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Abstract: Millimeter-wave (MMW) radar is essential in roadside traffic perception scenarios and
traffic safety control. For traffic risk assessment and early warning systems, MMW radar provides real-
time position and velocity measurements as a crucial source of dynamic risk information. However,
due to MMW radar’s measuring principle and hardware limitations, vehicle positioning errors are
unavoidable, potentially causing misperception of the vehicle motion and interaction behavior. This
paper analyzes the factors influencing the MMW radar positioning accuracy that are of major concern
in the application of transportation systems. An analysis of the radar measuring principle and the
distributions of the radar point cloud on the vehicle body under different scenarios are provided to
determine the causes of the positioning error. Qualitative analyses of the radar positioning accuracy
regarding radar installation height, radar sampling frequency, vehicle location, posture, and size are
performed. The analyses are verified through simulated experiments. Based on the results, a general
guideline for radar data processing in traffic risk assessment and early warning systems is proposed.

Keywords: intelligent transportation systems; traffic safety; risk warning; roadside perception;
millimeter-wave radar

1. Introduction

With the rapid development of cooperative vehicle-infrastructure systems (CVISs),
roadside perception systems play an essential role in modern transportation systems be-
cause they can provide a panoramic view of the road traffic and address inadequate vehicle
detection [1]. Roadside sensors, such as millimeter-wave (MMW) radars, cameras, and
lidars, can track multiple vehicles and perceive real-time traffic information, which can
support cooperative vehicle-infrastructure applications such as real-time traffic monitoring
and management [2,3], path planning [4], and speed control [5,6]. Compared with cameras
and lidars, millimeter-wave radars have advantages such as good environmental adaptabil-
ity, long detection ranges, and accurate velocity measurement [7], making them the most
widely used roadside sensors in roadside perception systems. Using short-wavelength
electromagnetic waves, MMW radar emits signals and captures those reflected by objects
in vehicles’ paths to determine the real-time position and velocity of vehicles on the roads.

For roadside MMW radar-based traffic risk assessment and early warning systems
(Figure 1), MMW radar can provide real-time position and velocity measurements as a
source of dynamic risk information. Consequently, a risk assessment algorithm integrates
such information with static risk information (high precision road maps) and medium-term
risk information (weather, pavement distress, etc.) to predict potential hazards, such as
collision. When a connected vehicle enters the communication range, it provides its location
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and identity information to a roadside unit (RSU) through a Vehicle-to-Everything (V2X)
network. The RSU performs vehicle matching and sends back the warning message, if
it exists.
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Figure 1. A typical roadside MMW radar-based traffic risk assessment and early warning system.

However, due to the measuring defects of MMW radars, challenges such as low
angular resolution and poor elevation measurement have limited their measurement
accuracy, leading to data quality issues such as vehicle positioning errors [8,9]. Positioning
errors regarding vehicles on the roads may lead to the misperception of the vehicle motion
and interaction behavior, potentially causing inaccurate decision making or fatal crashes in
transportation systems [10]. Therefore, it is necessary to investigate the factors influencing
MMW radar positioning accuracy to provide an insight into sensor development [11] and
data processing [12]. In this paper, we analyze the factors influencing the positioning
accuracy of roadside traffic MMW radar. We perform a qualitative analysis of the radar
positioning error regarding radar installation factors and vehicle target characteristics,
such as vehicle location, posture, and size. Subsequently, we verify the analysis through
simulated experiments. Based on the results, we propose a guideline for MMW radar data
processing in traffic risk assessment and early warning systems.

The remainder of the article is organized as follows: Section 2 reviews the related work
about traffic risk assessment and early warning systems, and radar perception accuracy
analysis. Section 3 analyzes the factors influencing the positioning accuracy based on
the detection principles of MMW radar. Section 4 presents the simulation results from
analyzing the influencing factors discussed in Section 3. Section 5 introduces a guideline
for radar data processing in traffic risk assessment and early warning systems. Section 6
summarizes the conclusions and limitations of the study, and future work.

