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Abstract: In this work, a cost-effective chitin-based magnesium oxide (CHt@MgO) biocomposite
with excellent anionic methyl orange (MO) dye removal efficiency from water was developed. The
CHt@MgO biocomposite was characterized by FT-IR, XRD, SEM-EDX, and TGA/DTG. Results
proved the successful synthesis of CHt@MgO biocomposite. Adsorption of MO on the CHt@MgO
biocomposite was optimized by varying experimental conditions such as pH, amount of adsorbent
(m), contact time (t), temperature (T), and initial MO concentration (Co). The optimized parameters
for MO removal by CHt@MgO biocomposite were as follows: pH, 6; m, 2 g/L; t, 120 min. Two
common isotherm models (Langmuir and Freundlich) and three kinetic models (pseudo-first-order
(PFO), pseudo-second-order (PSO), and intraparticle diffusion (IPD)) were tested for experimental
data fitting. Results showed that Langmuir and PFO were the most suitable to respectively describe
equilibrium and kinetic results on the adsorption of MO adsorption on CHt@MgO biocomposite. The
maximum Langmuir monolayer adsorption capacity (qm) on CHt@MgO biocomposite toward MO
dye was 252 mg/g at 60 ◦C. The reusability tests revealed that CHt@MgO biocomposite possessed
high (90.7%) removal efficiency after the fifth regeneration cycle.

Keywords: sea food waste; waste management; anionic dye; adsorption; regeneration

1. Introduction

Effluents from the textile, pharmaceutical, and paper and pulp industries are the
major carriers of dyes to the environment. These dyes create an overall imbalance in the
aquatic ecosystem by inhibiting sunlight penetration [1]. Annually, more than 7000 tons
of synthetic dyes are being manufactured [2], and it has been estimated that ~100 tons of
untreated color-containing effluents are discharged into water bodies [3]. Methyl orange
(MO, C14H14N3NaO3S) is an anionic dye with an azo (−N=N−) group. It is widely used
as a coloring agent for several industrial applications, an acid–base indicator for titrations,
and a biological dye [2]. The presence of the −N=N− group and benzene rings in MO
molecule and its low biodegradability make its presence in aquatic systems an issue of
concern for the environmental and human health [3]. Therefore, it is necessary to remove
MO from wastewater before its discharge to water reservoirs.
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Photocatalytic degradation [4], advanced oxidation technology [5], membrane sep-
aration [6], reverse osmosis [7], and adsorption [8] are among the most commonly used
processes for the removal of anionic dyes from wastewater. Among them, adsorption is
advantageous because it is a highly efficient cost-effective process, with operational ease
and the possibility of after-use adsorbent regeneration and reutilization. Different novel
adsorbents such as activated carbon polyaniline@BiVO4 [9], MOF-235 [10], carbon-coated
monolith [11], and acid-modified carbon-coated monolith [12] have been successfully used
for the removal of MO dye. However, as stated above, the application feasibility of an ad-
sorption process primarily depends on the operational costs and the removal performance
of adsorbents used. Therefore, researchers are looking for adsorbents that are economically
feasible, ecological safe, insensitive to toxic substances, and have high removal efficiency.

Chitin (CHt, poly(β-(1–4)-N-acetyl-D-glucosamine)), which is the second most abun-
dant biopolymer on Earth (after cellulose), is mainly found in crustacean shells, insects, mi-
croorganisms such as algae, and yeasts [13]. Shrimp shell is composed of Cht (20–30%), min-
erals (30–50%), and protein (30–40%) [14]. At global scale, 6–8 million tons/annum of crab,
shrimp, and lobster shell waste is generated from the seafood processing industries [15],
which creates a major disposal issue in coastal areas. CHt is a nontoxic, biodegradable,
biocompatible biomaterial with intrinsic rich N- and O-containing functional groups [16].
These properties make it a highly efficient adsorbent for water remediation applications.
Acid Blue 25 dye was removed from aqueous solution using Penaeus indicus shrimp [17].
Direct Red 80 and Direct Blue 71 dyes were removed from water using nontreated shrimp
shells [18]. He et al. [19] synthesized waste shrimp shell hydrochar for the removal of MO
dye from an aqueous solution with a maximum adsorption capacity of 755 mg/g at an
optimal pH of 4.0.

CHt is insoluble in most solvents owing to its dense structure; therefore, its chemical
modification is feasible. Combining CHt with different biopolymers, organics and inor-
ganics, and carbon-based materials may enhance its adsorption performance toward dyes.
Therefore, different CHt-based adsorbents have been developed for the removal of dyes
from contaminated waters such as CHt hydrogel (CG3) [20], CHt beads [21], CHt/lignin [22],
magnetic graphene oxide/CHt [23], chitin-cl-poly(itaconic acid-co-acrylamide)/zirconium
tungstate nanocomposite [24], nitrogen-enriched carbon nanofiber aerogels [25], and CHt/CS-
g-PAM [26].

