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Abstract: The high efficiency and low consumption green wastewater treatment technology has
important practical significance for the recycling of printing and dyeing wastewater. The efficiency of
visible light catalytic degradation of organics is greatly affected by the performance of the catalyst and
the photo reactor. Therefore, Bi2WO6/TiO2/Fe3O4 (mBT) visible light photocatalyst was accurately
prepared by the ammonia iron double drop method. In order to improve the photodegradation
efficiency, a tubular magnetic field-controlled photocatalytic reactor (MPR) was developed. The novel
mBT-MPR visible light photocatalytic system was proposed to treat RhB simulated wastewater. The
experimental results showed that when the dosage of mBT catalyst was 1 g/L and visible light was
irradiated for 60 min, the average removal rate of rhodamine B (RhB) with initial an concentration
of 10 mg/L in the simulated wastewater for four times was 91.7%. The mBT-MPR visible light
photocatalysis system is a green and efficient treatment technology for organic pollutants in water
with simple operation, low energy consumption, and no need for catalyst separation.

Keywords: magnetic visible light photocatalyst; magnetic field controlled photocatalytic reactor; dye
wastewater; rhodamine B

1. Introduction

Various dyes and additives enter the surface water body due to the inadequate
treatment of printing and dyeing wastewater, causing harm to aquatic ecology and hu-
man health. Therefore, it is particularly important to develop efficient, simple, and low-
consumption treatment methods. The traditional printing and dyeing wastewater treatment
methods mainly include physical treatment, chemical treatment, and biological treatment,
but they all have problems of varying degrees, such as complex operation, high cost, and
secondary pollution. In recent years, the application of photocatalysis technology to the
degradation of pollutants has received extensive attention and can effectively alleviate en-
vironmental pollution [1–3]. Photocatalytic technology uses the energy of sunlight through
various semiconductor materials, and the electrons and holes generated by it have strong
reducibility and oxidizability, respectively [4–7].

Many photocatalysts with narrow band gaps have excellent photocatalytic activity
under visible light irradiation, such as Bi2WO6 [8], BiOI [9], and g-C3N4 [10]. However,
there are still some problems, such as the small response range of visible light and the
high recombination rate of photogenerated carriers, which limit its application. Among
these catalysts, Bi2WO6 (Eg = 2.7 eV) is the simplest perovskite sheet structure composed
of a (Bi2O2)2+ layer and a (WO4)2− layer arranged alternately [11]. Bi2WO6 has a unique
layered structure and a suitable band gap structure, making it a photocatalyst with a good
response to visible light [12]. Bi2WO6 has excellent physical and chemical properties
such as ferroelectric voltage, catalytic behavior, and nonlinear dielectric susceptibility that
are non-toxic and harmless and can be used for organic matter degradation and oxygen
release [13,14]. However, the fast recombination speed of photogenerated carriers inhibits
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their light energy conversion efficiency, so it is necessary to ameliorate them. As one of the
most widely studied metal oxides, titanium dioxide (TiO2) has the properties of relatively
high quantum yield, low cost, easy to obtain and low toxicity, and is relatively stable under
light. The biggest disadvantage is that only about 5% of the ultraviolet light can be used,
and the utilization of solar light is very low.

Referring to the literature about Bi2WO6, there are two routes to improving the cat-
alytic activity: expanding the light absorption range of the photocatalyst and improving
the separation efficiency of photogenerated carriers. The specific methods are listed as
follows: depositing precious metals on the surface of photocatalytic materials to change the
surface properties and the electronic distribution [15]; doping ions to separate the electron
hole pairs, to form the impurity energy levels, and more active centers [16–19]; compound-
ing more than two different semiconductors to promote the separation of electron hole
pairs [20]; controlling morphology and size to adjust the surface properties and the quan-
tum size effect [21,22]. Therefore, in order to further improve the photocatalytic activity of
Bi2WO6, it was coupled with the wide band gap semiconductor TiO2 photocatalyst to form
a heterojunction nanocomposite [23,24]. The synergistic effect between TiO2 and Bi2WO6
can improve the light adsorption capacity and the separation efficiency of photogenerated
electron hole pairs, prolonging the life of photogenerated carriers and enabling them to
participate more in the photocatalytic reaction. In addition, the combination also effectively
avoids the agglomeration of nano-titanium dioxide.