2. Related work
2.1. Traffic Risk Assessment and Early Warning Systems

The task of traffic risk assessment and early warning systems is first to identify the
high-risk traffic environment or behavior and then send the warning message to the relevant
parties. For microscopic level risk assessment, multiple indicators have been proposed to
quantify the traffic risk. The longitudinal risk indicators include time to collision (TTC),
inverse time to collision (TTC-I), time headway (THW), deceleration rate to avoid crash
(DRAC), etc. [13–15]. Lateral risk indicators include time-to-lane crossing (TLC), variable
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rumble strip (VRBS), etc. [16,17]. To quantify the traffic risk in a spatial continuous manner,
the use of an artificial field has also been proposed. In [18], authors use safety field theory
to estimate crash risk and severity by modeling the safety-aware interactions of various
road users.

Whether it is for risk indicators or artificial field calculation, real-time risk assessment
relies heavily on vehicle location and speed detections. The positioning error may cause
misperception of the vehicle motion and interaction behavior, causing false alarms and
warning failure.

2.2. Radar Perception Accuracy Analysis

Most work on radar measurement accuracy analysis focuses on analyzing the signal
processing procedure. The theoretical limits of frequency-modulated continuous wave
(FMCW) ranging accuracy due to the tolerance of crystal oscillators were analyzed [19].
In [20], the impact of the frequency ramp nonlinearity, phase noise, and signal-to-noise
ratio (SNR) on FMCW radar accuracy were mathematically analyzed and validated with
real measurements. In [21], the authors compared the SNR characteristics of the angle
estimation error using Capon [22] and MUSIC [23] beamforming algorithms. A phasor
statistical analysis was applied in [24] to analyze the influence of Gaussian white noise,
static, and adjacent clutter. Another line of work focused on the measurement error caused
by the measurement environment. Atmospheric factors such as fog and rain have also
been investigated. In [25], the attenuation and group delay effects on MMW propagation
in clouds were theoretically analyzed and verified using artificial fog and a metal plate.
In [26], the propagation of MMW in the atmosphere was modeled and validated with
numerical experiments. The above-mentioned research used an ideal target (metal plate,
metal sphere, or corner reflector) to verify the influence of signal processing methods and
the measurement environment since they all considered the target as a single point in radar
measurement. Few studies have focused on the error characteristics regarding the features
of the detection target.

However, for applying roadside perception in transportation systems, MMW radar
locates vehicles based on the bounding box inferred from the radar point cloud rather than a
single radar radiation point. Lack of sufficient data points and side-only detections [27] can
cause erroneous estimation of the bounding box, leading to a larger positioning error than
that caused by electromagnetic wave propagation characteristics. Therefore, the vehicle
shape and posture and the point cloud distribution are also major factors contributing
to the positioning accuracy, as well as the above conventional factors. To the best of our
knowledge, no study has focused on the MMW radar positioning accuracy of vehicles on
the roads.

3. Factors Influencing Positioning Accuracy
3.1. Radar Detection Principles

Figure 2 shows a typical detection procedure for traffic MMW radar data to locate
the vehicles on the roads. It involves two modules: a signal processing module and a data
processing module. The signal processing module estimates the target range and angle by
processing the echo signal; the positioning error can arise from limitations of the signal
processing hardware and algorithms. The data processing module identifies and tracks
the positions of the target vehicles from the point cloud data; uneven distribution of the
measured point clouds can also cause positioning deviations on the target level. Specific
principles of the signal and data processing and the errors thus generated are discussed
as follows.
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Figure 2. MMW radar data processing procedure.