Magnesium oxide (MgO) is commonly used as an additive in refractory products and
paints, as well as in toxic waste remediation, in catalysis, and as a bactericide [27,28]. Due
to its chemical stability and nontoxicity, it is a promising material in water purification [29].
Hu et al. [30] developed MgO nanoplates for Congo red and reactive brilliant red X3B dye
adsorption, with maximum adsorption capacities of 303.0 and 277.8 mg/g, respectively.
In two separate studies on the use of nanostructured MgO as adsorbent, the observed
adsorption capacity of reactive blue 19 dye was 250 mg/g [31], while 166.7 and 123.5 mg/g
were the reported capacities for the adsorption of reactive blue 19 and reactive red198,
respectively [32]. Therefore, it is expected that composting of CHt with MgO might enhance
its anionic dye adsorption potential.

In the described context, the main objectives of this study were to extract CHt from
waste shrimp shells through the two-step process of demineralization and deproteinization,
and then composting it with MgO to develop CHt@MgO with high adsorption capac-
ity for the removal of MO dye from aqueous solutions. The CHt@MgO composite was
characterized through FT-IR, XRD, SEM-EDX, and TGA/DTG analyses. The effects of
experimental parameters such as adsorbent mass, solution pH, contact time, temperature,
and initial MO concentration on the adsorption process were investigated through batch
mode experiments. Additionally, the adsorption kinetics, isotherms, and thermodynamics
of the adsorption of MO onto CHt@MgO were assessed.
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2. Experimental
2.1. Chemicals and Reagents

Shrimp shells were collected from a local market in Casablanca (Morocco). Sodium
hydroxide (NaOH, Sigma-Aldrich, St. Louis, MO, USA, 99.8%), hydrochloric acid (HCl,
Sigma-Aldrich, 37%), 1,4-dioxane extra pure (Sigma-Aldrich, 99.8%), glacial acetic acid
(Sigma-Aldrich, 99.7%), magnesium oxide (MgO, Sigma-Aldrich, 99.99%), and methyl
orange (MO, Sigma-Aldrich, 99%) (MO structure is shown in Scheme 1) were used during
the study.

Int. J. Environ. Res. Public Health 2022, 19, x  3 of 18 
 

 

batch mode experiments. Additionally, the adsorption kinetics, isotherms, and thermo-
dynamics of the adsorption of MO onto CHt@MgO were assessed. 

2. Experimental 
2.1. Chemicals and Reagents 

Shrimp shells were collected from a local market in Casablanca (Morocco). Sodium 
hydroxide (NaOH, Sigma-Aldrich, St. Louis, MO, USA, 99.8%), hydrochloric acid (HCl, 
Sigma-Aldrich, 37%), 1,4-dioxane extra pure (Sigma-Aldrich, 99.8%), glacial acetic acid 
(Sigma-Aldrich, 99.7%), magnesium oxide (MgO, Sigma-Aldrich, 99.99%), and methyl 
orange (MO, Sigma-Aldrich, 99%) (MO structure is shown in Scheme 1) were used dur-
ing the study. 

 
Scheme 1. Chemical structure of methyl orange. 

2.2. Preparation of CHt@MgO 
2.2.1. Extraction of Chitin 

Chitin from shrimp shells was extracted following a previously reported two-step 
method involving demineralization and deproteinization steps [1,13] (Scheme 2). Shrimp 
shells were washed and dried. Twenty of the dried shrimp shells were crushed to pow-
der. Then, 20 g of shrimp shell powder was demineralized at room temperature using 1 
N HCl solution (w/v 1:20). The mixture was mechanically stirred for 6 h at 25 °C. The 
obtained product was washed with deionized (D.I) water to neutral pH and then dried 
for 24 h at 60 °C. Thereafter, deproteinization of demineralized powder was carried out 
through refluxing in 5% NaOH solution (w/v 1:20) at 80 °C under continuous stirring for 
10 h. The CHt was separated by filtration, washed with DI water to neutral pH, and dried 
at 60 °C for 24 h. 

S

O

O
O

N
NN

S

O

O
O

HN
NN

S

O

O
O

N
NHN

Scheme 1. Chemical structure of methyl orange.

