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Abstract: Perception of internal and external cues is an important determinant of pacing behaviour,
but little is known about the capacity to attend to such cues as exercise intensity increases. This study
investigated whether changes in attentional focus and recognition memory correspond with selected
psychophysiological and physiological parameters during exhaustive cycling. Methods: Twenty male
participants performed two laboratory ramped cycling tests beginning at 50 W and increasing by
0.25 W/s until volitional exhaustion. Ratings of perceived exertion, heart rate and respiratory gas
exchange measures were recorded during the first test. During the second test, participants listened to
a list of spoken words presented through headphones at a rate of one word every 4 s. Afterwards, their
recognition memory for the word pool was measured. Results: Recognition memory performance
was found to have strong negative correlations with perceived exertion (p < 0.0001), percentage
of peak power output (p < 0.0001), percentage of heart rate reserve (p < 0.0001), and percentage
of peak oxygen uptake (p < 0.0001). Conclusions: The results show that, as the physiological and
psychophysiological stress of cycling intensified, recognition memory performance deteriorated. This
might be due to impairment of memory encoding of the spoken words as they were presented, or
because of a diversion of attention away from the headphones, perhaps towards internal physiological
sensations as interoceptive sources of attentional load increase with exercise intensity. Information
processing models of pacing and performance need to recognise that an athlete’s capacity to attend to
and process external information is not constant, but changes with exercise intensity.

Keywords: physical activity; cycling; performance; perceived exertion; cognition; recognition
memory

1. Introduction

Recent models have emphasised the role of perceived exertion in effort regulation and
performance [1–4]. Perceived exertion-derived modifications in pace are thought to arise
from complex interactions between conscious internal physiological sensations [5,6] and
external exteroceptive environmental information [7–9]. An assumption of these models is
that, in making pacing decisions, athletes have unlimited capacity to attend to both internal
sensations and external information, but this may not be the case [10–12].

According to the effort-related model, during conditions of low physical or psycholog-
ical effort, attention can be voluntarily and easily shifted between intrinsic and extrinsic
thoughts, as well as change between narrow and wide focus [13]. The model also predicts
that, as the physical or psychological effort demands of an object or task increase, an invol-
untary shift in cognitive attention towards that object or task occurs. This is consistent with
work in which greater associative thoughts occurred during high-intensity running [14].
During high-intensity physical activity, this means that attention might not be voluntar-
ily controlled but instead is compelled to focus narrowly on associated internal physical
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sensations [15]. Thus, it is the effort-related attention shift from dissociative to associative
thought that is the primary feature of this model. Associative thoughts, with respect to exer-
cise, have been described as those having an inward focus on bodily sensations in contrast
to dissociative thoughts having an outward focus on stimuli in the external world [16,17].

The effort-related model is supported by research in which exercise is used as the
physical stressor [15,18–22]. In two separate studies, associative thoughts were found to
be prevalent during high-intensity running [18,20]. Elite runners have also reported using
associative psychological strategies during competition that is also very high-intensity [13].
In two related studies, participants were asked to verbalize their thoughts during a handgrip
task to failure, as well as a cycling task performed at three different intensities (50%, 75%
and 90% of VO2MAX). In all instances, a shift from dissociative to associative thought was
found [16]. A similar shift in attention has also been found at three different intensities of
rowing performed at 30%, 50% and 70% of peak power output [15].

The effort-related model [13] provides a very useful explanation of why volitional
control and focus of thought changes during circumstances of physical or psychological
stress, but there are opportunities to strengthen its empirical basis. There is a need to
establish the continuous nature of changes in associative and dissociative thoughts because,
as highlighted above, they have only really been evidenced at discrete intervals [15]. The
second opportunity involves the use of rating scales, which in many of these studies were
presented to the participants by an experimenter to measure perceived exertion or focus of
attention. The consequence of using such scales, sometimes administered as frequently as
every minute [15], is that they interfere with the continuous stream of thought that would
have been uninterrupted had the scale not been presented. Put another way, presenting
participants with a rating scale explicitly directs their attention towards internal states
that otherwise may or may not have been attended to and thus introduces an attention-
response bias.