3.1.1. Signal Processing Module

MMW radar systems measure the object range and angle by extracting relevant
information from echo signals. The signal processing module eliminates unwanted signals
(such as clutter), processes or enhances the echo signal, then calculates the target range
and angle. Typically, an FMCW ranging method [28] uses a signal whose frequency varies
according to a periodic triangular wave, as shown in Figure 3. The target radial range R
can be found with

R =
c

8∆ f
fb++ f b−

2 f m
, (1)

where c denotes the speed of light, ∆ f the maximum frequency offset, fb+ and fb− the
positive and negative beat frequencies, respectively, and fm the frequency of the triangu-
lar wave.
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Int. J. Environ. Res. Public Health 2023, 20, 879 5 of 21

The ranging error ∆R is evaluated as

∆R =
c

8∆ f
∆ f bav

fm
, (2)

where ∆ f bav is the average beat frequency error and ∆ f bav
fm

the mean average beat frequency
error in the modulation period. It is shown that in FMCW ranging, the ranging error is
independent of the ranging distance or the operating frequency but inversely proportional
to the signal bandwidth ∆ f .

Regarding the angular measurement, a phase-based method uses the phase difference
between echo signals received by multiple antennas. As shown in Figure 4, the phase
difference ϕ can be calculated with

ϕ =
2π

λ
dsinθ, (3)

where λ is the radar wavelength, d the distance between two antennas, and θ the target
angle. The target angle can then be determined by comparing the phases of the two echo
signals with a phase meter

θ = sin−1 ϕλ

2πd
. (4)

For the angular measurement, the measurement error can be derived as

∆θ =
λ

2πdcosθ
∆ϕ. (5)

It is shown that the measuring accuracy can be improved by using a more accurate
phase meter (decreasing ∆ϕ) or increasing the distance between antennas (increasing d).
Moreover, the angular measurement is more accurate near the normal direction of the
antenna (higher cosθ).
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3.1.2. Data Processing Module

Once the target range and angle are acquired, the detection results must be transformed
into a lane coordinate system for further application in transportation systems. As shown
in Figure 5, the lane coordinate system is defined as xOy, with the driving direction defined
as the y-direction. The radar module is installed over the center of the lane with deviation
L in the x-direction and facing the driving direction with yaw angle ϕ and pitch angle
ψ. The polar position measurement data collected by the radar module (R, θ) can be
considered as a two-dimensional measurement in the radar coordinate system xrO2yr, with
the installation position as the coordinate origin O2 and the direction of the radar central
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beam as the yr-direction. The projection of the radar detection in the lane coordinate system
(x, y) is then calculated as {

x = Rcosψsin(ϕ + θ)− L
y = Rcosψcos(ϕ + θ)

, (6)

where radar installation parameters L, ϕ, and ψ are acquired through extrinsic calibration.
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In the process of coordinate transformation, the calibration error can also affect the
position output, as shown in{

∆x = − Rsinψsin(ϕ + θ)∆ψ + Rcosψcos(ϕ + θ)∆ϕ − ∆L
∆y = − Rsinψcos(ϕ + θ)∆ψ − Rcosψsin(ϕ + θ)∆ϕ

. (7)

When the target is further away (larger R), the installation posture estimation errors
∆ψ and ∆ϕ can cause a larger positioning error, while the translation estimation error ∆L
causes a systematic lateral positioning error.

Moreover, for the roadside perception scenario in transportation systems, MMW
radar modules usually have sufficient resolution to obtain several measured radar points
from the target vehicle, forming the point cloud data. In the data processing module, the
detected points are sampled and collected by a multitarget tracking algorithm to generate
the tracking results.

Specifically, as shown in Figure 6, a point cloud clustering algorithm divides the
detected points into individual zones to identify different targets. Traditionally, there
are grid-based clustering and density-based clustering. Grid-based clustering algorithms
first spatially divide the measurements into multiple grids, and then perform clustering
on the basis of the statistical value calculated at each grid. Typical algorithms include
WaveCluster, STING, and CLIQUE [29]. The grid-based approach can achieve a better
processing time, as the grid structure makes the original dense point cloud sparser. Density-
based algorithms include DBSCAN, OPTICS, DENCLUE [30], etc. They detect clusters
by finding the ‘density-reachable’ points, and thus are capable of producing clusters of
arbitrary shapes [31].

