is taken from the
Harvard University

Bi-LSTM outperforms other
models with lower

R2 score values

To predict the number of
confirmed deaths and

recovered cases in
10 countries for better

planning and management

Tomar and Gupta [26] LSTM Cumulative and daily dataset
of COVID-19 cases in India

Center for Systems Science
and Engineering (CSSE) at
Johns Hopkins University

LSTM achieved 90% accuracy
in predicting COVID cases

To predict the number of
confirmed and recovered
cases using a data-driven

estimation method

Shastri et al. [27]
LSTM, Stacked LSTM,

Bi-directional LSTM and
Convolutional LSTM

India and USA-Confirmed
cases data from 7 February to
7 July 2020 Death cases data
from 12 March to 7 July 2020.

Datasets of India and USA
are taken from the Ministry of
Health and Family Welfare,
Government of India and

Centers for Disease Control
and Prevention, U.S

Department of Health and
Human Services

ConvLSTM outperforms
stacked and bi-directional
LSTM in confirmed cases

and deaths

To predict the number of
COVID-19 confirmed and
death cases 1 month ahead

and to compare the accuracy
of deep learning models
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Table 1. Cont.

Ref Methodology Adopted Data Type Data Source Results Purpose of Research

Papastefanopoulos et al. [28]

Six different forecasting
methods are presented.

ARIMA, the Holt-Winters
additive model (HWAAS),
TBAT, Facebook’s Prophet,

Deep AR

January 2020 to
April 2020 and the

population of countries

Novel Corona Virus
2019 Dataset and

population-by-country
dataset from kaggle.com

ARIMA and TBAT
outperformed other models
in forecasting the pandemic

To predict the number of
future COVID-19 confirmed
death and recovered cases by

considering the
country’s population

Devaraj, J. et al. [29] ARIMA, LSTM,
Stacked LSTM

22 January 2020 to 8 May
2020. Simulated dataset for

seven cities for the months of
May, June, July and August

2020. All countries’ data from
January 2020 to
September 2020

Datasets were collected from
John Hopkins University,
World Weather Page and

Wikipedia page

SLSTM outperformed other
models. In statistical analysis,

ARIMA outperformed the
LSTM model. Overall, the

SLSTM model is better than
other models.

Global, country-specific, and
city-specific cumulative

COVID case prediction is
done. Feature correlation is
done, and the best model

prediction is identified
through statistical hypothesis
testing. Multivariate analysis

and prediction of Indian
COVID cases are done.

Yahia, N. B. at al. [30]
LSTM, DNN, CNN, Stacked

DNN, Stacked LSTM and
Stacked CNN

22 January 2020 until
9 November 2020

Datasets were collected from
John Hopkins University

Stacked DNN outperformed
other models

For the two case studies,
China and Tunisia, the

stacked-DNN whose inputs
are predicted values of LSTM,

DNN, and CNN perform
better than the stacked LSTM

and the stacked CNN

Ayris, D. et al. [31]

The Deep Sequential
prediction model (DSPM)

and non-parametric
regression model (NRM)

22 January to 6 June 2020 Datasets were collected from
John Hopkins University

The proposed NRM
performed better than the
proposed DSPM; however,

the difference in performance
is not large

Alassafi, M. O. [32] RNN and LSTM Up to 3 December 2020 European Centre for Disease
Prevention and Control The LSTM models RNN and LSTM

Hawas [33] Recurrent Neural
Network (RNN)

Daily confirmed cases in
Brazil 54 to 84 days 7 April to

29 June 2020

Center for Systems Science
and Engineering (CSSE) at
Johns Hopkins University

Achieved 60.17% accuracy
To predict, 1 month ahead,

the confirmed cases and take
preventive measures
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3. Materials and Methods
3.1. Data Set Description and Data Preparation

In this study, real-time observations are incorporated for up-to-date analysis and
for the prediction of COVID-19 results. There are 2 types of datasets used in this study:
(1) The global dataset from January 2020 to August 2021, which is being gathered from
covid19india.org and is available via the online source Kaggle. Three separate time series
datasets were gathered, including confirmed, recovered, and death cases. It also includes
information such as the name of the province, country, and the number of cases by date.
(2) Second, data for COVID-19 is collected from Indiastathealth.org, which includes pa-
rameters like confirmed cases by date, confirmed deaths, vaccination, policy responses,
mobility, generic, hospitalizations, discharged or migrated, and the number of Asha deaths.