Perceived exertion scales, such as the Borg scale [23], require respondents to reflect
upon their internal sensations during physical effort and thus constitute a deliberate
redirection towards associative thought. This rating–attention interaction is unlikely to
be a problem during high-intensity exercise because, assuming the effort-related model
is correct, associative thoughts would be prevalent anyway. However, during low and
moderate levels of physical stress, the administration of a rating scale could confound
natural attention processes. The importance of passively measuring perceived exertion
was recognised in studies where the electromyography of frowning muscle activity during
exercise was found to correspond with RPE [24,25].

The purpose of this study was to measure continuous rather than discrete changes
in attention with increasing physical stress using passive measurement methods. We
predicted that the ability to attend to and remember external stimuli would concurrently
diminish with increases in exercise intensity and measures of internal physiological stress.

2. Materials and Methods
2.1. Participants

Twenty male participants were recruited whose mean (SD) age, stature and body mass
was 21.0 (0.9) years, 178.5 (6.4) cm and 72.9 (6.9) kg. All participants were healthy and
physically active: body mass index 22.9 (1.9) kg/m2; resting heart-rate 56.6 (5.1) b/min; and
peak oxygen uptake 44.1 (9.9) mL/kg/min. Competitive or habitual recreational cyclists
were excluded from the study.

2.2. Design

Participants performed two identical laboratory cycling tests designed to impose
gradually increasing levels of physiological stress. During the first test, selected physio-
logical and psychophysiological measures were recorded that were later correlated with
recognition memory performance measured during the second cycling test. Both cycling
tests were performed at the same time of day (±1 h) with a recovery interval between tests
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of 3–7 days. Participants were asked to refrain from eating or consuming caffeine for two
hours before each test, and were asked not to perform any other exercise until they had
completed both laboratory tests.

2.3. Cycling Ergometry Procedures

Each participant attended the laboratory twice, and, on each occasion, performed a
ramped cycling test until volitional exhaustion on a Lode Excalibur electromagnetically
braked cycle ergometer (Excalibur Sport, Lode B.V., Groningen, The Netherlands). Each
cycling test began with a resistance of 50 W that was increased by 0.25 W/s until the
participant could no longer continue. Participants were asked to maintain a pedalling
cadence of 60 rpm and were instructed to remain seated on the saddle for the duration of
the test. Saddle height was adjusted so that, with the crank position at bottom dead centre
and the foot secured to the pedal with toe clips, the knee joint was almost in full extension
(approximately 175–180◦) and the sole of the foot was parallel to the ground.

2.4. Physiological and Psychophysiological Measures

Physiological and psychophysiological measures were only recorded during the first
cycling test. This was necessary to minimise the interference to the memory recognition task,
described below, that could have been caused by having to wear quite a lot of monitoring
equipment, such as a facemask. Heart rate (HR), used as an indicator of cardiovascular
stress, was continuously recorded using a Polar s610 heart rate monitor via a wireless chest
strap (Polar Electro, Kempele, Finland), and peak HR was measured during the first cycling
test. Heart rate values were transformed into percentage of heart rate reserve (HRR) using
the Karvonen method [26].

Respiratory gas exchange measures, used as indicators of metabolic stress, were
measured breath-by-breath using an online gas analyser (Oxycon Pro, Jaeger, Höchberg,
Germany). Rate of oxygen uptake (VO2) and carbon dioxide elimination (VCO2) are
expressed as percentages of peak oxygen uptake (VO2PEAK) and peak carbon dioxide
elimination (VCO2PEAK), respectively. Respiratory exchange ratio (RER), calculated as
VCO2/VO2, was also recorded during each cycling test because it is a reliable indicator of
metabolic stress.

At 80 s intervals during the first cycling test, participants were asked to state their
perceived exertion using the 6–20 fifteen-point RPE scale [23]. Each participant was fa-
miliarised with the RPE scale, which was administered in accordance with published
standardised instructions [27]. It was necessary to only measure RPE during the first cy-
cling test because asking participants to give ratings would distract them from the memory
recognition task.

2.5. Recognition Memory Task

During the second laboratory attendance, approximately 3–7 days after the first test,
participants repeated the cycling test described in Section 2.3 above using the same protocol
and cycling ergometer settings. A recognition memory task was performed during the
second cycling test but, to avoid the rating–attention interaction (described in Section 1),
no physiological or psychophysiological measures were taken.

