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Abstract: Land surface emissivity is a key parameter that affects energy exchange and represents the
spectral characteristics of land cover. Large-scale mid-infrared (MIR) emissivity can be efficiently
obtained using remote sensing technology, but current methods mainly rely on prior knowledge and
multi-temporal or multi-angle remote sensing images, and additional errors may be introduced due
to the uncertainty of external data such as atmospheric profiles and the inconsistency of multiple
source data in spatial resolution, observation time, and other information. In this paper, a new
practical method was proposed which can retrieve MIR emissivity with only a single image input by
combining the radiance properties of TIR and MIR channels and the spatial information of remote
sensing images based on the Sentinel-3 Sea and land surface temperature radiometer (SLSTR) data.
Two split-window (SW) algorithms that use TIR channels only and MIR and TIR channels to retrieve
land surface temperature (LST) were developed separately, and the initial values of MIR emissivity
were obtained from the known LST and TIR emissivity. Under the assumption that the atmospheric
conditions in the local area are constant, the radiance transfer equations for adjacent pixels are iterated
to optimize the initial values to obtain stable estimation results. The experimental results based
on the simulation dataset and real SLSTR images showed that the proposed method can achieve
accurate MIR emissivity results. In future work, factors such as angular effects, solar radiance, and
the influence of atmospheric water vapor will be further considered to improve performance.

Keywords: middle infrared; land surface emissivity; thermal infrared; remote sensing; split-window
algorithm; Sentinel-3 SLSTR

1. Introduction

Land surface emissivity is the ratio of the thermal radiance of the target to that of the
blackbody with the same temperature, which represents the effectiveness of converting heat
energy into radiant energy [1]. The mid-infrared (MIR) channel (3–5 µm) plays an important
role in multiple application fields, including land surface classification [2], quantitative
vegetation monitoring [3,4], and forest fire detection [5], and has the features of reduced
atmospheric influence and greater variability of emissivity compared with the thermal
infrared (TIR) spectrum [6,7], which has great potential to improve the performance of land
surface temperature retrieval [8,9] and target detection [10].

MIR emissivity can be obtained efficiently based on remote sensing technology using
multiple methods [11], which can be grouped into three categories: the kernel-driven
bidirectional reflectance distribution function (BRDF) method [11–13], the temperature-
independent spectral indices (TISI) method [14,15], and the temperature emissivity sep-
aration (TES) method [16,17]. The BRDF method calculates the MIR emissivity by the
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directional reflectance, which can be characterized using the semi-empirical BRDF to de-
scribe the non-Lambertian reflection behavior, based on Kirchhoff’s law [18]. The BRDF
is constructed by combining different kernel functions for modeling, such as the Ross–Li
model, assuming that the shapes of the function in the MIR spectral region are the same as
those in the visible and near-infrared regions [7]. The fitting of BDRF parameters needs ob-
servation data with more than three angles of the same pixel, and only some remote sensing
data sources can meet the requirements. The TISI method analyzes the emissivity spectra by
combining the MIR and TIR channels under the assumption that the daytime TISI without
solar radiance contribution is equal to the nighttime TISI. The bidirectional reflectance
is estimated from the nighttime observation data to calculate the hemisphere-directional
reflectance using an empirical model or BRDF model, and then the directional emissivity in
the MIR channel is calculated based on Kirchhoff’s law [19,20]. The requirement for diurnal
remote sensing image input not only limits the applicability of the algorithm but changes
in the land surface or weather during the observation interval will also introduce more
errors. The TES method can retrieve the emissivities of both TIR and MIR channels after
atmospheric correction based on the relationship between the minimum emissivity and
the maximum–minimum apparent emissivity difference (MMD) [21]. This method can be
achieved with only a single remote sensing image, but the accuracy of the results strongly
depends on the effect of atmospheric correction, which requires the high accuracy of the
input external atmospheric parameters, such as synchronously measured or reanalysis
atmospheric profiles, which is often difficult to guarantee.

