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Abstract: Driver’s behavior characteristics (DBCs) influence car-following safety. Therefore, this pa-

per aimed to analyze the effect of different DBCs on the car-following safety based on the desired 

safety margin (DSM) car-following model, which includes five DBC parameters. Based on the Monte 

Carlo simulation method, the effect of DBCs on car-following safety is investigated under a given 

rear-end collision (RECs) condition. We find that larger subjective risk perception levels can reduce 

RECs, a smaller acceleration sensitivity (or a larger deceleration sensitivity) can improve car-follow-

ing safety, and a faster reaction ability of the driver can avoid RECs in the car-following process. It 

implies that DBCs would cause a traffic wave in the car-following process. Therefore, a reasonable 

value of DBCs can enhance traffic flow stability, and a traffic control strategy can improve car-fol-

lowing safety by using the adjustment of DBCs. 

Keywords: car-following safety; desired safety margin; driver’s behavior characteristics; sensitivity 

analysis 

 

1. Introduction 

Varying driving behaviors influence traffic flow patterns and cause the occurrence 

of stopping shock waves. This response leads to traffic flow instability, which may be a 

longstanding cause of crashes [1–3]. In the United States, the statistical results show that 

32,999 people died in car crashes according to National Highway Traffic Safety Admin-

istration in 2010. In addition, 58,523 people died in road traffic accidents in 2014 [4]. Rear-

end collisions (RECs) are the most common accident type in the world [5]. For instance, 

RECs of 35.9% occurred in Washington State. Refs. [6,7] show that China’s highway REC 

accidents accounted for about 40% of all traffic accidents. Generally speaking, three major 

elements of a transportation system, including vehicles, road infrastructure, and human 

factors, determine roadway crashes [8–10]. However, human factors are the main impact 

factor for traffic flow stability and RECs. Therefore, it is necessary to carry out analysis 

and research on driver’s behavior characteristics (DBCs) of the car-following process, 

which is conducive to understanding the mechanism of shock wave evolution to avoid 

RECs. 

DBCs, such as instantaneous acceleration/deceleration, driver’s reaction time, and 

risk perception level in particular, are especially vulnerable to psychological state. Ahmed 

et al. [11] presented a thorough review of the literature on the car-following models, which 

mainly study the driving behavior of vehicles on a roadway system by micro-simulation. 

Tarko et al. [12] presented an important finding that there is a strong correlation between 

the frequency of deceleration rates and the observed crash rates. Similarly, Kim et al. also 

obtained the relationship between micro scale driving behavior and REC propensity [13], 

who also found a high crash rate when drivers exhibit a high deceleration rate. An ex-

tended REC risk model is proposed considering perception–response time of drivers by a 
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modified negative binomial regression [14]. Moreover, research also shows that driver 

risk perception of driving behaviors is very important for driving ability, which can ena-

ble drivers to avoid REC risks in complex traffic scenes [15–17]. Feng et al. [18] showed 

that aggressive driving behavior is the crucial factor for the personality of the drivers and 

violation of other vehicles. Tu et al. [19] found that the heterogeneity among drivers has a 

significant effect on road safety. Chung et al. [20] considered actual DBCs to develop the 

acceleration model and the sensitivity term for preventing RECs in the car-following pro-

cess. This research shows that DBCs have important effects on the RECs. Moreover, micro-

scale driver behaviors play important roles in the traffic flow pattern [21–23]. The traffic 

flow consists of the different drivers existing in the real traffic. Therefore, different drivers 

mean different DBCs in the car-following process. Basically, the occurrence of RECs 

caused by traffic shock waves in the context of heterogeneous traffic flow. Hourdos [24] 

pointed out that stopping shock waves causes RECs in the car-following process. Zheng 

et al. [25] also pointed out that an important risk factor of traffic accident is the variability 

in speed when successive shock waves happened on the freeway. Chatterjee and Davis 

[26] investigated a mechanism of REC on a crowded highway. Moreover, the stability the-

ory of the car-following model shows that traffic shock waves spread backward, and leads 

to a higher REC risk for the vehicles behind the platoon [27]. Therefore, how to get a clear 

understanding of the DBCs in car-following safety becomes a topic worthy of much dis-

cussion. 