2.2. Preparation of CHt@MgO
2.2.1. Extraction of Chitin

Chitin from shrimp shells was extracted following a previously reported two-step
method involving demineralization and deproteinization steps [1,13] (Scheme 2). Shrimp
shells were washed and dried. Twenty of the dried shrimp shells were crushed to powder.
Then, 20 g of shrimp shell powder was demineralized at room temperature using 1 N HCl
solution (w/v 1:20). The mixture was mechanically stirred for 6 h at 25 ◦C. The obtained
product was washed with deionized (D.I) water to neutral pH and then dried for 24 h
at 60 ◦C. Thereafter, deproteinization of demineralized powder was carried out through
refluxing in 5% NaOH solution (w/v 1:20) at 80 ◦C under continuous stirring for 10 h. The
CHt was separated by filtration, washed with DI water to neutral pH, and dried at 60 ◦C
for 24 h.

2.2.2. Synthesis of CHt@MgO

The extracted CHt powder (3.5 g) was ultrasonically dispersed in 30 mL of 1,4-dioxane
solution. Simultaneously, 1 g of MgO was ultrasonically dispersed in 20 mL of 1,4-dioxane
solution. A composite was prepared by mixing CHt and MgO dispersions under continuous
stirring at 60 ◦C for 30 min (Scheme 2). The mixture was then casted on siliconized paper
and dried in an oven at 50 ◦C for 3 h to obtain CHt@MgO.

2.3. Characterization of CHt@MgO

X-ray diffraction (XRD) analysis was carried out using a D8 diffractometer from Bruker
(Billerica, Massachusetts, USA) operating at 45 kV/100 mA, using CuKα radiation with a
Ni filter. The surface morphology of the samples was analyzed using a scanning electron
microscope (SEM) Philips XL 30 ESEM (Acc spot Magn 20.00 kV). Fourier-transform
infrared (FT-IR) spectroscopy (Thermo Fisher Scientific (Waltham, MA, USA) Spectrometer)
was used to detect active functional groups over composite surfaces. Thermogravimetric
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analysis (TGA) was performed using a Discovery TGA from TA instruments (Waters
Corporation, Milford, MA, USA) at a heating rate of 10 ◦C/min under N2 atmosphere.
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2.4. MO Adsorption and Regeneration Studies

Adsorption experiments of MO on CHt@MgO biocomposites were performed in
batch mode. Erlenmeyer flasks (150 mL), each containing 100 mL of MO solution with
an initial concentration 100 mg/L at pH 6 was equilibrated with 0.2 g of CHt@MgO at
300 rpm stirring speed. The adsorption kinetics of MO was studied at varied MO initial
concentrations (100, 200, and 300 mg/L). Adsorption isotherms were studied by varying
MO initial concentrations between 25 and 400 mg/L at varied temperatures (25, 40, and
60 ◦C). Furthermore, the effect of temperature on MO adsorption was investigated at 25,
40, and 60 ◦C under the following experimental conditions: pH 6, 50 mL of MO aqueous
solution with an initial MO concentration of 100 mg/L, and 2 g/L of CHt@MgO. The
adsorbed concentration of MO at equilibrium (qe, mg/g) and at time t (qt, mg/g), and the
percentage adsorption were estimated using the following equations:

qe = (Co − Ce)×
V
m

, (1)
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qt = (Co − Ct)×
V
m

, (2)

%adsorption =
Co − Ce

Co
× 100, (3)

where m (g) is the mass of CHt@MgO, V (L) is the volume of solution, and Co (mg/L), Ce
(mg/L), and Ct (mg/L) represent the initial, equilibrium, and time t concentrations of MO
dye in aqueous solution, respectively.

The regeneration of CHt@MgO and its subsequent reutilization for MO adsorption
were also studied in batch mode. CHt@MgO (0.1 g) was saturated for 1 h with 50 mL
of 100 mg/L MO solution. Thereafter, the MO-saturated CHt@MgO was separated, and
then rinsed several times with deionized (D.I) water to remove unadsorbed MO traces.
The MO-saturated CHt@MgO was treated with 0.5 M NaOH solution to desorb MO. The
process was repeated for seven consecutive regeneration cycles.