It can be seen that although existing methods have achieved MIR emissivity estimation
based on a variety of remote sensing data and successfully carried out several applications,
there are still some limitations in practical use. For the TISI method, the variation of cloud
coverage, precipitation, and other factors make the actual situation unable to meet the
algorithm assumptions [22]; for the BRDF method, the different geometric information
such as observation angles may make the image geometric registration more sensitive
to noise [11]; and for the TES algorithm, although the MIR emissivity can be calculated
from single-view images, the algorithm requires accurate atmospheric correction, and the
observation of simultaneous and spatially continuous atmospheric parameters is hard to
obtain [22]. Therefore, this paper aims to develop a new practical MIR emissivity estimation
method that does not require additional data other than single-view remote sensing images.

The advantages of the split-window (SW) algorithm, which does not require atmo-
spheric correction [23], and the stability of TIR emissivity [24] are fully exploited in the
new method. SW algorithms using only TIR channels and both MIR and TIR channels
were developed separately, and equations were established to obtain initial values of MIR
emissivity using the principle that LST is independent of channels to calculate the initial
values of MIR emissivity. Subsequently, assuming that the atmosphere is stable in the local
area, the initial values were optimized using spatial information, which is the similarity of
atmospheric conditions between neighboring pixels of the image due to their geographical
proximity. The proposed method is applied to the simulation dataset and real images of
Sentinel-3 SLSTR data with two TIR channels and one MIR channel observed at nighttime
to avoid the influence of solar radiance on the MIR channel, respectively, and the accuracy
verification results showed the effectiveness of the new method.

2. Data and Method

Figure 1 shows the flowchart of the proposed method, which includes three steps:
(1) remote sensing dataset simulation, (2) initial values estimation, and (3) emissivity results
optimization. First, the simulation dataset of the Sentinel SLSTR data is built using the
MODTRAN model driven by the global atmospheric profiles and land spectral library. Then,
the initial values of MIR emissivity are first obtained by the joint of the TIR SW algorithm and
the MIR-TIR split-window algorithm. Finally, the retrieval results are obtained by iterative
optimization with the spatial information provided by the neighboring pixels by assuming
that the atmospheric parameters are constant in the local area of the Sentinel-3 image.
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2.1. Remote Sensing Dataset Simulation

To develop the retrieval algorithm, a simulation dataset characterizing typical global
land surface and atmospheric conditions is required. Therefore, 71 land surface samples,
including 36 soil, 4 vegetation, 23 rock, 4 man-made, and 4 water samples, from ASTER [25]
and UCSB [26] spectral libraries were selected to calculate the emissivity (ε) of Sentinel-3
MIR and TIR channels. Moreover, the atmospheric downward radiance, upward radi-
ance, and transmittance (L↓, L↑, τ) were simulated by the moderate-spectral-resolution
atmospheric transmittance (MODTRAN) model using the TIGR atmospheric profiles [27],
which presented global typical atmospheric conditions, and the column water vapor (CWV)
varies between 0.06 g/cm2 and 6.29 g/cm2. Considering the accuracy degradation of the
SW algorithm under the humid atmosphere, this paper will base the analysis on relatively
dry atmosphere conditions (CWV < 2.50 g/cm2) [22], with a total of 812 clear-sky global
atmospheric profiles (global average CWV = 0.59 g/cm2), covering polar (regional average
CWV = 0.23 g/cm2), mid-latitude (regional average CWV = 0.79 g/cm2), and tropical
(regional average CWV = 1.69 g/cm2).

After obtaining the emissivity and atmospheric parameters, the observed radiance at
the top of the atmosphere (LTOA) of the TIR and nighttime MIR channel can be calculated
by the radiance transfer equation (RTE) shown in Equation (1):

LTOA =
[
ε · B(Ts) + (1− ε) · L↓

]
· τ + L↑ (1)
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where B(.) is the Planck function and Ts is the LST which is equal to the bottom air
temperatures of the TIGR atmospheric profiles plus a temperature offset ([−10, 20] K with
an interval of 5 K). In total, the simulation dataset in this paper contains 403,564 records
(71 emissivities, 812 atmospheric profiles, and 7 LSTs).