When the classifier identifies the selected point cloud as a pre-learned category (truck,
bus, or car), a bounding box is provided to estimate the area occupied by the target
vehicle. Consequently, the anchor point for each bounding box is selected to form an
association with historical trajectories. Finally, the position measurement is corrected by a
filter algorithm to acquire the optimal position estimation. Probabilistic and hierarchical
approaches are two of the main techniques used in data association [32]. Considering the
filtering algorithm, the probabilistic methods can be distributed between the Kalman filter
(KF) and the particle filter (PF). Popular techniques include the Probability Data Association
Filter (PDAF) [33], Global Nearest Neighbor (GNN) [34], Probability Hypothesis Density
(PHD) filter [35], etc. The hierarchical methods do not require the filter to provide state and
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covariance estimations as with KF or PF. Popular methods include Hungarian-algorithm-
based methods, LSTM-based methods, tracklet association, etc. [32].
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3.2. Analysis of the Factors Influencing Positioning Accuracy

In the roadside perception scenario for the MMW radars, a vehicle’s relative position
and posture change continuously under different traffic conditions and driving behaviors.
Moreover, due to insufficient measured points and side-only detections, the distribution of
the radar point cloud for the vehicle also changes continuously with the vehicle’s shape
and posture, causing positioning deviation at the target level. We propose to investigate
this phenomenon from the perspective of the vehicle location, posture, and size so that
insight can be provided for the higher-level application of radar data.

3.2.1. Radar Installation Height

The installation location of the radar module affects the aspect of the view from which
the vehicle target is observed. A higher installation position of the radar module can reduce
the probability of target occlusion [11]. However, as a radar module usually has a limited
elevation field of view (FOV) to monitor the same sections of road, the pitch angle of
the radar module is larger when it is installed at a higher location, as shown in Figure 7,
limiting its FOV on the road section. Regarding the positioning accuracy, when the radar
module is installed at a higher position, due to the limited FOV, the error characteristics
are scaled in the longitudinal direction, so that when the vehicle is driving away from the
radar module, the longitudinal measurement from a radar installed at a higher position
may deviate more from the ground truth, as the vehicle is closer to the edge of its FOV. This
phenomenon is further explained by analyzing the influence of vehicle location.
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3.2.2. Radar Sampling Frequency

The sampling frequency can affect the positioning accuracy through the tracking
algorithm. The tracking algorithm gives position estimation of the target vehicle (correction)
by combining the observation and the prediction. As shown in Figure 8, a higher sampling
frequency enables the tracking algorithm to predict the future position of the target vehicle
more accurately. Therefore, despite the range and angular resolution of the MMW radar
being the same, radar with a higher sampling frequency can produce more accurate vehicle
trajectories. However, when the movement of the vehicle is easy to model (constant velocity,
constant acceleration, etc.), radar with a higher sampling rate may have little advantage
since the future position can be well predicted by the tracking algorithm.



Int. J. Environ. Res. Public Health 2023, 20, 879 8 of 21

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 8 of 21 
 

 

(constant velocity, constant acceleration, etc.), radar with a higher sampling rate may have 
little advantage since the future position can be well predicted by the tracking algorithm.  

 
Figure 8. Variation in the tracking results regarding radar sampling frequency: (a) high sampling 
frequency; (b) low sampling frequency. 

3.2.3. Vehicle Location 
Radar detections of a target vehicle rely on the effective target scatterer, the part of 

the vehicle that can be illuminated by the radar beam. An MMW radar has a large moni-
toring range and is often installed at a certain pitch angle and far away from the target 
vehicle. Due to the influence of radar angle resolution and signal attenuation, as the vehi-
cle passes through the FOV of the radar, the effective vehicle scatterer varies as shown in 
Figure 9. Table 1 summarizes the variation in the effective scatterer and radar measuring 
points when the vehicle is at different longitudinal locations. As the vehicle drives further 
away, the number of measured radar points decreases, the radar cross-section (RCS) de-
creases, and the effective scatterer moves closer to the rear of the vehicle. When the dis-
tance between the target and radar exceeds a certain range, the effective scatterer is limited 
to the rear of the vehicle, causing a large positioning error in the longitudinal direction.  