The recognition memory task involved participants listening to a verbal recording
of the Toronto word pool [28] through headphones while they performed their cycling
task. One word was presented every 4 s, which corresponded to a 1 W increase in cycling
ergometer flywheel resistance. Participants were instructed to listen to the words through
the headphones but, as with the first test, to cycle for as long as possible until they could no
longer continue. Participants were allowed to rest for 15 min after they had stopped cycling
and then, without prior notice, were asked to perform a recognition memory test of the
Toronto word pool. The recognition test involved participants listening to the previously
presented words mixed with the same number of new words that they had not previously
heard. The words in the recall test were presented over headphones in a random order and
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at a rate of one word every 4 s; the same rate as the initial presentation of the words during
the cycling test. Participants were asked to indicate on a printed list of the words whether
they had heard them during the cycling test or whether they were new items. Recognition
memory error was calculated as the percentage of all items presented that were correctly
identified. The percentage of new items that each participant believed were presented was
also calculated.

2.6. Data Analysis

For each individual participant, heart rate reserves and gas exchange data (VO2, VCO2
and RER) were taken from the first cycling test. For each of these measures, an average
was calculated for each RPE level. Thus, if a given participant remained at an RPE score of
13 for a period of, say, 35 s, the above physiological measures were averaged across that
period of 35 s. Recognition memory error during the second cycling test was calculated
for the power output range that corresponded to each RPE point recorded during the first
cycling test. Bland–Altman plots were used to check the similarity in performance between
the two cycling tests [29].

The resulting transformed data set meant that, for each individual participant, there
were multiple RPE segmented memory recognition scores and multiple corresponding data
points for power and various cardiorespiratory measures. This meant that the assump-
tion of independence, normally required for Pearson Product Moment Correlations, was
violated, and therefore we analysed our data using repeated measures correlations [30]
using the established RMCORR method in R [31]. Lower and upper 95% confidence
limits were calculated using the bootstrap technique with 1000 iterations. Repeated mea-
sures correlation plots were also produced in R to show the overall regression line and
colour-differentiated individual correlations.

3. Results
3.1. Cycling Test Performance

A Bland–Altman plot (Figure 1A) indicated all but one of the participants performed
the same in both ramped cycling tests. In accordance with the Bland and Altman proce-
dure [29], the data for this participant was removed from all further analyses. A revised
Bland–Altman plot (Figure 1B) indicated a high level of repeatability in cycling test perfor-
mance for the remaining 19 participants, which was corroborated by the high Pearson’s
Product Moment Correlation coefficient value, r(18) = 0.998, p < 0.0001, and the low regres-
sion equation intercept value, Test 2 Power = (0.9963 × Test 1 Power) − 5.374.

3.2. Test 1: RPE Correlations with Power Output and Physiological Measures

Strong positive repeated measures correlations were found between RPE and percent-
age of peak power output (rrm = −0.984, 95% CI [−0.980, −0.988], p < 0.0001), percentage
of heart rate reserve (rrm = −0.970, 95% CI [−0.963, −0.978], p < 0.0001), percentage of
VO2PEAK (rrm = −0.972, 95% CI [−0.966, −0.978], p < 0.0001), percentage of VCO2PEAK
(rrm = −0.969, 95% CI [−0.962, −0.975], p < 0.0001), ventilation rate (rrm = −0.720, 95%
CI [−0.668, −0.766], p < 0.001), and respiratory exchange ratio (rrm = −0.717, 95% CI
[−0.622, −0.815], p < 0.001). These strong results provide the confidence needed to go on
and measure correlations between test 1 physiological outcomes with test 2 memory recogni-
tion performance as determined from the power range equivalent to test 1 RPE increments.

3.3. Test 2: Recognition Memory Performance Associations with Test 1 Power Output-Matched
RPE and Physiological Measurements

The average recognition memory error (percentage of presented items not recognised)
for the whole cycling test was 65.4 (12.1)%. The average amount of previously unheard
items incorrectly identified as having been presented during the cycling test was 27 (17.5)%.
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Significant repeated measures correlations were found between recognition memory
performance and all physiological and psychological variables. Negative correlations were
found between recognition memory error and RPE (rrm = −0.713, 95% CI [−0.784, −0.636],
p < 0.001), percentage of peak power output (rrm = −0.710, 95% CI [−0.770, −0.628],
p < 0.001), percentage of heart rate reserve (rrm = −0.687, 95% CI [−0.756, −0.604], p < 0.001),
percentage of VO2PEAK (rrm = −0.708, 95% CI [−0.770, −0.637], p < 0.001), percentage of
VCO2PEAK (rrm = −0.707, 95% CI [−0.769, −0.625], p < 0.001), ventilation rate (rrm = −0.493,
95% CI [−0.563, −0.420], p < 0.001), and RER (rrm = −0.499, 95% CI [−0.611, −0.378],
p < 0.001).