It should be noted that the emissivity, radiance, and atmospheric parameters are
all related to the sensor channels and are obtained by integrating the value of a specific
wavelength (λ) with the spectral response function (SLF). The calculation is shown in
Equation (2), and the SLF of the MIR and TIR channels of the Sentinel-3 SLSTR sensor is
shown in Figure 2 [28].

Pchn =

∫ λ2
λ1

P(λ) f (λ)dλ∫ λ2
λ1

f (λ)dλ
(2)

where Pchn is the channel parameters, P(λ) and f (λ) are the parameters and spectral response
value at wavelength λ, and λ1 and λ2 are the upper and lower bounds of the wavelength
of the channel, respectively.
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2.2. Initial Values Estimation

One TIR SW algorithm and one MIR-TIR SW algorithm were developed based on
the simulation dataset, TIR emissivity was retrieved using the NDVI-based method [24],
and the LST was retrieved by the TIR SW algorithm. Then, the initial MIR emissivity can
be obtained using the MIR-TIR SW algorithm after inputting the known TIR emissivity
and LST.

2.2.1. Development of SW Algorithms

The generalized SW algorithm [29] using two TIR channels (TIR SW), which linearizes
the radiative transfer equation by assuming that atmospheric and land surface temperatures
are not very different and that absorption is weak [30], corrects the LST errors using
emissivity parameterization to achieve viewing angle-dependent LST retrieval [31]. The
LST can be expressed in terms of a linear combination of brightness temperatures (BTs) of
two TIR channels as in Equation (3).



Int. J. Environ. Res. Public Health 2023, 20, 37 5 of 14

Ts = A0 + P
(
Ti + Tj

)
/2 + M

(
Ti − Tj

)
/2 (3)

where Ts is the LST, Ti and Tj are the BTs of TIR channels, A0 is a constant, and both P and
M are functions of the emissivity, as shown in Equation (4).

P = 1 + α 1−ε
ε + β ∆ε

ε2

M = γ′ + α′ 1−ε
ε + β′ ∆ε

ε2
(4)

where ε and ∆ε is the averaged and differential values of TIR emissivity, α, β, α′, β′, and
γ′ are coefficients. Moreover, a quadratic term for brightness temperature difference was
added according to the LST error statistics [29], and then the TIR SW algorithm is shown in
Equation (5).

Ts = a0 +

(
a1 + a2

1− ε

ε
+ a3

∆ε

ε2

)(Ti + Tj

2

)
+

(
a4 + a5

1− ε

ε
+ a6

∆ε

ε2

)(Ti − Tj

2

)
+ a7

(
Ti − Tj

)2 (5)

where a0, a1, . . . , and a7 are the algorithm coefficients that can be fitted based on the
simulation dataset. The algorithm has been utilized to produce MODIS LST products and
has been successfully applied to other TIR remote sensing data [32,33], and the performance
has been extensively validated and proven to achieve accurate LST results [34].

In addition, the three-channel split-window algorithm that included one MIR and
two TIR channels [35] (MIR-TIR SW) was also developed. The MIR-TIR SW algorithm first
proposed to retrieve LST from Geostationary Operational Environmental (GOES) satellite
data, which was obtained by approximating the Planck function using a power function,
linearizing the radiative transfer equation at the brightness temperature of the band and
by regressing the fitted parameters that consider the atmospheric transmittance. After
linearizing the radiative transfer equation around brightness temperature at surface level
(T∗i ) and top-of-atmosphere (Ti) and approximating the Planck function with a power
function [35], Equations (6) and (7) are obtained.

T∗l − Tl =
1− τl

τl

(
Tl − T↑a

)
(6)

Ts − T∗l =
(1− ε l)

ε l

[
T∗l
nl

+
(nl − 1)

nl
(1− τl) · T∗l − (1− τl) · T↓a

]
(7)

where Ts is the LST, nl is the fitted constants of the power function, εl is the channel
emissivity, τl is the transmittance, and T↑a and T↓a are the mean radiative temperature of
the atmosphere in the upward and downward direction, respectively. Combining the two
equations gives Equation (8).