The panda profiling feature is used for Exploratory Data Analysis, and the interaction
between 3 important features is shown in Figure 4. Correlation factors like Spearman’s (ρ),
Pearson’s (r), and Kendall’s (τ) are used to do the statistical analysis, which is presented
in Figure 4a–c. Pearson’s correlation specifies the linear correlation while testing the
similarities in the ordering of the data; when it is ranked by quantity Kendall’s correlation
is used, which is highly reflected in the below variables. Also, Spearman’s correlation
specifies the strength and direction of the association between ranked variables. From the
above correlation factors, we can see that the variables are highly correlated linearly and in
terms of quantity, they have similarities. The scatter diagrams for confirmed, active, and
cured cases and deaths are depicted in Figure 5.

Real-world datasets can be unreliable, and studying raw data might lead to incorrect
conclusions. As a result, data must be pre-processed before being analyzed. There are
a variety of pre-processing approaches available to deal with messy data in order to ensure
consistency in knowledge discovery data [34]. Multiple files’ properties can be concatenated
to make a single file in a usable format [35]. Data reduction procedures can be used to
reduce the number of attributes by reducing redundancy in the dataset [36,37].

The support and resistance levels are determined by technical analysis indicators. The
support level indicates when the number of cases has decreased, and the resistance level
indicates when it has risen [38]. They aid in recognizing both upward and downward
trends. To extract noise-free features from the existing raw features, the TA-lib software is
used to reveal significant patterns. The indications utilized to execute feature engineering
are listed here [39]:
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SMA (simple moving average): The average of a chosen range of cases is determined
by the number of periods in that range.

Weighted moving average (WMA): The formula for calculating the weighted moving
average (WMA) is to multiply the current cases by the corresponding weights and then
add the results.

The exponential moving average (EMA): It is a sort of weighted moving average that
emphasizes current case data, but the rate of decline between one case and its prior case is
not linear but rather exponential.

EMA = Cases(t) ∗ k + EMA(y) ∗ (1− k), (1)

where t is today, y is yesterday, N is the number of days in EMA (i.e., the smoothening
range), and k = 2/(N + 1)

After feature engineering, certain undesirable features were deleted using linear
interpolation. The feature selection method is depicted in Figure 6 where missing value
imputation was applied when necessary after dividing all features into blocks for each set of
periods (smoothing range) and technical indicators. Then, using a random forest regressor
as an estimator, each set is fitted with Recursive Feature Elimination, Cross-Validated
(RFECV). The most significant characteristic is chosen by RFECV after the features are
ranked. At each iteration, the step size is reduced to 0.6, removing 60% of the least
significant features. From each block, the feature with the highest rank is selected. The
Variance Inflation Factor (VIF) is used to leave out characteristics that are strongly linked to
other independent characteristics.
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After preparing the dataset, all date columns are converted to data-time objects to
group the data by ‘Date’ to find the cumulative sum of cases. The description and time
series plotting of 3 variables, cases, deaths, and cured, are shown in Table 2 and Figure 7,
respectively. Then re-sampling the number of cases is done on a monthly and weekly basis,
and is shown in Figures 8 and 9. Also, the time series visualization for 200 days is shown in
Figure 10. Then we set up helper functions for forecasting, extracting the last n days from
the time series and plotting the last n days from the time series. Afterward, multivariate
data is prepared with a Keras format series, which is used to convert the numpy series into
a 3D form, and then data splitting is done for training and testing.

Table 2. Description of three target variables.