3. Results and Discussion
3.1. Characterization of CHt@MgO

Functional groups present on CHt, CHt@MgO, and MgO samples were determined
by FT-IR, and the results are illustrated in Figure 1a. In the FT-IR spectrum of CHt, the
broad peaks between 3256 and 3437 cm−1 were due to O–H stretching and N–H groups
on the surface. The peaks at 2962, 1649, 1590, 1414, and 1374 cm−1 were attributed to
C–H sp3 vibration, stretching vibrations of C=O (amide I), bending vibrations of amide II
(N–H) [19], twisting vibrational stretch of CH2, and C–N stretching, respectively [33]. The
peaks in the range from 1154 to 1032 cm−1 were due to the stretching vibration of C–O–C
and C-O bonds in the structure [34]. A peak of –CH3 in acrylamide groups was observed at
885 cm−1 [35]. The characteristic peak of β-1,4 glycosidic, and OH out-of-plane binding
were present at 933 and 670 cm−1, respectively [19]. All these peaks confirmed successful
extraction of CHt from shrimp shells. In the FT-IR spectrum of MgO, the major peaks at
around 594, 557, 565, and 544 cm−1 indicated the Mg–O vibrations of MgO [36]. Peaks
related to the –OH groups of adsorbed water from the atmosphere on the surface of MgO
were observed at 3699 cm−1 and 1414 cm−1 [37]. A peak at 855 cm−1 was characteristic of
cubic MgO [37]. The FT-IR spectrum of CHt@MgO composite (Figure 1a) exhibited peaks
at 3698 and 3310 cm−1 attributed to the stretching vibration mode of –OH and –NH groups,
respectively. The peaks of C–H symmetric and asymmetric stretching vibration appeared
at 2928 and 2855 cm−1, respectively. The peaks at 1644, 1561, 1414, and 1025–1059 cm−1

were due to the C=O amide stretching vibration, –NH amide bending vibration, C–N axial
deformation, and C–O–C stretching vibration, respectively [19]. The characteristic peaks
for MgO appeared at higher wave numbers (650, 601, and 564 cm−1) compared to those
in the FT-IR spectrum of pure MgO [37]. The spectral results confirmed the successful
production of the CHt@MgO biocomposite.

The X-ray diffraction (XRD) patterns of CHt, CHt@MgO, and MgO samples are
presented in Figure 1b. In the XRD pattern of CHt, three characteristic diffraction peaks at
2θ = 9.6◦, 19.30◦, and 21,95◦, respectively corresponding to (0 2 0), (1 1 0), and (1 2 0) crystal
planes, were observed, which revealed the crystalline and amorphous structure [33] of
CHt, in agreement with previously reported results [38]. The diffraction peaks of CHt were
present in the XRD pattern of CHt@MgO, along with new diffraction peaks at 2θ = 37.76◦

(1 1 1), 42.73◦ (2 0 0), 58.45◦ (1 1 0), 50.5◦ (1 0 2), and 62.13◦ (2 2 0), which matched the cubic
lattice of MgO reported in the literature [28]. The pure MgO diffraction peaks appeared at
2θ = 18.50◦, 37.76◦, 42.73◦, 58.45◦, 50.5◦, and 62.13◦, as attributed to (0 0 1), (1 1 1), (2 0 0),
(1 1 0), (1 0 2), and (2 2 0) planes of MgO [37]. Compositing with CHt shielded the MgO
peak intensities. Thus, low-intensity MgO peaks were observed in CHt@MgO patterns.
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The thermogravimetric results (DTG/TGA) obtained for CHt and CHt@MgO com-
posite are displayed in Figure 1 c and d, respectively. As can be observed in Figure 1c, the
major decomposition peak of CHt@MgO occurred at a slightly lower temperature than that
of CHt, but the percentage mass loss of the composite was lower than that of CHt, which
may be related to the relatively high thermal stability of MgO [39]. Therefore, the total
mass loss was 60% and 54% for CHt and the CHt@MgO composite, respectively (Figure 1d).
The thermal decomposition profile of CHt exhibited three stages of mass loss (Figure 1c,d).
During the first stage, ~6% mass loss arose in the temperature range 30–100 ◦C owing to
the loss of surface-absorbed moisture. The second stage of mass loss (~7%), in the range of
190–400 ◦C and peaking at 250 ◦C, was due to the decomposition of functional groups of
CHt. The third stage of mass loss (~47%) occurred in the temperature range of 430–700 ◦C,
which may be attributed to the degradation of the saccharide ring of CHt [40,41]. The DTG
and TGA curves of CHt@MgO biocomposite also showed thermal decomposition in three
stages (Figure 1c,d). The first stage of mass loss (~2%) occurred at <100 ◦C, which may
be assigned to the loss of water [42]. The second and third stages involved mass losses
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of 8% and 44% in temperature ranges of 170–400 ◦C (peaked at 230 ◦C) and 400–700 ◦C,
respectively, which were due to the decomposition of functional groups and degradation
of the saccharide ring of CHt, respectively [41].