However, the recovery and separation of photocatalyst became the problem of
wastewater treatment by photocatalysis. At present, there is little research on magnetic
Bi2WO6/TiO2 [25], and it still needs two sets of devices, namely, a photocatalysis reactor
and a catalyst reclaimer. To establish a photocatalytic reactor with high mass transfer
efficiency, simple operation, and no catalyst separation is significant for the application of
photocatalysis in the field of wastewater treatment.

In this study, Bi2WO6/TiO2 was synthesized by a simple microwave solvothermal
method. Then, Bi2WO6/TiO2 was magnetized by the ammonia-iron double-drop method.
Furthermore, the photocatalytic activity of Bi2WO6/TiO2/Fe3O4 (mBT) composite photo-
catalyst was evaluated by the novel mBT-MPR visible light catalytic system with 5.5 W,
which was proposed to treat 220 mL of RhB simulated wastewater. The mBT-MPR visi-
ble light photocatalysis system is a green and efficient treatment technology for organic
pollutants in water with simple operation, low energy consumption, and no need for
catalyst separation.

2. Materials and Methods
2.1. Reagents and Instruments

The main analytically pure reagents include: Bi(NO3)3·5H2O, Na2WO4·2H2O, HNO3,
CH3COOH, FeCl3·6H2O, FeCl2·4H2O, NH3·H2O, absolute ethanol, RhB (C28H31ClN2O3),
and etc. Nanometer titanium dioxide (P25, Degussa AG, average particle size 21 nm, BET
surface area 50 ± 15 m2/g, anatase/rutile = 80:20) was purchased from Lijie Chemical
Co., Ltd., Shaoxing, China. The annular focusing microwave synthesizer (Discover, CEM,
Matthews, NC, USA) was used to prepare the photocatalysts by the microwave solvother-
mal method. The concentration of RhB was analyzed by an ultraviolet-visible intelligent
multiparameter tester (LH-3BA, Beijing Lianhua Technology, Peking, China). The scan-
ning electron microscope-energy spectrometer (Regulus 8100, Hitachi, Tokyo, Japan) and
field emission transmission electron microscope (Tecnai G2 F20, FEI, Columbia, MD, USA)
were employed to analyze photocatalyst morphology and element composition. An X-ray
diffractometer (D8 ADVANCE, Bruker, Salbruken, Germany) was used to observe the
crystal structure of mBT. Elements and valence states were detected by X-ray photoelectron
spectroscopy (ESCALAB 250XI, Thermo, Waltham, MA, USA).



Int. J. Environ. Res. Public Health 2023, 20, 571 3 of 13

2.2. Preparation of mBT Photocatalyst

Bi2WO6, a certain amount of Bi (NO3)3·5H2O (5.4328 g) was dissolved into 10 mL
of a 1 mol/L HNO3 or a 17.5 mol/L CH3COOH solution, and then stirred for 1 h until
the white suspension became colorless, this was marked as solution A. Na2WO4·2H2O
(1.8472 g) was dissolved in 5 mL of deionized water and marked as solution B. Then,
solution B was added into solution A slowly by a rubber tip, stirred for 1 h and marked as
solution C, putting into the microwave synthesizer at 160 ◦C for 1 h reaction. Finally, the
white sediment was cleaned with deionized water, followed by absolute ethanol more than
three times.

Bi2WO6/TiO2 (BT), the P25 (0.4473 g) was dispersed in 20 mL of an aqueous solution
for 2 min by ultrasonic, and then added into solution C described above ultrasonic dispersed
for 5 min, putting into the microwave synthesizer at 160 ◦C for 1 h. The cleaning process of
white sediment was the same as mentioned above.

Bi2WO6/TiO2/Fe3O4 (mBT), the synthesis process of mBT is shown in Figure 1. A cer-
tain amount of BT was magnetized by the ammonia-iron double-drop method. FeCl2·4H2O
(0.5572 g) and FeCl3·6H2O (1.5148 g) (molar ratio Fe2+:Fe3+ = 1:2) were dissolved in
2.3 mL of deionized water, heated at 70 ◦C and mechanically stirred for 20 min to ob-
tain a 3.75 mol/L iron ion solution. Then 2.3mL of the iron ion solution and ammonia
(2.3 mL 13.3 mol/L) were simultaneously dropped into the above uniformly dispersed
40 mL Bi2WO6/TiO2 aqueous solution by the peristaltic pump, and stirred for 30 min at
80 ◦C. Finally, the obtained mixed solution was heated and stirred for 30 min, and cross
cleaned by deionized water and anhydrous ethanol three times.
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Figure 1. The schematic diagram of the synthesis of mBT and the ammonia iron double drop method.