Cured Deaths Cases

Count 1.811000 × 104 18,110.000000 1.811000 × 104

Mean 2.786375 × 105 4052.402264 3.010314 × 105

Std 6.148909 × 105 10,919.076411 6.561489 × 105

Min 0.000000 0.000000 0.000000
25% 3.360250 × 103 32.000000 4.376750 × 103

50% 3.336400 × 104 588.000000 3.977350× 104

75% 2.788698 × 105 3643.750000 3.001498 × 105

Max 6.159676 × 106 134,201.000000 6.363442 × 106
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3.2. Machine Learning Models
3.2.1. Lasso Regression

Lasso (Least Absolute Shrinkage and Selection Operator) Regression is a sort of
regularized linear regression with an L1 penalty that is widely used. This causes the
coefficients for input variables that don’t contribute much to the prediction task to diminish.
This penalty allows some coefficient values to be set to 0, thereby removing input variables
from the model and allowing for automatic feature selection. Lasso Regression is a linear
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regression extension that includes a regularization penalty in the loss function during
training [40].

3.2.2. K-Nearest Neighbor

The k-NN method is one of the most basic classical machine learning algorithms. Its
first application was in classification. For unlabeled samples, the k-NN technique finds the
k-closest examples among all the labeled cases and predicts the class of the unlabeled ones
based on their majority class [41]. The examples are described by a vector of features, and
their similarity is given by a distance function, commonly the Euclidean distance. The k
closest cases to the unlabeled case are thus the k nearest neighbors utilized to categorize
it according to the vector of features and the distance function. The k-NN may easily be
used to perform regression. The target variable is numerical in this example. When the
target variable is unknown, the k-NN method attempts to locate the k-closest neighbors
among the set of inputs whose target value is known. Either the mean or the median is the
expected goal value.

3.2.3. Ada Boost

Ada Boost (Adaptive Boosting) is an ensemble learning method (sometimes known
as “meta-learning”) that was originally devised to improve the effectiveness of binary
classifiers. Ada Boost employs an iterative strategy to improve poor classifiers by learning
from their mistakes. Ada Boost is a prominent boosting technique that seeks to construct
a strong classifier by merging many weak classifiers [42]. A single classifier may not be able
to reliably forecast an object’s class, but we can develop a powerful model by combining
numerous weak classifiers, each learning from the others’ incorrectly categorized objects.
A weak classifier is one that outperforms random guessing but still has trouble assigning
classes to objects [43].

3.2.4. Light Gradient Boosting Machine

This is also a type of gradient boosting, with light denoting a lighter form. This is
thought to make the model more efficient, faster, and more accurate. LGBM stands for
light gradient boosting machine and is a type of gradient boosting. Light GBM, like other
gradient-boosting techniques, is based on Decision tree methods. We can reduce memory
utilization and boost efficiency with the help of Light GBM. The primary distinction
between Light GBM and other gradient boosting frameworks is that Light GBM grows leaf-
wise rather than horizontally. The other algorithms, on the other hand, extend horizontally
in a level-by-level manner. The leaf with the least error and highest efficiency is chosen
by Light GBM. This strategy is far more effective at lowering the error rate [44]. In other
words, it expands leaf-by-leaf, whereas others expand level-by-level, and its architecture is
shown in Figure 11.
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3.2.5. Recurrent Neural Network

RNNs are deep learning models that are often used to tackle problems involving se-
quential input data, such as time series. RNNs are a sort of neural network that remembers
what it has processed previously and can thus learn from past iterations during training.
“A recurrent neural network (RNN) is a type of artificial neural network in which nodes are
connected in a directed graph that follows a temporal sequence. This enables it to behave
in a temporally dynamic manner. RNNs, which are derived from feed-forward neural
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networks, can process variable-length sequences of inputs by using their internal state
(memory). Because its connections create a directed cycle, a Recurrent Neural Network
(RNN) deals with sequence problems. In other words, they can keep the state from one
iteration to the next by feeding the next step their own output. Only short-term memory
can benefit from a simple recurrent neural network. If we have a longer time dependency,
we will find that it has a basic flaw (vanishing/exploding gradient) [45,46].