Recently, some scholars have paid a lot of attention to the heterogeneous traffic flow 

[28–33]. However, this research is mainly concerned with the traffic flow stability analysis 

frameworks. Few studies have been focused on car-following safety analysis caused by 

different DBCs in heterogeneous traffic flow. Therefore, our aims are to analyze the influ-

ence of different DBCs on the car-following safety by using a microscopic car-following 

model. As discussed in previous literature, driver’s risk perception levels largely affected 

DBCs in the actual traffic. These DBCs mainly include physiological and psychological 

characteristics of drivers. The parameters of desired safety margin (DSM) model by Lu et 

al. [34] can characterize physiological and psychological characteristics of drivers, includ-

ing driver’s reaction time, acceleration and deceleration preference coefficients, and upper 

and lower limits of the DSM. From this perspective, this study will employ the DSM 

model to investigate the influence of DBCs on the car-following safety. 

To this end, other chapters of this paper are as follows. In Section 2, objectives and 

contributions of this study are given. In Section 3, the DSM model is introduced, and the 

corresponding DBCs parameters are calibrated. Section 4 analyzes the mechanism of REC 

in the car-following process, and REC conditions are derived. In Section 5, five DBCs pa-

rameters for REC risk are investigated according to the REC conditions. Numerical exper-

iments and discussion are given in Section 6. In Section 7, our conclusions are given. 

2. Objectives and Contributions 

The objective of this study is to investigate the impact of DBC variables on the car-

following safety. This study answers three questions regarding the car-following safety. 

(1) How do the response time, acceleration and deceleration preference coefficients, and 

the limits of the DSM affect the car-following safety? (2) How do different DBCs impact 

the REC risk? (3) How are the REC probability patterns related to the driver’s category in 

car-following process? The contributions of this study are two-fold. First, this study is a 

pioneering work exploring the quantitative relationship between the subjective risk per-

ception levels, acceleration and deceleration sensitivity, reaction ability of the driver, and 

the car-following safety based on the Monte Carlo simulation method. Second, a reason-

able value of DBCs can reduce traffic accidents and enhance traffic flow stability. There-

fore, exploring the influence of some DBC variables on car-following safety is useful to 

rear-end risk.  
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3. DSM Model and Its Parameter Calibration 

The DSM model by Lu et al. [35] is described as: 

 
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where ( )na t  is the n th vehicle’s acceleration; M nDHS  and M nDLS  are respectively the 

lower and upper limits of the DSM for the n th driver; 1  and 2  denote the sensitivity 

coefficients of acceleration and deceleration, respectively;   is driver’s reaction time; 2  

is the brake system’s reaction time, and its value sets 0.15 s for the car; ( )nV t  is the n th 

vehicle’s speed; 1( ) ( ) ( )n n nX t X t X t    denotes spacing headway; ( )nd t  is the n th ve-

hicle’s deceleration; 1nL   is the length of the 1n th vehicle. 

DBCs parameters based on DSM model have been calibrated to use Genetic Algo-

rithm using enhanced NGSIM dataset. We choose sixty car-following cases. Table 1 shows 

that the statistic results of DBCs parameters. From Table 1, we obtain that the mean of 1  

is about 8.51 m/s2, the std. deviation of 1  is about 5.301 m/s2, and that the mean of 2  

is about 14.14 m/s2 and the std. deviation of 2  is about 8.276 m/s2, and that the mean of 

M nDLS  is 0.76, and the std. deviation of 
M nDLS  is 0.125, and that the mean of 

M nDHS  is 0.95, 

and the std. deviation of M nDHS  is 0.045. The mean of driver’s reaction time   is 0.65 s, 

and the std. deviation of   is 0.297 s. 

Table 1. Statistic results of DBCs. 