Ts = C1lTl − C2lT
↑
a − C3lT

↓
a (8)

C∗l = k0(∗) + k1(∗)
(1− ε l)

ε l
(9)

where C1l, C2l, and C3l are the functions consisting of nl, εl, and τl, and they can be
expressed by Equation (9) using a regression method to find the appropriate coefficients
k0 and k1 when the transmittance is not available. Then, the MIR-TIR algorithm form is
shown in Equation (10).

Ts = b0 + b1Tm + b2Ti + b3Tj + b4
1− εm

εm
Tm + b5

1− εi
εi

Ti + b6
1− ε j

ε j
Tj (10)

where Tm, εm are the BT and emissivity of the MIR channel, Ti, εi and Tj, εj are that of the
two TIR channels, and b0, b1, . . . , and b6 are the algorithm coefficients that can be also fitted
using the simulation dataset.



Int. J. Environ. Res. Public Health 2023, 20, 37 6 of 14

2.2.2. MIR Emissivity Estimation

The emissivity is required to be known to retrieve the LST using the SW algorithm;
the TIR emissivity can be calculated as follows for the TIR SW algorithm [24]:

NDVI < NDVIs ε = c + ∑ eλ · ρλ

NDVI ≥ NDVIv ε = εv + dε
NDVIs ≤ NDVI ≤ NDVIv ε = εv · f + εg · (1− f ) + 4 · dε · f · (1− f )

(11)

where NDVI is the normalized difference vegetation index which can be calculated by the
reflectance of the red and near-infrared channels and NDVIs and NDVIv are the thresholds
for non-vegetated (0.20) and fully vegetated (0.86) pixels. For the non-vegetated pixels, ρλ
is the Sentinel-3 visible/near-infrared channel reflectances and c and eλ are the empirical
coefficients and the values are shown in Table 1. It can be seen that the fitted RMSEs for
the TIR channels are 0.0174 and 0.0085, respectively, which is similar to the accuracy of
the results of the previous study [1]. However, the RMSE of the fitting results for the MIR
emissivity reaches 0.0572, which could be due to its high variability, and thus the NDVI
method may not be suitable for the estimation of the MIR emissivity.

Table 1. Empirical coefficients for estimating the emissivity.

Channel c e1 e2 e3 e4 e5 e6 RMSE

7 1.0043 −0.2230 −1.0291 1.3553 −0.2443 0.2590 −0.9229 0.0572
8 0.9368 0.0721 −0.2294 0.1593 −0.0179 0.0646 0.0009 0.0174
9 0.9638 0.0674 −0.2542 0.2387 −0.0861 0.0369 0.0051 0.0085

For the fully vegetated pixels, εv is the emissivity of the vegetation component and dε
is the emissivity increment caused by the cavity effect of multiple scattering [36]. For the
mixed pixels, εg is the emissivity of the background component, which can be obtained by
TIR channel normalization [37] based on the land cover type-based look-up table from the
previous study [24] as εv, and f is the fraction vegetation coverage that can be estimated by
the following equation:

f =

(
NDVI − NDVIs

NDVIv − NDVIs

)2
(12)

Then, the LST can be retrieved by the TIR SW algorithm using the TIR emissivity.
Based on the BTs of two TIR channels (Ti, Tj) and the MIR channel (Tm), the known LST
(Ts), TIR emissivity (εi, εj), and algorithm coefficients (b0, b1, . . . , and b6) of the TIR-MIR
SW algorithm, the initial value of the MIR emissivity (εm) can be calculated as shown below
after substituting into Equation (10).