Table 1. Effective scatterers and the number of measured points in different longitudinal locations. 

Vehicle Longitudinal Location Effective Scatterer Measured Points 
Partial entry Front Few 

Full entry Body and rear Many 
Driving away Rear Some 

The lateral location of the vehicle can also affect the distribution of the radar point 
cloud on the vehicle body, as shown in Figure 10. When the vehicle is at the right side of 
the radar central beam, most of the detection points are distributed on the left part of the 
vehicle body, causing the radar location measurement to drift to the left and vice versa.  

Figure 8. Variation in the tracking results regarding radar sampling frequency: (a) high sampling
frequency; (b) low sampling frequency.

3.2.3. Vehicle Location

Radar detections of a target vehicle rely on the effective target scatterer, the part of the
vehicle that can be illuminated by the radar beam. An MMW radar has a large monitoring
range and is often installed at a certain pitch angle and far away from the target vehicle.
Due to the influence of radar angle resolution and signal attenuation, as the vehicle passes
through the FOV of the radar, the effective vehicle scatterer varies as shown in Figure 9.
Table 1 summarizes the variation in the effective scatterer and radar measuring points when
the vehicle is at different longitudinal locations. As the vehicle drives further away, the
number of measured radar points decreases, the radar cross-section (RCS) decreases, and
the effective scatterer moves closer to the rear of the vehicle. When the distance between
the target and radar exceeds a certain range, the effective scatterer is limited to the rear of
the vehicle, causing a large positioning error in the longitudinal direction.
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Table 1. Effective scatterers and the number of measured points in different longitudinal locations.

Vehicle Longitudinal Location Effective Scatterer Measured Points

Partial entry Front Few
Full entry Body and rear Many

Driving away Rear Some

The lateral location of the vehicle can also affect the distribution of the radar point
cloud on the vehicle body, as shown in Figure 10. When the vehicle is at the right side of
the radar central beam, most of the detection points are distributed on the left part of the
vehicle body, causing the radar location measurement to drift to the left and vice versa.
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As shown in Figure 11, different radar installation schemes may similarly affect the
vehicle positioning accuracy. When the radar is mounted on the center of the gantry, as
shown in Figure 11a, the characteristics of the longitudinal and lateral radar measurements
are as discussed previously. When the radar is installed on one side of the road, as shown
in Figure 11b,c, the lateral positioning of the vehicles on the other side of the road may be
subject to larger errors since the vehicle locations deviate more from the radar central beam.
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3.2.4. Vehicle Posture

As the relative posture of the vehicle in relation to the radar module changes under
different driving scenarios and radar installation conditions, the shape of the effective
scatterer and distribution of the point cloud on the vehicle body change accordingly, as
shown in Figure 12. When the vehicle faces the radar module, most of the measured points
are scattered at the front. As the vehicle gradually turns to the right, the measured points
gradually drift to the left side of the vehicle. When the side of the vehicle is facing the
radar module, the longitudinal length of the vehicle in world coordinates drops drastically,
leading to significantly different error characteristics.
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3.2.5. Vehicle Size

Different types of vehicles have different RCS features. The total RCS of a target can
be calculated as the vector sum of each scatterer (such as a sphere, cylinder, or plane), as
shown in

σ =

∣∣∣∣∣∑k

√
σke

j4πdk
λ

∣∣∣∣∣
2

, (8)

where σ denotes the total RCS, σk the RCS of the kth scatterer, and dk the distance between the
kth scatterer and the radar antenna. Therefore, the RCS of larger vehicles generally exceeds
that of smaller vehicles, leading to more measured points scattered over a larger area.