Parameters Mean std. Deviation Median Minimum Maximum 

1  8.51 5.301 6.52 3.79 29.91 

2  14.14 8.276 12.18 3.01 30.00 

M nDLS  0.73 0.132 0.75 0.50 0.98 

M nDHS  0.94 0.056 0.94 0.76 1 

  0.65 0.297 0.48 0.30 1.60 

Figure 1 shows that different DBCs are obtained by using K-nearest neighbor clus-

tering analysis of five parameters. Among them, acceleration and deceleration preference 

coefficients are divided into three kinds: sensitive, moderate sensitivity and insensitive; 

upper and lower limits of the DSM are divided into risk-averse, risk-neutral, and risk-

prone. In addition, driver’s reaction time is divided into responsive, moderate response 

and unresponsive. Moreover, most DBCs are responsive, moderately sensitive, and risk-

prone from Table 2, which is in accordance with DBCs under actual car-following status. 

Therefore, investigating the influence of DBCs on the RECs risk by using the DSM 

car-following model is a topic worthy of much discussion. 
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Figure 1. Classification of DBCs. 

Table 2. Clustering results of DBCs. 

Parameters DBCs Observation Mean std. Deviation Median 

1  
Insensitive 18 

5.92 0.909 5.60 

2  5.57 1.173 5.28 

1  
Moderate 24 

7.27 2.350 6.27 

2  13.59 5.418 12.18 

1  
Sensitive 18 

12.56 7.668 10.24 

2  23.09 4.489 23.64 

M nDLS  
Risk-averse 12 

0.53 0.035 0.52 

M nDHS  0.91 0.075 0.93 

M nDLS  
Risk-neutral 23 

0.70 0.053 0.71 

M nDHS  0.94 0.053 0.95 

M nDLS  
Risk-prone 25 

0.86 0.049 0.84 

M nDHS  0.95 0.048 0.96 

  
Responsive 30 0.42 0.068 0.4 

Moderate 18 0.71 0.076 0.7 
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Unresponsive 12 1.13 0.227 1.1 

4. Results for the REC Mechanism Car-Following Process 

In the braking process, the n th and 1n th vehicles initially move at a 0v  and ini-

tiate braking at decelerations of 1na   and na , respectively, as shown in Figure 2. 

 

Figure 2. Braking process between two successive vehicles during a car-following situation. 

Then, a REC is avoided when the sum of car-following safety distance needed by the 

leading vehicle is more than the following vehicle’s stopping distance as follows: 

2 2 1
0 0 0 12 2 n

n n nv v a v a S 
      (3)

where 1n
nS
  is car-following safety distance;   is following the driver’s reaction time. 

The deceleration of following vehicle should be satisfied to avoid rear-end collision 

as 

 

2
0

2 1
0 1 02 2

n n
n n

v
a

v a S v 



  

 (4)

Then, the stopping distance available to the following vehicle is given 

2 1
0 02 n

n n nS v a S v      (5)

We note that the driver adjusts acceleration/deceleration according to homeostatic 

risk perception during their actual driving. Therefore, time headway (TH) can be derived 

as follows: 

12

0

,
1

n
t

L
TH

v




 


 (6)

Then, car-following safety distance 1n
nS
  is derived based on Equation (6) as 

1 2 0
1= ,

1
n
n n

v
S L






 


 (7)

where = ,M nDL M nDHS S ,   denotes an accepted value to ensure car-following safety. 

Equations (4) and (6) indicate that the following car needs a bigger deceleration to 

avoid collision when the driver’s reaction time   is longer than his/her tTH . It implies 

that driver’s sensitivity factor for acceleration/deceleration of the leading car affects de-

celeration of the following car. Furthermore, Equation (7) implies that M nDLS  and M nDHS  

determine time headway in the car-following process. In the platoon, the deceleration of 

leading vehicle denotes 1a  considering individual DBCs when a stopping wave is intro-

duced. 

Then, the available stopping distance of car 2 is obtained by 
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Similarly, the available stopping distance of the N th car in the platoon is obtained 

by: 

 2 2
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1

N
i

N i i
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where 0S  denotes the minimum safe stopping distance among two cars. The relative 

stopping distance between two cars varied from 1.07 m to 4.83 m, and its mean is 2.17 m 

[31]. 