εm =
b4Tm[

Ts −
(

b0 + b1Tm + b2Ti + b3Tj − b4Tm + b5
1−εi

εi
Ti + b6

1−ε j
ε j

Tj

)] (13)

2.3. Emissivity Result Optimization

It is assumed that the atmospheric conditions are stable within a local spatial window
of N*N pixels of the Sentinel-3 remote sensing image, implying that the three atmospheric
parameters (downward radiance, upward radiance, and transmittance) are considered
constant. For the parameters in the set of the N*N RTEs (Equation (14)) corresponding to
N*N pixels within the local spatial window, the LSTs (Ts) have been obtained by the TIR-SW
algorithm, the initial values of MIR emissivities (εm) have been estimated by Equation (13),
and only the three atmospheric parameters (Lm↓, Lm↑, τm) are unknown. When N*N is
greater than the number of unknowns, then the least squares method was utilized, which
can be used to find the best approximation of the atmospheric parameters by minimizing
the error between the resulting calculated top-of-atmosphere radiance and the remote
sensing observations.
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L1

TOA =
[
ε1

m · B
(
T1

s
)
+
(
1− ε1

m
)
· Lm↓

]
· τm + Lm↑

L2
TOA =

[
ε2

m · B
(
T2

s
)
+
(
1− ε2

m
)
· Lm↓

]
· τm + Lm↑

. . .
LN×N

TOA =
[
εN×N

m · B
(
TN×N

s
)
+
(
1− εN×N

m
)
· Lm↓

]
· τm + Lm↑

(14)

Then, the MIR emissivity of the pixels within the local spatial window was modi-
fied using the fitted atmospheric parameters as below, then through re-substituting into
Equation (14) to update the atmospheric parameters. Iterating the process until the stop
condition is satisfied, which is either that the change in the output of two consecutive
iterations is small and the result is stable, or that the number of iterations reaches the upper
limit, and the final MIR emissivity retrieval results were obtained.

εk
m =

Lk
TOA−Lm↑

τm
− Lm↓

B
(
Tk

s
)
− Lm↓

(15)

3. Experimental Results

The proposed method was used in the simulation dataset to evaluate the theoretical
performance, and then applied to real Sentinel-3 SLSTR images to obtain the MIR emissivity
retrieval results. Finally, the application accuracy is verified by cross-comparison with the
MODIS MIR emissivity remote sensing product.

3.1. Retrieval of the Simulation Dataset
3.1.1. LST Retrieval Results

To better simulate the real satellite observation situation, 0.05 K and 0.08 K noise
equivalent differential temperatures (NE∆T) were added to the BTs of two TIR channels
and one MIR channel based on the sensor evaluation result, separately [38]. Moreover, the
uncertainties of 0.030, 0.015, and 0.015 were also included in the emissivity of each channel
to present the possible estimation error according to the previous studies [1,37]. Then, the
coefficients of the TIR and MIR-TIR SW algorithms were fitted based on the simulation
dataset including noise for all parameters using multiple linear regression, and the LST
RMSEs of two SW algorithms for different regions are shown in Table 2. It can be seen
that both SW algorithms can retrieve the LST with RMSE < 1.50 K, while the MIR-TIR SW
algorithm gives slightly more accurate LST results with RMSE differences of 0.04 K, 0.12 K,
0.25 K, and 0.07 K for different regions, respectively, and the errors become larger with the
increase in CWV for both SW algorithms.

Table 2. LST RMSEs of two SW algorithms for different regions.

SW Algorithm Polar Mid-Latitude Tropical Overall

TIR 0.46 0.80 1.12 0.80
MIR-TIR 0.44 0.70 0.89 0.75

The TIR SW algorithm was used to provide LST values for the calculation of MIR
emissivity in Equation (13); the LST residual histograms for different regions are shown in
Figure 3. It can be seen that the residual distribution approximates a normal distribution
with mean values equal to 0, while approximately 98.60%, 90.94%, 82.43%, and 91.86%
of the residuals fall within the [−1.0, 1.0] K interval, respectively. Overall, the TIR SW
algorithm can retrieve the LST accurately and ensure the reliability of subsequent MIR
emissivity calculations.
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3.1.2. MIR Emissivity Results

After obtaining the LSTs, the initial values of the MIR emissivity were calculated
according to Equation (13), and then iterative optimization is applied to obtain the results
using Equations (14) and (15). The RMSEs of MIR emissivity for different regions are shown
in Table 3, the errors in the initial values calculated directly are relatively large, with an
RMSE of 0.055 for global atmospheric conditions and all local RMSEs above 0.045. This
could be due to the LST retrieval using the TIR channel being more than twice as sensitive
to errors in emissivity than the MIR channel [9], which makes the MIR emissivity more
affected by the LST errors.