The morphology of CHt showed an irregular surface with different grain sizes and
internal pore structures (Figure 2a). After modifying CHt with MgO, due to the dispersion
of MgO particles onto the CHt surface, the surface of the resultant CHt@MgO became rough
and showed apparent pores and cavities (Figure 2b). The results of the elemental analysis
through EDX showed that CHt contains carbon (65.62%), oxygen (32.40%), and nitrogen
(1.98%) (Figure 2c). The weight percentage of these elements changed after the modifica-
tion of CHt with MgO. Furthermore, new characteristic peaks of Mg (35.5%) appeared,
indicating that MgO became well bonded with CHt during compositing (Figure 2d).
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3.2. MO Adsorption Experiments on CHt@MgO Biocomposite

The pH plays an essential role in the surface charge of the MO molecule and of the
CHt@MgO adsorbent, due to the associated changes in the attached functional groups.
Therefore, the influence of pH on the adsorption of MO onto CHt@MgO was studied in the
pH range 2–12, and the obtained results are illustrated in Figure 3a. Under the experimental
conditions used, it was observed that the MO adsorbed concentration in the equilibrium
(qe, mg/g) onto CHt@MgO increased from 44.7 to 48.35 mg/g as the pH increased from
2 to 3 due to electrostatic attraction interactions between the protonated adsorption sites
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of CHt@MgO and the anionic MO dye (pKa = 3.46). From pH 3 to 7, qe remained almost
constant, thereafter dropping until reaching a value of 22.2 mg/g at pH 12. Under acidic
conditions, MO molecule is a zwitterion that carries both positive (+NH(CH3)2, +N(CH3)2,
or –N=N+H–) and negative (–SO3

−), charges while CHt@MgO has a positive charge (+OH2).
Therefore, electrostatic attraction interactions between –SO3

− on MO surface and +OH2
on the CHt@MgO surface occurred, which favored the adsorption of CHt@MgO toward
MO dye [2]. Evaluation of the CHt@MgO surface charge at different pH revealed that its
zero-point charge (pHpzc) was ~6.7 (Figure 3a, inset). This indicates that the CHt@MgO
surface was positively charged when pH <6.7 and negatively charged at pH > 6.7. Thus, at
alkaline pH (above pHzpc), both the CHt@MgO biocomposite and MO were anionic, and
electrostatic repulsion between negative charges of (–SO3

−) on the MO surface and negative
charges of (−OH) on the CHt@MgO surface caused the observed decrease in qe [43]. A
similar trend was observed for the adsorption of MO dye on La/Co-SC adsorbent [44].
Thus, on the basis of the results in Figure 3a, pH 6 was chosen as the most favorable pH for
subsequent MO adsorption experiments in the present study.
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The influence of the CHt@MgO biocomposite amount (m) on the adsorption of MO
(V: 50 mL, Co: 100 mg/L, pH: 6, T: 25 ◦C) was tested in range 0.5–5 g/L, and the obtained
results are displayed in Figure 3b. As can be seen, an increase in the mass of CHt@MgO
from 0.5 to 2 g/L resulted in an increase in MO% adsorption from 16% to 96%. Furthermore,
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the increase in CHt@MgO biocomposite amount between 2 and 5 g/L showed no change
in the removal percentage, which remained at 96%. The increase from 16% to 96% in
the adsorption of MO with the increase in CHt@MgO biocomposite mass was due to the
provision of more reactive adsorption sites, which allowed for the adsorption of more
MO dye molecules. Conversely, the qe (mg/g) went down as CHt@MgO biocomposite
concentration increased. This phenomenon can be interpreted by the fact that, as may be
seen in Equation (1), qe (mg/g) is inversely proportional to the adsorbent mass (m) [45].
Thus, 2 g/L of CHt@MgO was chosen as the adsorbent dosage for subsequent studies on
MO adsorption.

The effect of contact time on the adsorption process was studied in the time range
5–180 min while keeping all other parameters constant (V: 50 mL, Co: 100 mg/L, m: 2 g/L,
pH: 6, T: 25 ◦C); the results are displayed in Figure 3c. It can be observed that the adsorption
capacity of CHt@MgO biocomposite toward MO dye rose dramatically during initial 30 min,
and then gradually increased before attaining equilibrium between 100 to 150 min at varied
MO concentrations. More than 82%, 63%, and 73% of the MO adsorption was reached
within 30 min at initial MO concentrations of 100, 200, and 300 mg/L, respectively. The
fast increase in qt (mg/g) at the initial times was attributed to the availability of a large
number of vacant active adsorption sites on the CHt@MgO biocomposite surface. At
equilibrium (i.e., after 120 min), the qe (mg/g) values for the adsorption of MO on the
CHt@MgO biocomposite were 49.6, 88.6, and 105.7 mg/g at initial MO concentrations of
100, 200, and 300 mg/L. Therefore, 120 min was chosen as the equilibrium time for MO in
subsequent tests.