According to Equation (9), we obtain REC condition of the N th car as: 

 2 22
1 2 1 1 min 0

2

2 2 2
1

N
i

i i N
i i

v
L v v a v a N S



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 
  (10)

where mina  is a maximum deceleration. As suggested by the Highway Capacity Manual, 

the deceleration of a car varied from 2 and 8 m/s2 [36]. Thus, mina  is set to be 8  m/s2 in 

this study. 

5. Sensitivity Analysis of Five DBCs on REC Risk 

According to the previous discussion, the REC condition is related to DBC parame-

ters. Therefore, we conduct a vehicle platoon that 20 vehicles move on a straight road with 

initial space headway =40HS  to numerically illustrate the influence of five DBC param-

eters on REC risk, as shown in Figure 3. In addition, the initial positions and speeds of 20 

vehicles are showed as follows: 

(0) , (0) 20, (0) 0, 2, , .n H n nx S N v v n N       (11)

 

Figure 3. Cars moving on a straight road. 

In the platoon, the leading car brakes at –1.5 m/s2 after 200 s until it is stopped. In 

addition, other following cars follow the leading car to decelerate until they are stopped. 

Other parameters of model are set as as 2 =0.15  s, -1( )= ( )=7.35n nd t d t  m/s2, =4.3nL  m, 

=1,2,3, , .n N  Collision happening is to determine whether two successive vehicles col-

lide or not at any moment in the car-following process according to REC conditions of 

Equation (10).  

The numerical experiment is presented using the Monte Carlo simulation method to 

estimate the probability of REC in the traffic condition described above. Based on the sta-

tistical results of 10,000 samples, we investigate the probability of REC 1(C )n
nP   under 

DBC parameters effect. 

5.1. Impact of Response Time 

According to the calibration results of Table 1, the range of response time is set as 

 0.3,1.6   s. Other driving behavior parameters with mean and std. deviation are set as: 

the acceleration and deceleration preference coefficients 1 8.51= 5.301   m/s2 and 

2 14.14= 8.276   m/s2, and the limits of the DSM =0.73 0.132M nDLS   and 

=0.94 0.056M nDHS  . Ten drivers of the platoon are randomly arranged on a single lane.  
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The varying of REC probability with response time is shown in Figure 4. From Figure 

4, the REC risk is increasing with  . It implies that the stopping waves gradually increase 

as response time goes on to cause the increasing of the REC probability of vehicles. Car-

following safety can improve with the decrease in the driver’s response time. Thus, driv-

ers need to keep faster reaction ability to avoid the occurrence of REC. 

 

Figure 4. Varying of REC probability with response time. 

5.2. Impact of the Limits of the DSM 

As shown in previous analysis, acceleration and deceleration preference coefficients 

are set as 1 8.51= 5.301   m/s2 and 2 14.14= 8.276   m/s2, respectively. Driver’s reaction 

time is set as 0.65 0.297    s. In order to investigate the influence of M nDHS  on the REC 

probability, the range of M nDHS  is set as  0.86,1M nDHS   to ensure M nDH M nDLS S , in 

which =0.73 0.13M nDLS  . Moreover, the range of MnDLS  is set as  0.73,0.88M nDLS   to en-

sure M nDL M nDHS S , in which =0.94 0.056M nDHS  . 

The varying of REC probability with the limits of the DSM is shown in Figure 5. From 

Figure 5a, the REC probability of vehicles decreases with the increasing of M nDHS . How-

ever, the REC probability of vehicles has no obvious reduction when M nDHS  is increased 

to a certain value ( 0.96M nDHS  ) in our case study. Likewise, the REC probability of vehi-

cles decreases with the increasing of MnDLS  as shown in Figure 5b. However, the REC risk 

has more sensitivity to MnDLS . The REC accidents will not happen when 0.85M nDLS   in 

our case study. Results imply that the stopping waves gradually weaken with the increas-

ing of the MnDLS  or M nDHS . Thus, a large upper (or lower) limit of the DSM can reduce 

the REC risk. Adjusting the limits of the DSM of the driver can improve traffic safety in 

the car-following process. 
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(a) (b) 

Figure 5. Varying of REC probability with the limits of the DSM, (a) upper limit of the DSM; (b) 

lower limit of the DSM. 