Typically, we simplify the vehicle model as a rectangle with the parameters length,
width, and height, as shown in Figure 13. Figure 14 depicts the influence of vehicle
size on the point cloud distribution. As shown in Figure 14a, when the vehicle body
partially enters or leaves the radar FOV as described in Section 3.2.3, the effective
scatterer is located at the front and rear of the vehicle body. With a longer vehicle,
a larger positioning error may be observed in the longitudinal direction. Similarly,
Figure 14b shows that wider vehicles may generate larger lateral positioning errors.
The vehicle height can block the radar beam from reaching the top surface, limiting
the measured points to the vehicle’s rear, leading to longitudinal positioning error, as
shown in Figure 14c.
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4. Simulation Results

As the ground truth of a target vehicle location can be difficult to obtain, we conducted
simulated experiments to analyze the radar positioning accuracy based on radar installation
height, vehicle location, posture, and size. Leveraging MATLAB’s Automated Driving
Toolbox and Radar Toolbox, we created a roadside perception scenario and generated
synthetic radar detections using a statistical radar model. The basic parameters of the
simulated MMW radar are shown in Table 2. The installation position is defined by world
coordinates (x, y, z). The installation pose is defined by angles in the order of (yaw, pitch,
roll). The simulation is performed with a fixed step time of 0.01 s.

We set up a six-lane road section with a 5 m high gantry and installed the radar module
at the center of the gantry, facing the x-direction with a 5◦ pitch angle downward. The radar
FOV is shown in Figure 15a, where the orange rectangle represents the MMW radar, the
blue rectangle the target vehicle, and the red conical area the radar FOV. The positioning
error (∆x, ∆y) is defined as the deviation in the radar location measurement from the
vehicle center in the world coordinate system, as shown in Figure 15b. Only one vehicle is
present at each experiment to avoid target occlusion.
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Table 2. Parameters of the simulated MMW radar.

Parameters Value Unit

Center frequency 77 × 109 Hz
Range limits 150 m

Azimuthal field of view 20 degree
Elevation field of view 5 degree

Range rate limits 100 m/s
Azimuth resolution 4 degree

Range resolution 2.5 m
Range rate resolution 0.5 m/s

Update rate 100 Hz
Installation position (0, 0, 5) m

Installation pose (0, 5, 0) degree
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4.1. Influence of Radar Installation Height

To evaluate the influence of radar installation height, we set up the following radar
installation scenario: (1) height: 5 m, pitch angle: 5◦; (2) height: 8 m, pitch angle: 8.75◦;
(3) height: 10 m, pitch angle: 12.43◦, so that the FOVs of different installation schemes all
began at approximately the same position, as shown in Figure 16. The radar module was
installed at the center of the road with zero roll angle and zero yaw angle.
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Figure 16. Radar FOV based on installation height.

The simulation results are shown in Figure 16. As shown in Figure 17a, the x-direction
positioning error characteristics under different installation heights are approximately the
same, so that as the vehicle passes through, the positioning is first positively biased and then
negatively biased. However, as the FOV decreases with the increase in installation height,
the error characteristics are scaled in the x-direction, so that when the target vehicle is at
the same location, the x-direction measurement from the radar installed at a higher location
may deviate more from the ground truth. The error characteristics in the y-direction are
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not significantly influenced by the radar installation height, as shown in Figure 17b. Thus,
although a higher installation of the radar module can lead to a reduced probability of
target occlusion, the loss in FOV and positioning accuracy should also be considered in
deploying roadside sensors.
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Figure 17. Radar positioning error based on radar installation height; x and y denote the vehicle
positions in the world coordinate system, and ∆x and ∆y denote radar positioning errors in the x-
and y-directions, respectively: (a) ∆x − x; (b) y − ∆y.

4.2. Influence of Radar Sampling Frequency

To evaluate the influence of radar sampling frequency, the target vehicle was set
to run from (0,0) to (110,0) at a constant velocity of 20 m/s. A simple object tracking
algorithm based on Kalman filter was used to acquire the vehicle trajectory. We observed
the y-direction positioning error to evaluate the influence of the sampling frequency on the
tracking algorithm and compared it against the x-direction positioning error characteristic.
The sampling frequency was set to 25 Hz, 50 Hz, and 100 Hz as factors of the base simulation
frequency. As shown in Figure 18a, the x-direction positioning error is not significantly
influenced by the radar sampling frequency, while the y-direction positioning error is
reduced as the sampling frequency increases, as shown in Figure 18b. This shows that a
higher sampling frequency of the MMW radar can lead to more accurate tracking results,
but the improvement is insignificant against the error caused by vehicle shape since the
lateral positioning in the scenario is not influenced by the vehicle shape while the vehicle
is set to run on the road center line, and the longitudinal positioning in the experiment is
affected by the length and height, as will be shown in the following experiment.
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4.3. Influence of Vehicle Location