3.2.6. Long Short-Term Memory (LSTM)

Long short-term memory is a gated memory unit for neural networks. Due to its
ability to learn additional parameters, the LSTM cell increases long-term memory in
a way that is even more efficient. As a result, it is the most effective [Recurrent Neu-
ral Network] for predicting, particularly when your data show a longer-term trend. LSTMs
are state-of-the-art models for forecasting at the moment. The memory’s contents are
managed by three gates. These gates are basic logistic functions of weighted sums that
can be learned using back-propagation. It means that, despite its complexity, the LSTM
fits into the neural network and its training process perfectly. It is capable of learning
what it needs to learn, remembering what it needs to know, and recalling what it needs
to recall without any additional training or optimization. The cell state (4), or long-term
memory, is managed by the input and forget gates (1) and (2), respectively. The output gate
(3) generates the concealed state (5), which is the memory targeted for usage. This memory
structure allows the network to remember for a long period, which is a feature that was
previously lacking in traditional recurrent neural networks [47].

it = sigmoid(Wixt + Uiht−1 + bi) (2)

ft = sigmoid(Wfxt + Ufht−1 + bf) (3)

ot = sigmoid(Woxt + Uoht−1 + bo) (4)

ct = ftct−1 + ittanh(Wcxt + Ucht−1 + bc) (5)

ht = ottanh(ct) (6)

where it represents the input gate, ft represents the forget gate, ot represents the output gate,
ct represents the cell state (memory) at timestamp t, and ht represents the hidden state that is
the output of the previous LSTM block. Wi, Wf, Wo and Ui, Uf, and Uo refer respectively to
the weight parameters, and bi, bf, and bo denote the bias parameters. Wc, Uc denotes weight
parameters, bc is the bias parameter, and o refers to the element-wise multiplication.

3.2.7. Adaptive Gradient LSTM

In this instance, 500 data point-sized sliding windows are employed. The initial
400 points are reserved for training, while the remaining points are used for model evalua-
tion. Scaling features is among the most important preprocessing steps. The standard scalar
uses the mean to scale the data, and as the mean is susceptible to outliers, the presence
of outliers will influence the scaling. After removing outliers with the Robust Scale, we
employed a min-max scale. The robust Scale is unaffected by a small number of extremely
large marginal outliers because it is based on percentiles. Either a robust scale followed by
a min-max scale or a performance-based standard scale is utilized here.

Model Structure

The proposed model network structure is designed as AGLSTM, and the role of each
module is to capture the complex situation of COVID-19 cases. Initially, our algorithm
takes the samples of a batch of tasks from all the training/prediction tasks, and then the
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extracted tasks are divided into training and testing data. The goal of the training dataset is
to calculate the optimal parameters for each task, whereas the test dataset is to calculate the
optimal parameters for the whole model. Both datasets pass through the same network
structure. The input training data will be processed by the CNN first. The CNN is used
to capture the numerous influences of all variables, and it is also capable of integrating
the spatial relationship between the data, making feature extraction more convenient.
The entire sequence is passed to the LSTM layer. Since the observation data is primarily
time series data, the CNN’s output feature maps are input into the LSTM to learn the
sequence’s long-term dependencies. After that, the input of LSTM is transferred to the fully
connected layer, which outputs the prediction result; gradient descent is used to minimize
loss and compute its value. Finally, the optimal assignment parameters are determined.
For the input data of the test data, the input network structure remains unaltered, while the
network’s parameters are optimized for the task. On this basis, gradient descent is repeated
in an effort to minimize loss and increase accuracy. Finally, we obtain the model’s relative
optimal parameters. The proposed methodology and the network structure are shown
in Figure 12.
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3.3. Performance Metrics

We examined the outcomes of the aforementioned trials using a variety of metrics,
including precision, mean squared error (MSE), mean absolute error (MAE), mean absolute
percentage error (MAPE), R-squared (R2), and root mean squared error (RMSE) [33]. Ac-
curacy facilitates the calculation of how frequently the forecast matches the actual label.
MAE and MSE are utilized to calculate the mean absolute error value and mean squared
error between y true and y predicted, respectively. MAPE is the measure of the prediction
accuracy of a statistical technique, such as trend estimation, used for forecasting. The
calculation is as follows:

MAE =
1
N∑N

n=1 |Ỹn−Yn| (7)

RMSE =

√
1
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(
Ỹn − Yn
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MAPE =
∑N

n=1 |
Ỹn−Yn

Ỹn
|

N
∗ 100 (10)

where Ỹn represents the number of COVID-19 predicted cases by the model and Yn rep-
resents the observed value of the actual COVID-19 cases. N is the data size that needs to
be predicted.