The influence of initial MO concentration (Co between 25 and 400 mg/L) on adsorption
was studied at 25, 40, and 60 ◦C, and the corresponding curves are displayed in Figure 3d.
The results revealed that qe (mg/g) increased from 12.2 to 111.3 mg/g at 25 ◦C with
the increase in Co, which could be related to qe (mg/g) having a directly proportional
relationship with Co (Equation (1)). Furthermore, the increase in Co in the solution assisted
in overcoming the mass transfer resistance between the solid phase (CHt@MgO) and
aqueous phase (MO solution) with the provision of a driving force. In addition, results on
the influence of varying temperatures ranging from 25 to 60 ◦C on MO dye adsorption onto
CHt@MgO biocomposite are depicted in Figure 3d. It can be noticed that the MO uptake by
CHt@MgO biocomposite rose with temperature, which was more evident with the increase
in Co. For example, from 25 to 60 ◦C, qe (mg/g) increased from 12.25 to 12.40 mg/g at
Co = 25 mg/L and from 113.3 to 124 mg/g at Co = 400 mg/L, indicating that the adsorption
MO by CHt@MgO bioadsorbent is an endothermic process. The increase in adsorption
with temperature from 25 to 60 ◦C may be due to an increase in the diffusion rate of MO on
CHt@MgO surface and a decrease in the solution viscosity. An experimental maximum
uptake of 124 mg/g MO onto CHt@MgO was observed at 60 ◦C at a Co = 400 mg/L. Similar
observations were reported for the adsorption of MO and MB on MOF-235 [10], as well as
for MO adsorption on NPCs-0.5-800 [46].

3.3. MO Adsorption Modelling
3.3.1. Adsorption Isotherm Modeling

Equilibrium data were fitted to two common nonlinear isotherm models, namely, the
Langmuir [47] (Equation (4)), and Freundlich [48] (Equation (5)) isotherm models.

qe =
qmKLCe

1 + KLCe
, (4)

qe = KF Ce
1/n, (5)

where qm (mg/g) represents the maximum monolayer adsorption capacity of CHt@MgO,
and KL (L/mg) and KF ((mg/g) (L/mg)1/n) are the Langmuir and Freundlich constants,
respectively. The dimensionless exponent n is the adsorption intensity.
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The nature of adsorption was determined by the separation factor (RL), a constant,
expressed as:

RL =
1

1 + KLCo
, (6)

where KL represents the Langmuir constant (L/mg), and Co (mg/L) is the lowest initial
concentration of MO dye. The adsorption process is unfavorable if RL > 1, favorable if
0 < RL < 1, linear if RL = 1, and irreversible if RL = 0.

The adsorption isotherm parameters and the fitting of experimental data are presented
in Table 1 and Figure 4a. The correlation coefficient (R2) values and isotherm plots revealed
that the data fitted the Langmuir isotherm model. This suggests a monolayer coverage
of MO dye molecules over the CHt@MgO surface at equilibrium. The qm was found
to be 251.62 mg/g at 60 ◦C. This value was comparable or greater than the qm values
determined for the adsorption of MO by different adsorbents in the literature, as may
be seen in Table 2 [1,2,49–53]. The values of KL increased from 0.003 to 0.022 L/mg with
increasing temperatures from 25 to 60 ◦C, indicating that the adsorption intensity of MO
onto CHt@MgO was enhanced with temperature. In addition, the RL values for MO dye
adsorption onto CHt@MgO biocomposite were in the range 0.645–0.952, confirming that
MO adsorption onto CHt@MgO is a favorable process [54].
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Table 1. Isotherm modeling parameters for MO adsorption onto CHt@MgO.

Temperature (◦C)

Isotherm Models

Langmuir Freundlich

qm
(mg/g)

KL
(L/mg) R2 KF

(mg/g) (L/mg)1/n n R2

25 206.88 0.003 0.991 2.45 0.65 0.960

40 231.95 0.022 0.993 2.21 0.67 0.968

60 251.62 0.002 0.992 2.11 0.69 0.969

Table 2. Comparison of MO adsorption performance on CHt@MgO with other adsorbents in the
literature.