To analyze the influence of vehicle position, we divided the road into several sections.
As shown in Figure 19, the distribution of the radar measurements varies considerably
when the vehicle is located on different sections of the road. Figure 20 shows the distribution
of the radar positioning error based on the vehicle location in the x- or y-direction. As
shown in Figure 20a, as the vehicle passes through the radar FOV, the radar positioning
in the x-direction is first slightly positively biased and then negatively biased. This is due
to the distribution of the radar point cloud gradually moving backward over the vehicle
body, as described in Section 3.2.3. Figure 20b shows that the y-direction deviation is
larger when the vehicle has not fully entered the FOV or is driving away from the FOV. As
shown in Figure 20c, the lateral position of the vehicle may not influence the longitudinal
positioning accuracy, and when observed on the lane level, the radar positioning generally
underestimates the vehicle distance in the x-direction. Figure 20d shows that when the
vehicle is located on the right side of the radar central beam, the positioning results
are biased to the left and vice versa. The height and width of the vehicle caused this
phenomenon by blocking the radar signal from reaching the other side of the vehicle,
resulting in side-only detections.
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4.4. Influence of Vehicle Posture

To evaluate the influence of the vehicle posture, we fixed the location of the vehicle to
(50, 0), that is, 50 m from the radar installation position on the road center line, and rotated
the vehicle around the center of the rear axle, as shown in Figure 16b. The results are shown
in Figure 21. Figure 21a shows that fewer range estimations may appear when the yaw
angle approaches ±90◦ and −180◦. Figure 21b shows that as the vehicle center shifts to
the right or left while the vehicle rotates, the radar positioning may drift in the opposite
direction, as described in Figure 20d. Thus, a larger positioning error may appear when the
vehicle engages in lane changing or other behaviors that may cause large variations in its
yaw angle. Conversely, the radar positioning is more accurate when the vehicle runs in a
straight line.

4.5. Influence of Vehicle Size

To evaluate the influence of the vehicle size, we compared the error characteristics of
vehicles with different lengths, widths, and heights. We fixed the vehicle location to (50, 0)
and set the vehicle yaw angle to 0. The control group vehicle was of size 1.8 × 4.7 × 1.4;
that is, 1.8 m in width, 4.7 m in length, and 1.4 m in height. Figures 22–24 show the
experimental results, where the red lines represent the characteristics of the larger vehicle
(in length, width, or height), the blue lines represent the vehicle of controlled size, and the
green lines represent the smaller vehicle.
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The influence of vehicle length was evaluated at 3.0, 4.7, and 6.0 m. As shown
in Figure 22a, the x-direction deviation due to the vehicle position increases with the
vehicle length. Thus, the roadside detection results should be corrected with the target
vehicle parameters to achieve greater positioning accuracy. In this case, the radar x-
direction measurement should be adjusted with the vehicle length according to the error
characteristics presented in Figure 22a. The lateral positioning error characteristics based
on the lateral vehicle location and the longitudinal positioning error characteristics based
on the vehicle yaw angle are not significantly influenced by the change in vehicle length, as
shown in Figure 22b,c. A larger lateral positioning error at a ±90◦ yaw angle is observed
for a longer vehicle, as shown in Figure 22d.

The influence of vehicle width was evaluated at 1.3, 1.8, and 2.3 m. As shown in
Figure 23a,d, the y-direction positioning error due to the influence of the vehicle position
and yaw angle is larger, while the x-direction error characteristics broadly remain constant,
as shown in Figure 23a,c. Thus, the lateral positioning of the target should be adjusted
based on its width information, and greater adjustments should be made for wider vehicles,
such as trucks and buses.