2.3. mBT-MPR Visible Light Photocatalytic System Experiment

A tubular magnetic field-controlled photocatalytic reactor (MPR) was established, as
referred to in the previous works [26]. The RhB simulated wastewater (220 mL) containing
a certain amount of mBT photocatalyst was sent into the bottom of the MPR photoreactor
by a peristaltic pump.

Firstly, a dark reaction lasting 20 min was carried out to demonstrate the adsorption
equilibrium between the catalyst and RhB pollutant molecules. Then, the LED light belt
(5.5 W) was turned on to perform photocatalytic degradation of Rhodamine B (RhB).
Samples shall be taken every 10 min for 1 h degradation. Finally, the concentration of
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RhB in effluent was obtained by measuring the absorbance at 550 nm wavelength with
an ultraviolet-visible spectrophotometer.

3. Results and Discussion
3.1. The Characterization of mBT
3.1.1. Surface Morphology and Internal Structure

The surface morphology, element composition, and internal structure of mBT were
investigated by SEM, EDS, and HRTEM as shown in Figure 2.
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Bi2WO6 was assembled from a large number of irregular two-dimensional nano-sheets
with a length of 20 nm to 120 nm, and TiO2 (25 nm) and Fe3O4 (6–12 nm) particles were
distributed on its surface. Some particles were distributed on the two-dimensional Bi2WO6
surface as fish eggs due to magnetism, as shown in Figure 2c. Some particles combined
well with Bi2WO6 and formed a stable heterojunction, as shown in Figure 2d. The element
layering image of the composite was shown in Figure 2e, which was composed of Bi,
W, Ti, and Fe elements; no other elements were detected, which was consistent with the
characterization results of X-ray diffraction and X-ray photoelectron spectroscopy, further
proving the successful preparation of mBT.

Analyzing the HRTEM images of Figure 2(a1–c1), TiO2 and Fe3O4 nanoparticles were
embedded in Bi2WO6 nanosheets. The Bi2WO6 lattice, TiO2 lattice, and Fe3O4 lattice of this
composite material are shown in Figure 2(d1). The crystal structure of the prepared samples
was further understood by an X-ray diffractometer. The strong and sharp diffraction peaks
showed that the prepared samples had high crystallinity. The X-ray diffraction spectrum
of the composite material mBT is shown in Figure 2(e1). This composite material, mBT,
havs diffraction peaks at 2θ = 28.6, 33.0, 47.3, and 56.0◦, which correspond to the crystal
planes of (103), (200), (220), and (303) of Bi2WO6 (JCPDS26-1044). The diffraction peaks at
2θ = 25.3 27.4, 36.1, 37.8, 48.0, 54.3, and 62.7◦ correspond to the crystal planes of (101), (110),
(101), (004), (200), (211), and (204) of TiO2 (JCPDS21-1276) and (JCPDS21-1272), respectively.
The diffraction peaks at 2θ= 46.77, 57.18, and 76.88◦ correspond to the crystal planes of
(311), (440), and (511) of Fe3O4 (JCPDS26-1136), indicating the successful preparation of
mBT photocatalyst.

3.1.2. Elements and Valence States Analysis

The chemical composition and electronic state of the mBT visible light photocatalyst
were analyzed by XPS. As the results shown in Figure 3a indicate, the full spectrum indicates
the material is mainly composed of bismuth, tungsten, oxygen, titanium, and iron. The
presence of a C1S peak may be due to carbon dioxide in the air. Figure 3b–f shows the high-
resolution XPS spectra of each element of the material. The peaks at 158.73 eV and 163.96 eV
(Figure 3b) are attributed to Bi4f7/2 and Bi4f5/2, respectively, which are the characteristics
of Bi3+ ions in Bi2WO6. The binding energies of the two peaks are 34.89 eV and 36.78 eV,
respectively, (Figure 3c), which belong to W4f5/2 and W4f7/2, indicating that W exists in
the form of +6 valence in this material. In Figure 3d, the two peaks of 458.22 and 465.47 eV
correspond to Ti2p3/2 and Ti2p1/2, respectively. As shown in Figure 3e, the two peaks at
710.88 and 723.4 eV correspond to Fe2p3/2 and Fe2p1/2, respectively. The existing forms
of Fe are FeO and Fe2O3, indicating the existence of Fe2+ and Fe3+ in the material and
the synthesis of Fe3O4. As shown in Figure 3f, the binding energies of 529.63 eV and
529.35 eV correspond to the O-H bond in Bi2WO6 and the Ti-O bond in TiO2, and 531.17 eV
corresponds to the W-O bond in (WO4) 2− [27–29].