The repeated measures correlation plot for recognition memory with RPR is presented
in Figure 2, for percentage of peak power output in Figure 3a, and for all ventilation
and gas exchange variables in Figure 3b–f. Note that interparticipant variability causes
these scatterplots to depict apparently weak associations between the variables. However,
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across participants, the consistency of the within-participant relationships between pairs of
variables is reflected in the highly significant results of the above statistical analyses.
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Figure 3. Repeated measures correlation plots between memory recognition and peak power output
(a), relative heart rate reserve (b), percent of oxygen uptake (c), percent of peak carbon dioxide
production (d), respiratory exchange ration (e), and ventilation rate (f). Each participant is indicated
with a different colour.

4. Discussion

Strong negative associations were found between exercise-induced physiological
changes and recognition memory. As the physiological and psychophysiological stress
of cycling intensified, recognition memory performance deteriorated. Consistent with
the effort-related model [13], this might have been due to an involuntary attentional shift
with increased cycling intensity away from the Toronto word pool listening task towards
associative internal physiological sensations. An alternative explanation, given the type of
recognition memory task used in our study, is that memory encoding of the spoken words
was affected by increasing exercise intensity.

4.1. An Inverse Relationship between Recognition Memory and Exercise Intensity

Most previous work on attentional processes during physical activity concerned itself
with effects on skilled tasks [32], expert performance [33], and automatic control [34].
Such studies have tended to show that attention focused on the mechanics of a task has
a facilitative performance effect for novices but a debilitative effect for experts, an effect
that is exacerbated by high-pressure situations [35]. Consistent with our findings, others
have shown that shifts from dissociative to associative attention are critically important to
performance of gross motor tasks such as running or cycling [13,15,36]. The relationship
that we observed between recognition memory performance and physiological stress can
be accounted for in several ways.

4.2. Physiological Stress and Attention: Selection, Capacity or Direction?

Classic theories of attention suggest that information is filtered out either early imme-
diately after sensory registration [37], or later after word recognition has occurred [38]. If
either of these explanations were true, we would perhaps expect to observe a threshold in
the cycling intensity spectrum where recognition memory performance suddenly deteri-
orates due to the sudden filtering out process. However, our observations, as illustrated
in Figures 2 and 3a–e, show a gradual rather than sudden diminishment in recognition
memory, and therefore, early filtering explanations seem unlikely. Our findings are more
characteristic of attenuated filtering [39], whereby the amount of information attended
to and encoded to memory gradually changes as other competing demands on attention
resources emerge. The notion of competing attentional demands is accounted for in load
theory of selective attention and cognitive control [40], which states that the level of per-
ceptual load in a task determines whether any additional stimuli are perceived [41,42].
Similar perceptual loading might be achieved through the interoceptive senses, such as
those generated during increasingly intense cycling, since attentional processes across the
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senses are highly linked [43] and possibly controlled by a single supramodal system [44–47].
In our study, it is likely that cycling-related increases in interoceptive load has led to fewer
resources being available to attend to the spoken words. Furthermore, auditory tasks are
performed less well if tactile attention is directed away from the source of the auditory
information [48]. Therefore, it may be that increasing exercise intensity draws attention
away from auditory channels towards internal physiological sensations.

4.3. Physiological Stress and Recognition Memory

The direction and/or the capacity of attention seems like one viable explanation for
our finding of exercise-related costs to recognition memory. However, an alternative,
perhaps complimentary, view is that memory processes themselves were directly affected
by exercise intensity. Although our measurements did not distinguish between attention
and memory, it seems quite likely that our results might have been due to an interaction
between the two. This interpretation is also consistent with the suggestion of a processing
gradient of memory encoding that becomes less intense as the focus of attention moves
further away from the memory target [49]. Interestingly, it is thought that working memory
is diminished when distractions interfere with the ability to control attention [50–52]. It
is quite conceivable that the physiological disruptions that were observed in our study
became gradually more distracting with cycling intensity that interfered with the memory
of Toronto Word Pool items.