The influence of vehicle height was evaluated at 0.5, 1.4, and 3.0 m. As shown in
Figure 24a, radar may underestimate the target distance in the longitudinal direction
when the vehicle is close to the radar module, as taller vehicles can block the radar beam
from reaching the front part of the vehicle. Therefore, when the radar targets include
vehicles of significantly different heights, such as double-decker buses or cargo trucks, the
longitudinal positioning should also be adjusted based on the vehicle height. Moreover,
when the vehicle is taller, reduced overall longitudinal positioning based on the vehicle
yaw angle is observed, as shown in Figure 24c. The lateral positioning error characteristics
are not significantly influenced by vehicle height, as shown in Figure 24b,d.
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5. Guidelines for MMW Radar Data Processing

Based on the experiment results, we propose the following guidelines for MMW radar
data processing in risk assessment and early warning systems.

5.1. Data Filtering Based on Vehicle Location

As shown in the previous results, the positioning error is greater when the vehicle has
not fully entered the FOV or is driving away from the FOV. Therefore, the original FOV
can be divided into several zones, as shown in Figure 25. Position measurements located
in zones found with a large positioning error can be filtered out to eliminate unnecessary
calculations and interference to other data sources, but zone occupancy must be retained
for safety concerns. For the calculation of the risk indicators, the worst possible scenario
within the zone must be assumed.
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5.2. Data Filtering Based on Vehicle Posture

Similarly, greater positioning error is found when the vehicle yaw angle is near ±90◦

and 180◦. Therefore, a partitioning on the vehicle yaw angle can be implemented to filter
out unreliable position measurements, as shown in Figure 26.
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5.3. Measurement Adjustment Based on Vehicle Size

As shown in Figures 22–24, radar positioning accuracy is significantly influenced by
the size of the vehicle. For longitudinal position measurement, when the vehicle is closer to
the radar module, the measurement should be compensated with vehicle height. A positive
adjustment should be made for vehicles with greater height, while a negative adjustment
should be made for vehicles with lesser height. When the vehicle is farther away, a positive
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adjustment in proportion to the vehicle length should be made for longitudinal position
measurement. For lateral position measurement, a negative adjustment in proportion to
the vehicle width should be made.

6. Conclusions

In this paper, we analyze the influence of radar installation height, vehicle location,
posture, and size on the positioning accuracy of MMW radar. In the numerical simulation,
we set up a roadside perception scenario where the MMW radar is mounted at the center
of a gantry, overlooking the road traffic. The following conclusions are drawn from the
experiment results.

• Influence of radar installation height: When the radar is installed at a higher position
with a greater pitch angle to monitor the same section of road, a larger longitudinal
positioning error is observed when the vehicle is driving away from the radar FOV.

• Influence of radar sampling frequency: Greater tracking error on the y-direction is
observed when the sampling frequency is lower. The tracking error on the x-direction
is not significantly influenced by the sampling frequency.

• Influence of vehicle location: When the vehicle passes through the radar FOV, the
radar positioning in the longitudinal direction is first positively and then negatively
biased. In the lateral positioning, the radar positioning biases to the left when the
vehicle locates on the right side of the radar central beam, and vice versa.

• Influence of vehicle posture: A large positioning deviation is observed when the
vehicle yaw angle is at ±90◦.

• Influence of vehicle size: When the vehicle is closer to the radar module, the vehicle
height can severely affect longitudinal positioning. The vehicle length causes longitu-
dinal positioning errors when the vehicle is further from the radar module. A greater
lateral positioning error is observed when the vehicle is wider.

Based on the above conclusions, a general guideline for MMW radar data processing
in risk assessment and early warning systems is proposed to acquire more accurate risk
information. In the future, real-world experiments can be conducted to verify the simu-
lation results and the effectiveness of the proposed guidelines. Plenty of work still needs
to be carried out to tackle the high environment noises, target occlusions, and efficient
sensor calibration.
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