3.2. Screening of Synthesis Methods for mBT

The mBT-MPR photocatalysis system shown in Figure 4a was established to treat
RhB simulated wastewater to evaluate the photodegradation performance of visible light
catalyst. As shown in Figure 4a, a visible light LED light belt (warm white light 3000–3500 k,
50 cm, 5.5 W, Yuexinguang Lighting, Shenzhen, China) was embedded in a quartz sleeve
(Φ2.8 × 21 cm) as inner light source. The stainless-steel tube shell (Φ3.2 cm × 22 cm;
effective volume 170 mL) was covered with a flexible magnetic sheet. The RhB solution
was photodegraded by passing through the gap between the stainless-steel shell and the
quartz sleeve.

Firstly, the influence of the solvent on the photocatalytic activity for Bi2WO6 was
investigated in Figure 4b. The preparation process of Bi2WO6 is described in Section 2.2.
The concentrations of CH3COOH and HNO3 were 1 mol/L and 17.5 mol/L (analytically
pure), respectively. The adsorbed and photodegraded effect of Bi2WO6 prepared with
different solvents was evaluated by the concentration of effluent. The prepared Bi2WO6
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has a larger surface area using HNO3 as solvent than CH3COOH due to the more oxidative
nature of the solvent, which results in a higher removal rate of RhB.
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The three synthesis methods mentioned in Figure 4c are as follows. Method I: the
dispersion of Fe3O4 (0.87 g), P25 (1.7891 g) and 50 mL of deionized water; the solution
B (Na2WO4) was dropped into the solution A (Bi(NO3)3) to obtain mBT by microwave
synthesis. Method II: P25 dispersion was added to solution C (Bi2WO6) to obtain BT
by microwave synthesis. Then, the mBT was prepared using the ammonia-iron double-
drop method shown in Section 2.2. Method III: Bi2WO6 was prepared by the microwave
solvothermal method. Then, the ultrasonic dispersion of Bi2WO6 and P25 was magnetized
by the ammonia-iron double-drop method.

As the results shown in Figure 4c show, the mBT obtained by method II has the best
degradation effect. The difference in RhB degradation effects caused by mBT prepared using
three methods was reflected in the construction process of the Bi2WO6/TiO2 heterojunction.
The presence of Fe3O4 in Method I will affect it. Method III cannot form heterojunction
well, while Method II can better form it under the effects of microwave high temperature
and high pressure, so it has a better photodegradation effect.

The comparison between microwave synthesis for 1 h and hydrothermal reactor
synthesis for 8 h was investigated by method II (Figure 4d). The results indicated the
advantages of green and efficient microwave synthesis. The mBT catalyst was successfully
synthesized by a microwave synthesis instrument with a short preparation time, referring
to our previous research results [26].

3.3. Determination of the mBTcomposite Ratio and the Photocatalytic Mechanism

Different mole ratios of Bi2WO6/TiO2 will affect the heterojunction structure and
result in a change in RhB degradation. In Figure 5a, properly increasing the TiO2 ratio to 1:3
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is conducive to the formation of more heterojunctions, thus improving the photocatalytic
activity of BT. However, a too-high ratio of TiO2 will reduce the visible light absorption
efficiency of Bi2WO6, reducing the photocatalytic performance of BT. Therefore, a suitable
ratio of Bi2WO6/TiO2 will promote better transmission of electrons and holes by the
heterojunction of the two.
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Analyzing the results in Figure 5a,b, the presence of Fe3O4 was investigated to affsee
how it affected the photocatalytic efficiency of mBT. When the molar ratio of Bi2WO6/TiO2/
Fe3O4 was 1:4:1, compared with the molar ratio of Bi2WO6/TiO2, the dark reaction adsorp-
tion decreased by about 4.7 mg/L and the photocatalytic degradation increased by 6 mg/L.
This demonstrated that the presence of Fe3O4 will affect the adsorption by reducing the
surface of Bi2WO6, but it inhibits the recombination of photogenerated carriers through
participating heterojunction and improves photocatalytic efficiency. Continued increase
in the proportion of Fe3O4 to 1:3:1 and 1:4:1.5, both the adsorption and the photocatalytic
effect were obviously affected. It indicated that Fe3O4 would occupy the adsorption site
and the photocatalytic active site. When the molar ratio of Bi2WO6/TiO2/ Fe3O4 was
1:1:0.5, compared to a 1:1 molar ratio for Bi2WO6/TiO2, the presence of Fe3O4 did not
have an obvious impact on the adsorption and photocatalytic efficiency. Considering the
coupling effect of adsorption and photodegradation, the synthesis scheme of mBT was
adopted with a molar ratio of 1:1:0.5. After 40 min of light, the RhB degradation rate
achieved 99.7%.