Table 3. RMSEs of MIR emissivity for different regions.

MIR Emissivity Polar Mid-Latitude Tropical Overall

Initial values 0.053 0.045 0.048 0.055
Optimized results 0.029 0.031 0.039 0.035

After optimization, all the RMSEs were reduced to within 0.04, with a maximum
of 0.039 (tropical), and a minimum of 0.029 (polar), which is comparable to the accuracy
validated in the previous studies [39,40] and outperforms the results of applying the NDVI
method for the TIR channel to the MIR channel in Section 2. The residual histograms are
shown in Figure 4, the distribution is close to a normal distribution with a mean value
of 0, while 78.06%, 70.13%, 59.18%, and 64.52% of the residuals are within the interval
[−0.03, 0.03] under different regions of the atmosphere, respectively. This demonstrates the
effectiveness of the iterative optimization method and the ability to achieve better results
under dry atmospheric conditions.
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3.2. Sentinel-3 SLSTR Images Application

The proposed method was applied to one Sentinel-3 SLSTR image that was observed
on 5 July 2022, 15:37:49 UTC, and the study area is in Western China and includes a variety
of land cover types with soil, vegetation, and water. The MIR emissivity retrieval image is
shown in Figure 5a and exhibits significant land surface heterogeneity with data ranging
from 0.59 to 0.99, and the land cover map (Figure 5b) is also obtained based on the MODIS
land cover type product (MCD12Q1) to present the variation between different classes. For
the different locations, the emissivity in the central part of the study area is lower than in
other regions, while for the different land cover types, vegetation and water have higher
emissivity than soil. The average emissivities, found in the statistical results based on the
land cover types, are 0.927 for soil, 0.968 for vegetation, and 0.971 for water, respectively,
which is consistent with the theoretical values of the samples in the simulation dataset.

The MODIS MIR emissivity product (MOD11B1) was utilized to validate the accuracy
of the retrieval image, an evaluation result of RMSE = 0.039 was achieved and the residual
histogram is shown in Figure 6a. The histogram shows a normal distribution with a total
of 57.74% of the residuals within the interval [−0.03, 0.03], which is generally consistent
with the validation results based on the simulation dataset, and comparable accuracy was
achieved without relying on multiple source remote sensing images and external data. In
addition to the numerical comparison, the shape of the emissivity band spectra was also
considered. The average emissivity curves of the three land cover classes in the retrieval
results were compared with the spectral curves in the simulation dataset, and the results are
shown in Figure 6b. It can be seen that the vegetation has the greatest variation, probably
because different properties such as morphology and water content may produce variations
in emissivity, followed by soil, and the water has the most stable shape and the closest
retrieval result. In general, the emissivity shapes of the three land cover classes in the
retrieval results vary with the channel in patterns that are generally consistent with the
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spectral library data. Furthermore, the variability of the spectra of different land cover
types in the MIR channel was also taken into account. The statistical significance test for
the difference in MIR emissivity between different classes was carried out, and the results
showed that the emissivities between the pixels of the three land cover types shown in
Figure 5b are significantly different from each other. The results of the cross-validation and
significance test prove the effectiveness of the proposed method, which is beneficial for
further analysis of LST retrieval or land surface spectrum using the MIR channel.
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4. Discussions
4.1. Relationship between the Errors of LSTs and Emissivity

According to the principle of the proposed method, the accuracy is directly influenced
by the results of the SW algorithms. According to the previous study [9], the relationship
between the errors of LSTs and emissivity can be derived from the Planck function as
Equation (16):

∂Ts

∂ελ
=

Ts

ελ
· exp(c2/λTs)− 1

c2/λTs · exp(c2/λTs)
(16)

where Ts is the LST, ελ is the spectral emissivity, λ is the wavelength, and c2 is the radiance
constant of the Planck function.