The Deep learning models are assessed using various performance measures like
accuracy, precision, recall, F1-score, and support. Overall accuracy is calculated as the
total true findings divided by the total number of samples. Sensitivity and specificity are
concepts used to characterize the true positive and true negative rates. The formulas for
computing these performance characteristics are offered by Equations (11)–(14).

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

Recall =
TP

TP + FN
(12)

Precision =
TP

TP + FP
(13)

F1 Score = 2× Precision× recall
Precision + recall

(14)

3.4. Experimental Setup

In this study, after creating the Ada-Boost, KNN, LGBM and Lasso models, they are
tuned with hyper-parameters with a learning rate of 0.05, the loss is linear, estimators are
set at 90, and probability threshold values are verbose as true and with random states.
These hyper-parameters tuned models are then finalized with 10 cross-fold validations.
For hyper-parameter tuning, a random grid search of hyper-parameters over a predefined
search area is utilized. R2 is modified using the optimized parameter in order to optimize
it. When determining the optimal production model, metrics are not the only criterion to
consider. Other parameters, such as training time and the standard deviation of k-folds,
are also evaluated.

Furthermore, we looked at the best parameter choices for RNN, LSTM and our pro-
posed model AGLSTM, such as the number of epochs, batch size, and neurons, to get
a decent prediction result for COVID-19 cases and death. The following are the descriptions
of these parameters:

1. Epochs: the number of epochs is a parameter that specifies how many times the
learning technique will run over the entire training dataset. The number of epochs
refers to the number of full passes over the training dataset;

2. Size of the batch: the batch size is a parameter that specifies the number of samples to
work with before updating the internal model’s variables. The batch size relates to
how many samples are processed before the model is updated;

3. Number of neurons: the number of neurons in a network affects its learning capacity.
In general, the more neurons there are, the faster the issue structure is learned at the
expense of a longer learning period. With increased learning capability comes the risk
of over-fitting the data utilized for training [32].

The results reveal that for RNN and LSTM, 40 epochs are sufficient, whereas, for
AGLSTM, 150 epochs are sufficient. This indicates that the training process has stabi-
lized and that increasing the number of epochs is no longer beneficial. We calculated
and tracked the validation and training losses. If the validation loss rises, over-fitting is
a possibility. To avoid over-fitting, we should increase the number of epochs as much as
possible. The pseudo-code for the proposed algorithm is mentioned in Algorithms 1 and 2.
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Algorithm 1: Base Algorithm

Input: Load dataset for pre-processing
Output: Positive COVID-19 cases and deaths over n days
Normalize the dataset into values from 0 to 1
Initialize the sequential network
Set the no. of RNN blocks and input the activation function
Select the training window size
for n epochs and batch size, do
Train the network
end for
Run predictions
Calculate the loss function, accuracy

Algorithm 2: Ada_Gradient_LSTM

Input: Initialize sequential model with dataset passed through CNN
Output: Positive COVID-19 cases and deaths over n days
Adding the first LSTM layer and some Dropout regularization
Set LSTM units = 45, return_sequences = True, input_shape = (X_train.shape [1],1)
Select Dropouts as 0.2
Adding the second LSTM layer and some Dropout regularization
Set LSTM units = 65, return_sequences = True
Select Dropouts as 0.2
Adding the third LSTM layer and some Dropout regularization
Set LSTM units = 85, return_sequences = True
Select Dropouts as 0.2
Adding the fourth LSTM layer and some Dropout regularization
Set LSTM units = 128
Select Dropouts as 0.2
Adding the output layer
Set Dense units = 1
Calculate the loss function/optimization strategy and fit
Select optimizer as adam
Fit the desired number of passes over the data (epochs)
Set train and test epochs, Batch_size = 64 and verbose = 1
Return results