Adsorbent Experimental Conditions qm
(mg/g) Reference

ZrMOX particles Co: 20–60 mg/L; T: 50 ◦C; m: 0.5 g; pH: 4–6; t: 5 h 143.68 [1]
Crosslinked chitosan beads Co: 20 mg/L; T: 25 ◦C; m: 0.02 g; pH: 3; t: 12 h 79.55 [2]
Goethite/chitosan beads Co:10–100 mg/L; T: 62 ◦C K; pH: 3; m:0.1 g; t: 3 h 84.00 [49]
Zn-MOG Co: 50 mg/L; T: 25 ◦C; m: 0.005 g; t: 1 h 130.04 [50]
Sugar scum powder Co: 100 mg/L; T: 22 ◦C; m: 16 g/L; pH: 7.2.; t: 1 h 15.24 [51]
AlgN-CTAB Co: 0–300 mg/L; T: 27 ◦C; m: 0.1 g; pH: 5; t: 1 h 76.48 [52]
Pan/MHT Co: 20 mg/L; T: 25 ◦C; pH: 3–4; m: 0.02 g: t: 2 h 156.25 [53]
CHt@MgO Co: 25–400 mg/L; T: 60 ◦C; pH: 6; m: 0.02 g: t: 2 h 251.62 This study

3.3.2. Kinetic Modeling

Kinetic models, namely, pseudo-first-order (PFO) (Equation (7)) [55], pseudo-second-
order (PSO) (Equation (8)), and intraparticle diffusion (IPD) (Equation (9)) [56], were used
to investigate the adsorption kinetics of MO dye onto CHt@MgO biocomposite.

qt = qe

(
1 − e−kt

)
, (7)

qt =
q2

e k2t
1 + qe k2 t

, (8)

qt = kid t0.5 + C, (9)

where k1 (1/min), k2 (g/(mg·min)), and kid (mg/(g·min1/2)) are the PSO, PSO, and IPD rate
constants, respectively, and C (mg/g) is the boundary layer thickness.

Fittings of the experimental kinetic results on the adsorption of MO onto CHt@MgO
biocomposite are presented in Figure 4b, while the fitted parameters are depicted in Table 3.
According to the R2 values and kinetic plots, PFO was, among the considered models, the
most adequate to describe MO adsorption data on CHt@MgO. This was confirmed by the
closeness between the qe,exp and the qe,cal. The description of kinetic results by the PFO
model suggests that the MO binding interaction with CHt@MgO biocomposite surface
was physical adsorption involving electrostatic interaction between MO molecules and
the CHt@MgO bioadsorbent. According to the IPD model (Table 3), the fitted intercept (C)
value at varied concentrations ranged between 13.23 and 17.29 mg/g, which indicate that
the IPD was not the only rate-controlling step [57].
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Table 3. Kinetic modeling parameters for MO adsorption on CHt@MgO.

Co
(mg/L)

qe,exp
(mg/g)

Kinetic Models

PFO PSO IPD

qe,cal
(mg/g)

k1
(1/min) R2 qe,cal

(mg/g)
k2

(mg/g-min) R2 kip

(mg/g-min1/2)
C R2

100 49.6 48.37 0.07 0.982 53.50 0.002 0.973 3.42 13.23 0.743
200 88.6 86.61 0.03 0.987 102.35 0.0004 0.996 6.88 9.56 0.915
300 105.7 104.07 0.04 0.993 120.01 0.0005 0.989 8.01 17.29 0.848

3.3.3. Thermodynamic Modeling

The Gibbs free energy change (∆G◦), standard enthalpy change (∆H◦), and stan-
dard entropy change (∆S◦) were calculated using Equations (10) and (11) to investigate
thermodynamic modeling parameters.

∆G◦ = −RT lnKc, (10)

lnKc =
∆H0

RT
+

∆S0

R
, (11)

where Kc = qe/Ce is the thermodynamic equilibrium constant [58], T is the temperature (K)
and R is the ideal gas constant (8.314 J/mol-K). The ∆H◦ and ∆S◦ values were calculated
from the intercept and slope of Van’t Hoff’s plot (lnKc versus 1/T) illustrated in Figure 4c
and are depicted in Table 4, together with ∆G◦ values at the considered temperatures.

Table 4. Thermodynamic parameters determined for the adsorption of MO on CHt@MgO.

∆H◦

(kJ/mol)
∆S◦

(J/mol-K)
∆G◦

(kJ/mol)

298 K 313 K 333 K

48.42 182.78 −6.156 −7.606 −9.829

The negative ∆G◦ values at varied temperatures indicate the spontaneous nature of
the adsorption process (Table 4). In addition, the ∆G◦ values decreased as the temperature
increased from 298 to 333 K. This suggests that, within this temperature range, a larger
temperature was more favorable for MO adsorption on the CHt@MgO biocomposite. In
addition, the value of ∆G◦ is usually employed to make a distinction between physisorption
(−40 to 0 kJ/mol) or chemisorption (−400 to −50 kJ/mol). In this work, the ∆G◦ values
were between −6.156 and −10.292 kJ/mol, which confirms that the MO adsorption onto
CHt@MgO adsorbent took place through a physisorption process. The positive ∆H◦ and
∆S◦ values indicate that the MO adsorption onto CHt@MgO biocomposite was endothermic
and increased the degrees of freedom of the adsorbed MO dye. In addition, the ∆H◦ value
of 48.42 kJ/mol, which is smaller than 80 kJ/mol, confirmed that physical forces were
involved in MO adsorption on CHt@MgO [59,60].