In order to verify the degradation mechanism of photocatalysts with different het-
erojunction types, the experiments shown in Figure 5c were carried out. The degradation
effect of RhB was significantly improved using mBT compared with mB and mT. That
demonstrated more heterojunction formed when Bi2WO6 contacted Fe3O4 and TiO2 at the
same time. The heterojunctions can greatly inhibit the recombination of photogenerated
carriers, improving the photocatalytic performance of the photocatalyst.

The formation process of heterojunction and the principle of promoting RhB degrada-
tion are shown in Figure 5d–f. The heterojunction type of mT is the traditional type I shown
in Figure 5d. The electrons transfer from the VB (valence band) to the CB (conduction
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band), resulting in electron hole pairs. The electrons of CB transfer from TiO2 to Fe3O4,
producing ·O2−, while the holes accumulate in the VB of TiO2 to generate a large amount of
·OH. The generated ·O2− and ·OH are the main oxidants that degrade RhB molecules [30].

As the process shown in Figure 5e shows, the heterojunction between Fe3O4 and
Bi2WO6 is Z-type in Figure 5e,f. For two kinds of semiconductors, the heterojunction
between TiO2 and Bi2WO6 belongs to p-n type according to references [31,32]. Bi2WO6
and Fe3O4 first absorb visible light energy to produce abundant of e− in the CB of Bi2WO6.
Then, the electrons migrate to VB in Fe3O4 and recombine with h+, promoting the effective
separation of electron hole pairs in Bi2WO6 or Fe3O4. The e− of Fe3O4 returns O2 to ·O2−,
the h+ of Bi2WO6 converts to ·OH [33].

The RhB photodegradation mechanism by mBT was investigated and shown in
Figure 5f. After Bi2WO6 and TiO2 absorb visible light energy, e− at the CB of TiO2 is
easily transferred to the CB of Bi2WO6, so that O2 is reduced by e− to produce ·O2−. At
the same time, h+ frm the VB of Bi2WO6 migrates to the CB of TiO2, and h+ reacts with
H2O to produce ·OH, ·O2− and ·OH degrade RhB molecules into an intermediate product
and h+ can also directly oxidize RhB molecules. The recombination rate of electrons and
holes is greatly reduced, thereby improving the photocatalytic performance of the photo-
catalyst [33–35]. The N-ethyl group on the original RhB molecule is continuously attacked
by the active radicals (·OH, h+, and ·O2−), the electronic delocalization of N-ethyl became
weaker, the ethyl group detaches from different parts of RhB, and the opening-ring process
continues with the continuous attack by active radicals [36].

3.4. The analysis of Cyclic Stability and Energy Consumption

As shown in Figure 6a–c, the mBT-MPR visible light catalytic system (LED 5.5 W) was
used to treat 220 mL of RhB simulated wastewater with an initial concentration of 10 mg/L
or 20 mg/L.
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In Figure 6a, when the dosage of mBT is 0.5 g/L, the 10 m/L RhB wastewater is treated
four times continuously, and the removal stability of the effluent is not satisfactory. It can be
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seen from the data in Figure 6a that the adsorption and photocatalytic performance of mBT
decrease with the increase in use times. That indicates the amount of mBT is insufficient to
fully degrade RhB at a concentration of 10 mg/L. Therefore, to investigate the relationship
between the dosage of mBT and effluent stability, the dosage of mBT was increased to
1 g/L, as shown in Figure 6b. After two times of use, the adsorption effect of mBT obviously
decreased, but the photocatalytic effect was improved, so that the stability of the effluent
was better than in Figure 6a.