5.3. Impact of Acceleration and Deceleration Preference Coefficients 

The limits of the DSM are set as =0.73 0.132M nDLS   and =0.94 0.056M nDHS  , respec-

tively. In addition, the response time is 0.65 0.297    s. To analyze the impact of the 

acceleration and deceleration preference coefficients on the REC probability, the range of 

acceleration preference coefficient is set as  1 3,30   m/s2, in which the deceleration 

preference coefficient 2 14.14= 8.276   m/s2. However, the range of deceleration prefer-

ence coefficient is set as  2 9,30   m/s2, in which the acceleration preference coefficient 

1 8.51= 5.301   m/s2. 

The varying of REC probability with the acceleration and deceleration preference co-

efficients is shown in Figure 6. The REC probability of vehicles increases with the increas-

ing of the acceleration preference coefficient as shown in Figure 6a. However, the REC 

probability of vehicles decreases with the increasing of the deceleration preference coeffi-

cient from Figure 6b. In addition, the REC probability of vehicles has no obvious reduction 

when the deceleration preference coefficient is increased to a certain value ( 2 18   m/s2) 

in our case study. Results show that a large deceleration preference (or a small acceleration 

preference) can reduce the REC risk, and that the stopping waves gradually weaken with 

increasing of the deceleration preference and decreasing of the acceleration preference. 

Therefore, the car-following safety can improve if the driver can maintain the smaller ac-

celeration preference and the larger deceleration preference for drivers. 
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(a) (b) 

Figure 6. Varying of REC probability with the acceleration and deceleration preference coefficients, 

(a) acceleration preference coefficient; (b) deceleration preference coefficient. 

As described previously, findings further verify that five DBCs parameters play an 

important role in the traffic waves, thereby causing REC risk in the car-following process. 

The choice of interval DSMs, the acceleration and deceleration preference coefficients, and 

the driver’s response time influence the REC probability. It implies that a reasonable 

choice of fiver DBCs parameters can be provided to reduce the REC risk. 

6. Numerical Experiment and Discussion 

In our numerical simulation, the initial conditions of speeds and positions for all ve-

hicles in the platoon are as follows: 

1 1 1
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 (12)

where spacing headway L  is 35 m; the number of vehicles in the platoon N  is 50; 

(0)nX  denotes the n th vehicle’s initial position; (0)nV  is the the n th vehicle’s initial 

speed; (0)nV
  is the nth vehicle’s initial acceleration; and 1( )t   denotes a small accelera-

tion disturbances of the leading car after t , and its distribution function obeys 
25 10 ( 1,1)U   . 

According to Table 2, DBCs have 33  kinds of combinations based on driving behav-

ior parameters. The vector  1 2, , , , , 1,2,i nDH nDLSM SM i M       is used to represent 

DBCs. In this study, in order to analyze the impact of heterogeneity DBCs on REC risk, 

we choose four kinds of combinations of DBCs parameters without the loss of generality 

as follows: 
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Case 1: 1  of 50% and 2  of 50%; 

Case 2: 3  of 50% and 4  of 50%; 

Case 3: 1  of 90%, 2  of 4%, 3  of 2% and 4  of 4%; 

Case 4: 1  of 70%, 2  of 26%, 3  of 2% and 4  of 2%; 

Case 5: 1  of 30%, 2  of 50%, 3  of 10% and 4  of 10%; 

Case 6: 1  of 10%, 2  of 20%, 3  of 40% and 4  of 30%; 

Case 7: 1  of 10%, 2  of 10%, 3  of 46% and 4  of 34%; 

Case 8: 1  of 6%, 2  of 6%, 3  of 50% and 4  of 38%; 

Figure 7 depicts gap distributions simulated by a DSM model with four cases of dif-

ferent DBCs obtained at t = 300, t = 500 s, t = 800 s, and t = 1000 s. The amplitude fluctuation 

of gap becomes large with the increase in 3  and 4 . Here, 3  and 4  can be claimed 

as unstable drivers, and 1  and 2  can be claimed as stable drivers. Therefore, it im-

plies that the shock wave occurs, and the RECs happen when 3  and 4  increase in the 

platoon as shown in the cases 3–4 of Figure 7a–d. Otherwise, decreasing the proportions 

of 3  and 4 , the shock waves gradually weakened, and REC will not occur as shown 

in cases 1–2 of Figure 7a–d. 
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Figure 7. Gap patterns of all vehicles with DBCs at: (a) t = 300 s; (b) t = 500 s; (c) t = 800 s; (d) t = 1000 

s. 