In our experiment we measured long-term recognition memory performance: A
relatively large number of word items were played to participants and fifteen minutes
elapsed before we presented the recognition test. However, because the circumstances of
the recognition test were constant for all participants, giving them all ample recovery time,
we suggest that our results are more likely to be due to disruptions to the initial perception
and/or encoding phase, rather than recognition process. When objects are studied, such as
the Toronto Word Pool items presented in our study, incomplete and error-prone copies
of a lexical or semantic trace are stored [53]. The findings of our study perhaps indicate
that the completeness of such word traces is inversely associated with cycling intensity
and physiological stress. According to global-matching theories [54,55] less complete word
traces have low familiarity values, meaning that they are less likely to be matched during
any subsequent recognition trial. Other accounts of recognition memory exist and, as such,
the details underlying cognitive mechanisms remain controversial [53,56–58]. Nevertheless,
a degraded input will always lead to a subsequent recognition memory cost.

4.4. Limitations

Investigating memory recognition during exercise presented a number of methodolog-
ical challenges. Ideally, the memory recognition measurements using the Toronto Word
Pool auditory protocol would have been carried out concurrently with perceived exertion
and various cardiorespiratory measures during the same graded cycling test. However, to
do so would mean that both perceived exertion methods and cardiorespiratory measure-
ment methods would have interfered with the task of listening to the Toronto Word Pool
as presented to the participant through headphones. For example, perceived exertion is
measured by asking participants to look at and give a rating, which in our study we needed
to do frequently, at 80 s intervals, which corresponded to each power increase of 15 W. The
required high frequency of RPE measurements would therefore have diverted participants
attention away from the listening task, causing significant interference. Cardiorespiratory
measurements are relatively intrusive and require participants to wear a full face mask,
something which most participants will rarely, if ever, have encountered before. Breathing
through a face mask and wearing headphones can cause participants to become more aware
of their breathing, especially at lower-intensity exercise, thus also having the potential to
interfere with the auditory listening task.

For these reasons, a limitation and constraint of this study is that it was necessary to
conduct the Toronto Word Pool listening task during a separate graded cycling test to the



Int. J. Environ. Res. Public Health 2023, 20, 5905 9 of 11

perceived exertion and cardiorespiratory measures. Because of this, it was important to
verify a high level of test–retest reliability in cycling performance between the two tests. We
did this using Bland–Altman analysis, which did in fact cause us to exclude one participant
from the original sample because cycling performance was not sufficiently similar.

A further limitation of our study is that it was not possible to definitively resolve the
ambiguity of whether the observed intensity-related diminishment in memory recognition
was due to involuntary shifts in attention or deficits in memory encoding. Changes in
selective attention are conventionally detected using verbal shadowing techniques in
which participants are asked to verbalise words that are presented to them, for example,
either audibly through headphones or visually on a screen. It is inferred that when a
participant is unable to verbalise, this is a symptom of deficits in attentional capacity
or direction. However, it was not possible to use this technique in our study because
verbalisation interferes with breathing during cycling, and at higher intensities verbalisation
itself becomes very difficult. Thus, further ambiguity would exist, because any changes
in verbalisation could either be due to intensity-related breathing effects or attentional
effects. Developing an attention-monitoring protocol that is suitable for use during high-
intensity exercise is methodologically challenging, but is something that will need careful
consideration in future studies.

5. Conclusions

The results show that, as the physiological and psychophysiological stress of cycling
intensified, recognition memory performance deteriorated. This might be due to impair-
ment of memory encoding of the spoken words as they were presented, or because of a
diversion of attention away from the headphones, perhaps towards internal physiological
sensations, as interoceptive sources of attentional load increase with exercise intensity.

The capacity of an athlete to attend to various types of internal and external informa-
tion has not really been considered in most information-processing models of pacing a
performance. While the direct effect of attention shifts of pacing and performance were
not measured in this study, the results nevertheless show that, when they are very exerted,
athletes are more likely to miss external cues. Information processing models of pacing
and performance need to recognise that an athlete’s capacity to attend to and process
external information is not constant but changes with exercise intensity and, as previously
predicted, may not be under volitional control [11,13]. In view of our findings, more explicit
examination of attention capacity and effort regulation is needed.
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