4. Results

On the multivariate data set for COVID-19 in India, we used LASSO Regression,
KNN, Ada-Boost, Light gradient boosting, RNN, LSTM, and our suggested algorithm
Ada-GLSTM. Despite the fact that all of the methods discussed above performed well, our
proposed approach outperformed them all. First of all, Lasso, KNN, Ada-Boost and light
gradient boosting are implemented with 10 cross-folds and extra trees regressor estimator
and attempted the results of the various metrics used for determining the efficacy of the
various prediction models as shown in Table 3. These created models are then tuned with
hyper-parameters, fitting 10 folds for each of the 10 candidates, totaling 100 fits, and then
the results are shown in Tables 4 and 5. The residual plots and prediction error plots for
Ada-Boost, KNN, LGBM and LASSO are depicted in Figures 13a–d and 14a–d, respectively.
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Table 3. Parameters tuned for deep learning models.

S. No. Hyper-Parameters Search Space Type

1 Hidden Layers [2,10] Continuous
2 Neurons [1,100] Continuous
3 Activation Function [Tanh and ReLU] Discrete with step = 1
4 Loss Function MSE, MAE Discrete with step = 1
5 Optimizer Adam, RMS prop Discrete with step = 1
6 Batch Size [32,64] Discrete with step = 1
7 Epochs [5,200] Continuous

Table 4. Results of the various metrics used for determining the efficacy of the various prediction models.

Methods MAE MSE RMSE R2 MAPE TT (s)

Ada-Boost 32.2941 2543.9772 50.1802 0.8889 11,588.1993 20.23
KNN 22.5399 2205.7787 46.6148 0.9035 14.6692 9.11

Light GBM 22.3603 1987.0647 44.2956 0.9135 106.8839 15.26
LASSO 30.9013 2367.2686 48.2781 0.8969 8707.4533 12.17

Table 5. Results of the various metrics used for determining the efficacy after the hyper-parameter
tuning of the various prediction models.

Methods MAE MSE RMSE R2 MAPE TT (s)

Ada-Boost-_tuned 22.9311 1983.8546 33.4521 0.8999 10,288.1924 17.29

KNN_tuned 19.5649 2014.4652 27.5847 0.9321 145.6382 11.77

LightGBM_tuned 15.5103 1658.2546 37.8796 0.9354 109.8219 14. 70

LASSO_tuned 18.9883 1774.8547 29.7772 0.9215 8103.4151 12.09
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The simple RNN model was initially constructed; however, it was quickly aban-
doned because of its low performance. The COVID-19 cases produced from the datasets
were then predicted using the LSTM-based prediction model. The LSTMs are made
up of cell states that actively forget or remember data. The forget gate, input, and
output gates were the three gates that worked in the cell state. As a result, we used
these gates to create three layers for the LSTM model: the LSTM layer, the Dropout
layer, and the dense layer. In comparison to a simple LSTM model, we implemented
two different phases here. For reproducibility, we started with a fixed random seed
and a rectified linear activation function (ReLU). We approximated the Keras metrics
for the AGLSTM using the ReLU and found the best results. In addition, we reduced
the vanishing gradient point inaccuracy. Additionally, the models RNN, LSTM and
AGLSTM with results are shown in Table 6. The loss and accuracy diagrams for RNN,
LSTM and AGLSTM are shown in Figure 15a–f, respectively.

Table 6. Results of the different metrics used for determining the efficacy of the various prediction
models.

Model Accuracy F-Measure Sensitivity Specificity AUC TT (s)

AGLSTM 99.81 ± 0.21 98 ± 1.04 99 ± 0.85 99 ± 0.72 98 ± 1.02 6.09
LSTM 97.97 ± 1.02 96.87 ± 1.82 97.47 ± 1.05 97.97 ± 1.02 96.97 ± 1.02 11.87
RNN 96.95 ± 1.75 96.95 ± 1.55 95.95 ± 1.75 96.95 ± 1.25 95.95 ± 1.84 18.11
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5. Discussion