In order to further verify the relationship between mBT dosage and RhB photodegrada-
tive stability, the initial concentration of RhB was increased to 20 mg/L in Figure 6c. When
the dosage of mBT was 1 g/L, the stability of the effluent decreased significantly as the
influent concentration increased to 20 mg/L. In conclusion, at the novel mBT-MPR visible
light catalytic system, the dosage of catalyst mBT is closely related to the concentration
of influent RhB. Only when the dosage of mBT is sufficient, can better effluent stability
be achieved.

In this study, an LED light belt was used to simulate visible light. To calculate the elec-
tric energy consumption, a parameter of electrical energy per order (EEO, kWh/m3/order)
can be defined as the electrical energy (kWh) for 90% removal by one order of magnitude
per m3 of contaminated water. It combines light intensity, residence time, and volume with
pollutant removal efficiency into a single measurement method [37–40]. The EEO value is
calculated using this expression:

EEO =
Pt

Vlog
(

Ci/C f

) (1)

where P is the power of the LED light belt (kW, 0.0055 kW in this study), t is the irradiation
time (H), V is the volume of simulated wastewater (m3, 220 mL in this study, 0.00022 m3),
and Ci and Cf are the pollutant concentrations at the initial and final times (mg/L) respec-
tively. Substitute the value to get EEO. As shown in Figure 6d, the cumulative electric energy
consumption value of the mBT-MPR system was described under the different dosages
of mBT (0.5 g/L or 1 g/L). When the initial concentration of RhB was 10 mg/L and the
dosage of mBT was 1 g/L, the effluent was relatively stable, and the mean value of energy
consumption of four times was 22.8 kWh/m3/order, which was obviously lower than that
of 0.5 g/L mBT. According to the results of Table 1, the higher initial concentration and
volume of organic pollutants will result in more difficulty with photocatalytic degradation,
a longer degradation time, and a higher EEO value.

Table 1. Comparison of electrical energy consumption of different photocatalytic degradation
systems.

Pollutants
(Ci mg/L; V mL) Removal (%) Photocatalyst

(Dosage g/L)
Photocatalysis

Conditions
Energy

(kWh/m3/Order) Ref.

Rhodamine B
10 mg/L, 220 mL 91.7% 60 min Bi2WO6/TiO2/Fe3O4 1 g/L LED light belt 5.5 W 22.8 mean value This study

Tetracycline
10 mg/L, 60 mL 68.4% 80 min Ag3PO4 0.17 g/L Blue-LEDs 2.6 W 113 [38]

Tetracycline
30 mg/L, 60 mL 49.3% 80 min Ag3PO4 0.17 g/L Blue-LEDs 2.8 W 212 [38]

Tetracycline
50 mg/L, 60 mL 45.2% 80 min Ag3PO4 0.17 g/L Blue-LEDs 5.2 W 239 [38]

methylene blue
10 mg/L, 200 mL 47% 180 min ZnCoFe LDH 0.1 g/L LED lamps 100 W 5410 [39]

Reactive Black 5
20 mg/L, 1 L 89.9% 120 min Fe3O4-WO3-APTES 0.2 g/L LED lamp 15 W 34.7 [40]
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4. Conclusions

Magnetic composite visible light catalyst mBT was successfully prepared by the
ammonia-iron double-drop and microwave solvothermal methods. The optimal molar
ratio of Bi2WO6, TiO2, and Fe3O4 in the mBT photocatalyst was 1:1:0.5. The morphology
results of mBT showed that TiO2 and Fe3O4 particles were loaded on the surface of Bi2WO6
sheets. Heterojunction structures of mBT are constructed by Fe3O4, TiO2, and Bi2WO6 in
three parts, obviously improving the separation and transfer of photogenerated electron
hole pairs at the heterojunction interface.

The novel mBT-MPR visible light catalytic system with 5.5 W was proposed to treat
220 mL of RhB simulated wastewater. The advantages of that system are simple operation,
a good mass transfer effect, and the fact that no catalyst separation is required for the
effluent. After 1 h of visible light irradiation, the average removal rate of RhB at an initial
concentration of 10 mg/L for four times was 91.7%.

The removal effect of RhB by the mBT-MPR photocatalytic system was mainly due
to the coupling effect of adsorption and photocatalysis by mBT. The dosage of mBT is
correlated with the concentration of influent RhB. To obtain stable effluent, a reasonable
mBT dosage should be chosen to match the corresponding influent pollutant concentration.
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