The quantitative relationship between the errors of emissivity and wavelength is
shown in Figure 7; it can be seen that the errors decrease with increasing wavelength and
increase with increasing LST errors. When the LST is 300 K, the LST noise of 0.4, 0.8, and
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1.2 K, may lead to emissivity errors of 0.014, 0.029, and 0.043 at 4 µm, respectively. In
addition, at 3 µm, the emissivity errors increase to 0.019, 0.038, and 0.058. Moreover, with
the same LST error, the errors of the emissivity in the cold cases are larger. For example, the
emissivity errors caused by LST noise of 0.4, 0.8, and 1.2 K increase to 0.017, 0.033, and 0.050
at 4 µm, when the LST is 280 K. Therefore, the RMSE in the polar region in Table 3 is larger
than in the other regions. As can be seen from Figure 6, most errors in the retrieval result of
MIR emissivity are within 0.03, which would cause approximately 0.8 K uncertainty at the
LST of 300 K.
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4.2. Future Improvements of the Proposed Method

The influence of the view zenith angle (VZA) is not fully taken into account by the
proposed method. The local zenith angle of the oblique view of the SLSTR data is close
to 55◦, which may cause angular effects resulting in emissivity variations [41], as well as
atmospheric parameters [33] due to differences in transmission paths. This could cause
the atmospheric and land surface parameters in the simulation dataset to not represent
the actual observations well, reducing the accuracy of the LST and the emissivity results.
Therefore, fitting the SW algorithm coefficients separately for different VZAs, and increasing
the angular normalization of the observed radiance at the top of the atmosphere will help
to improve performance.

The CWV is another key factor to be considered in the proposed method. The error of
the SW algorithm increases with the CWV [32], which will directly affect the estimation
accuracy of the initial value of MIR emissivity. Therefore, the experiments were conducted
in relatively dry atmospheric conditions in this paper. The use of more robust LST esti-
mation methods, such as the hybrid algorithm that requires no additional input [42–44],
will be applied to enable the algorithms to be suitable to a wider range of atmospheric
conditions. Moreover, the empirical relationship between solar radiance and CWV has
been summarized in previous studies [45]. So, the applicability of the proposed method can
be extended to all-day remote sensing images by estimating CWV using the TIR channel
correlation-based algorithm, such as the modified split-window covariance-variance ratio
(MSWCVR) algorithm [46], and thus eliminating solar radiance in MIR channels observed
during the daytime without introducing additional data.

As the iterative optimization is performed in an image window with constant atmo-
spheric conditions, there may be patches of spatial discontinuity in the retrieval image
of MIR emissivity, and the selection of a suitable filtering method to enhance continuity
is considered. Finally, cross-comparison with the MODIS MIR emissivity product, the
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spectral shape similarity and differential significance in emissivity between different land
cover types were used for accuracy validation, and more ground-measured data will be
introduced to further illustrate the effectiveness of the proposed method.

5. Conclusions

In this paper, a practical MIR emissivity retrieval method was proposed based on
the principle of radiance transfer from the nighttime Sentinel-3 SLSTR remote sensing
image. The TIR channel-based SW algorithm and the TIR and MIR channel-based SW
algorithm were combined to provide the initial values of the MIR emissivity, and the spatial
information provided by the assumption based on local region atmospheric stability was
used for iterative optimization by the RTE. The proposed method was investigated using
the simulation dataset built on multiple land surface samples and global atmospheric
profiles, and experimental results under different atmospheric conditions show that the
new method has accurate theoretical performance. The method was also applied to the
Sentinel SLSTR image of China observed on 5 July 2022, and by comparing the land cover
types in the study area, the MIR emissivity image has a reasonable spatial distribution and
the numerical relationships between various land types are consistent with the simulation
dataset. Moreover, cross-comparison results with the MODIS MIR emissivity product
showed that the RMSE of the retrieved image is 0.039, which is useful for follow-up studies
in several applications.
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