Furthermore, the safety margin (SM) is introduced as a risk indicator to analyze car-

following safety, its mathematical expression is as follows: 
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Moreover, a probabilistic measure is introduced to estimate REC risk in the car-fol-

lowing process as: 

( ) ( )
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where ( )
1 1P (C )t n n

n M nS   is the probability that the n  vehicle collides with the 1n   vehi-

cle; c  denotes constant argument, and its value depends on road characteristics. Here, 

c  is set as 0.25 in our numerical simulation. 

Figure 8 shows REC probability patterns of all other cars except for the leading car 

based on the SM under different DBCs. RECs are a small probability event as shown in 

Figure 8a,b. However, rear-end collision probability of car-following will increase gradu-

ally compared with Figure 8a,b and Figure 8c,d. Moreover, unstable DBCs can enhance 

the traffic wave and increase REC risk as shown in Figure 8e–h. Otherwise, stable DBCs 

can attenuate the shock wave and reduce REC risk. Results show that different DBCs 

would lead to shock waves, thereby increasing REC probability in the car-following pro-

cess. 

(a) (b) 
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(c) (d) 

(e) (f) 

(g) (h) 

Figure 8. REC probability patterns of all other cars (except the leading car) under different DBCs. 
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To summarize, results show that a potential strategy of the adjustment of the propor-

tions of the DBCs can attenuate the shock wave and avoid RECs, and that the decreasing 

of the proportions of stable DBCs causes the RECs. 

7. Conclusions 

DBCs play an important role in car-following safety. Different DBCs may lead to un-

stable traffic flow, and forming a shock wave would cause RECs under certain traffic con-

ditions. Therefore, exploring DBCs in car-following safety is a valuable research issue. The 

DBCs are portrayed by using microscopic car-following models. In our study, we used 

the DSM car-following model to analyze the influence of DBCs on the car-following safety. 

The DSM model uses M nDLS  and M nDHS  to describe driving risk preference; 1  and 2  

to describe the acceleration and deceleration sensitivity; and   to describe driver’s re-

sponsiveness. Therefore, the risk preference, sensitivity, and responsiveness affect car-fol-

lowing safety. 

To quantify the DBCs, five parameters are calibrated by using sixty cases from 

NGSIM datasets. We obtain REC conditions by using the DSM model, and analyze the 

probability of REC under those parameters’ effect by using the Monte Carlo method. Find-

ings show that the decreasing of response time can improve traffic safety, and that a large 

M nDLS  or M nDHS  can reduce the REC risk, and that the traffic safety can improve if the 

driver can maintain the smaller acceleration sensitivity and the larger deceleration sensi-

tivity. Because these parameters can portray DBCs, each parameter divided into three 

types of DBCs to further discuss the impact of different DBCs on the REC risk. Through 

the numerical experiments, if the vehicle platoon has stable and unstable DBCs, then the 

proportion of drivers with different DBCs plays an important role in the car-following 

safety. Once the traffic flow is in an unstable state, the shock waves gradually enhanced, 

and REC will occur. Moreover, REC probability patterns also imply that different DBCs 

with an inappropriate proportion would lead to shock waves, thereby increasing REC 

risk. A potential strategy of the adjustment of the proportions of the unstable DBCs can 

improve car-following safety. 

In summary, the DBCs affect the car-following safety. The findings are useful in set-

ting a reasonable proportion of the unstable and stable DBCs to stabilize traffic flow, and 

developing traffic control strategy for REC prevention by using the adjustment of DBCs. 
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