3.4. Comparative Performance of CHt@MgO with Other Adsorbents

For comparative study, the maximum monolayer adsorption capacity (qm) and experi-
mental parameters of some other adsorbents reported in the literature for MO adsorption
are summarized in Table 2. The results clearly display that CHt@MgO had a higher ad-
sorption capacity (251.62 mg/g) and higher ability to absorb MO from aqueous solutions.
This may be is due to the diversity in the other adsorbent’s structures and morphologies.
However, the suitability as a potential adsorbent is assessed in terms of efficiency, availabil-
ity, cost-effectiveness, and reusability. Hence, this study proposes CHt@MgO composite
as a promising adsorbent with excellent adsorption capacity, and reusability for MO dye
removal from an aqueous environment.
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3.5. Regeneration of CHt@MgO Biocomposite

The reusability of an adsorbent is very important for the economic feasibility of
the adsorption process. Therefore, in this study, the reusability of the CHt@MgO was
investigated by carrying out seven adsorption/desorption cycles, as displayed in Figure 4d.
It was observed that the percentage adsorption of MO dye for the first two cycles was
95.4%. Just a slight reduction in MO removal percentage was observed after the third
and fourth regeneration cycles. After the fifth cycle, the percentage adsorption dropped
to 90.7%, further dropping to 54.5% at the seventh regeneration cycle. Thus, it could be
concluded that CHt@MgO was highly effective for MO adsorption for five consecutive
regeneration cycles.

3.6. MO Adsorption Mechanism

According to the pH study results, the CHt@MgO was protonated and generated a pos-
itive charge on its surface at pH 6, and the MO molecule carried both positive (+NH(CH3)2
or +N(CH3)2 or –N=N+H–) and negative (–SO3

−) charges, depicted in Scheme 1. The
negatively charged –SO3

− on the MO surface was attracted to the positively charged +OH2
on the CHt@MgO surface through an electrostatic interaction mechanism [3,4]. This led to
an increase in MO adsorption capacity of CHt@MgO. According to the kinetic and isotherm
modeling results, the MO adsorption mechanism onto CHt@MgO, which is schematized
in Figure 5, can be summarized as follows: (i) electrostatic attraction interaction between
negative charged –SO3

− present on the MO surface and positive charges of –+OH2 on the
CHt@MgO surface; (ii) hydrogen bonding between –OH groups on CHt@MgO surface and
nitrogen atoms of N(CH3)2 or –N=NH– on the MO surface [5]. A similar trend was ob-
served for the adsorption of MO dye onto Fe-loaded chitosan film [61], biopolymer chitosan
CHI [62], and karaya gum/chitosan sponge [63]. Abdul Mubarak et al. [61] reported that
the binding mechanism of MO adsorption onto Fe–CS was via two mechanisms, namely,
electrostatic attractions (between the negatively charged (SO3

−) of MO molecule dye with
the positively charged (NH3

+) groups onto the surface of the Fe–CS and H bonding (be-
tween oxygen and nitrogen atoms of MO dye and free H onto the surface of Fe–CS). In
addition, the thermodynamic parameters revealed that the MO adsorption onto CHt@MgO
adsorbent took place through a physisorption process through electrostatic interaction
mechanism.
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4. Conclusions

In conclusion, a chitin-based biocomposite was successfully synthesized by incorpo-
rating MgO, characterized, and tested as an adsorbent for the removal of anionic MO dye
from aqueous solutions. FT-IR and XRD analysis data confirmed the successful synthesis
of CHt@MgO biocomposite. The adsorption equilibrium and kinetic results respectively
fitted the Langmuir isotherm and the PFO kinetic models. The Langmuir qm value for MO
adsorption on CHt@MgO was found to be 252 mg/g at 60 ◦C. Furthermore, thermodynamic
parameters indicated that MO adsorption over CHt@MgO biocomposite was spontaneous
and endothermic. Reutilization of CHt@MgO was proven to be feasible since adsorption
percentages of 94% remained after four consecutive regeneration cycles. Overall, this study
showed that CHt@MgO biocomposite is a very promising cost-efficient and ecofriendly
material with high MO removal efficiency and excellent regeneration ability.
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