According to the data obtained in the previous section, it became apparent that the
technique utilized in the proposed prediction model (AGLSTM) produced an accuracy of
99.81 percent. This result is superior to the other models; although the other models also
gave good accuracy, our proposed model outperformed not only in terms of accuracy but
also took minimum time to execute also with minimum network bandwidth. Moreover,
we have implemented LASSO, Light gradient boosting algorithm, KNN, and Ada-Boost
and scored the R2 value as 0.9215, 0.9354, 0.9321, and 0.8999, respectively. RNN and LSTM
resulted in sufficient accuracy for predicting the number of cases as 96.95 and 97.97 percent.
In addition, we discovered that the proposed AGLSTM model yielded superior results
with the presence of the CNN module before being added to the LSTM model, and then
the optimal parameters were identified through the fully connected layer. Also, due to the
presence of three types of memory in LSTM, the first being the Input Gate, which determines
which values from the input are used to update the memory state (take the input from
tanh and input weight and apply the RELU activation, then the output 0 or 1). Second, the
Forget Gate determines which data is discarded from the block. The third component is
the Output Gate, which determines the output based on the input and the block’s memory.
In order to improve the forecast results and what was concluded during the analysis, we
discovered through a literature review that the process of removing noise from any data
depends on time (time series), as many researchers did not pay particular attention to this
and ignored this step; consequently, some inaccurate results may be produced. This piqued
our interest and inspired us to propose a model which eliminate the confusion in the data,
resulting in more accurate experimental results.

6. Conclusions

As the global coronavirus pandemic enters its 3rd year, some local governments
have lifted prohibitions on public health. Currently, it is thought that the majority of the
population is immune to SARS-CoV-2 through vaccination or spontaneous infection, but
experience and statistics show that new variants will develop, causing local outbreaks and
having unforeseeable effects on preventative and treatment measures. There is currently
no cure for this disease, and the likelihood of accurately predicting its severity is minimal.
In order to make predictions concerning this disease, machine learning models have been
implemented. For this objective, we proposed a DL-based prediction model using time
series datasets for India. This study proposed an AGLSTM model based on a framework
where a network structure combines CNN and gradient LSTM with fully connected layers
for the prediction of COVID-19 deaths and cases. The model consists of two parts; firstly,
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CNN captures the features of the input data and combines them to form high-level data
features, which are then fed to the LSTM model. The resultant from the LSTM model then
passes through the fully connected layer, which helps in reducing the loss and adaptive
gradients are calculated for optimizing the parameters. Experimental results show that our
proposed AGLSTM model outperforms other models in terms of both accuracy and TT
(s) to execute the model. In terms of interpretability, multivariate influencing factors, and
gradient updates, the AGLSTM model still has space for improvement. For comparison,
the KNN, LASSO, LGBM, Ada-Boost, RNN and LSTM prediction models were assessed.
We used the Python programming language to create and construct models. The suggested
AGLSTM prediction model accurately predicted the number of confirmed COVID-19 cases
and deaths with an accuracy of 99.81%. This model also reduced the error value at the
point of vanishing gradient. Future plans include expanding this model to forecast the
amount of COVID-related cases and deaths in each country.

7. Limitations

In order to forecast the growth rate of COVID-19 cases and the rate at which patients
recover from the virus in different states, Machine Learning techniques are used to make
these forecasts. The study is limited to an analysis of the influence of COVID-19 on
the Indian dataset, and the model can be assessed against the datasets of other nations
in order to estimate the cured and death rates. The performance of the model can be
assessed using alternative feature sets. From the experimental data, it can be stated that
the proposed AGLSTM model attained the maximum accuracy, followed by RNN, LSTM
and fine-tuned ensemble models. Machine Learning technologies aid in predicting the
ongoing development of the COVID-19 pandemic by extracting information regarding
the virus’s epidemiological pattern. Future work can be expanded for patient-specific
tailored healthcare leveraging the Internet of Things and Machine Learning. In the future,
models can be created to forecast respiratory illness infection patterns, virus variations,
and peak levels in addition to cumulative reporting such as confirmed, new, and fatal
COVID-19 cases. With the combined efforts of society, science, and technology, the COVID-
19 outbreak is manageable if comprehensive and stringent disciplinary control measures
are implemented. The scope of the current investigation is confined to the contribution of
epidemiologic expertise to the evaluation of the analytical model’s performance; the same
may be considered when evaluating future studies.
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