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Abstract: Over time, large amounts of clinical data have accumulated in electronic health records
(EHRs), making it difficult for healthcare professionals to navigate and make patient-centered de-
cisions. This underscores the need for healthcare recommendation systems that help medical pro-
fessionals make faster and more accurate decisions. This study addresses drug recommendation
systems that generate an appropriate list of drugs that match patients’ diagnoses. Currently, rec-
ommendations are manually prepared by physicians, but this is difficult for patients with multiple
comorbidities. We explored approaches to drug recommendations based on elderly patients with
diabetes, hypertension, and cardiovascular disease who visited primary-care clinics and often had
multiple conditions. We examined both collaborative filtering approaches and traditional machine-
learning classifiers. The hybrid model between the two yielded a recall at 5 of 76.61%, a precision at 5
of 46.20%, a macro-averaged area under the curve of 74.52%, and an average physician agreement
of 47.50%. Although collaborative filtering is widely used in recommendation systems, our results
showed that it consistently underperformed traditional classification. Collaborative filtering was
sensitive to class imbalances and favored the more popular classes. This study highlighted challenges
that need to be addressed when developing recommendation systems in EHRs.

Keywords: machine learning; collaborative filtering; classificaiton; diseases; electronic medical
prescriptions; recommender systems

1. Introduction

Noncommunicable diseases (NCDs) are a group of diseases that are not caused by
infection and cannot be transmitted through contact or a carrier [1]. They are caused by
a combination of genetic, environmental, physiological, and behavioral factors. NCDs
usually have a long duration and slow progression, and symptoms accumulate steadily
over time. These include diabetes mellitus, hypertension, dyslipidemia, cerebrovascular
diseases, heart diseases, chronic lower respiratory diseases, and cancer. NCDs account for
more than 71% of annual deaths and are the leading cause of death worldwide. Nearly three
quarters of all NCD deaths occur in low- and middle-income countries [2]. The increase
in NCDs is largely attributable to four major risk factors: tobacco use, physical inactivity,
harmful alcohol consumption, and unhealthy diets. Many people can have multiple NCDs,
especially the elderly [1].

Cardiovascular disease is the leading cause of mortality in patients with diabetes,
and many factors, including hypertension, contribute to this high prevalence of cardiovas-
cular disease [3]. Hypertension is about twice as common in patients with diabetes as in
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those without the disease. Diabetes, hypertension, and cardiovascular disease are the most
common chronic NCDs causing high mortality and morbidity worldwide. With the rapid
increase in NCD-related deaths in Asia-Pacific countries, NCDs are now the leading cause
of disease burden in the region [4].

The management of patients with complex comorbidities has long been considered
a challenging task. For patients with diabetes, hypertension, and cardiovascular disease,
a physician often prescribes drugs for one to six months, depending on their symptoms and
the severity of the disease. The physician also schedules an appointment for the patient’s
next visit to continue treatment. The physician may also order a pathological examination
for the next visit. Together with the results of the physical examination, the results of
the pathological examination are used to consider an appropriate medical prescription.
Treatment of patients with diabetes, hypertension, and cardiovascular disease requires the
continuous prescription of drugs. There may be increases and decreases in the amount
taken, but patients must continue to take the drugs until the results of the pathological
examination are satisfactory. The drugs prescribed to the patient must be appropriate for
the patient’s pathological results, and the number and dosage must be correct. In this way,
the drugs can be used safely by the patients.

Electronic health records (EHRs) document patients’ complete medical histories, in-
cluding their diagnoses, procedures, drugs, imaging, and laboratory results. In recent
decades, healthcare digitalization has increased the availability of patient data for health
data analytics. The increasing adoption and use of EHRs has created a tremendous oppor-
tunity to leverage health data for clinical decision making.

Modern EHRs code patients’ diseases and conditions using diagnosis codes. The Inter-
national Classification of Diseases (ICD) is a standardized classification system for diseases
and conditions commonly used in EHRs globally. The ICD codes have long been used for
clinical, health management, and epidemiological purposes. The ICD-10 version includes
nearly 70,000 codes. Drugs can be referred to by their generic name or their brand name.
The generic name does not refer to the brand of a particular company. It provides a clear
and unique identification and appears on all drug and medicine labels. Generic names are
often an abbreviation of the chemical name, structure, or formula of the drug. Standard
terminologies, such as ICD-10 and generic names, facilitate the secondary use of EHR data
and support data-driven clinical and translational research.

EHR research ranges from disease classification to readmission prediction to mortal-
ity assessment. Drug recommendation systems are one area being studied in this field.
The goal of drug recommendation systems is to provide a list of relevant drugs based on the
patient’s disease conditions. In recent years, recommendation systems have evolved and
become indispensable for certain businesses, such as Google. Advances in recommender
systems may help physicians prescribe drugs for patients by utilizing extensive EHR data.
In addition to recommending a list of drugs, it is important to provide explanations for
these recommendations in order to increase physicians’ acceptance of the system.

The development of recommendation systems in the medical domain has presented
some challenges [5]. First, clinical data are based on variables, such as clinical measure-
ments, medical examinations, and professional expertise, which are subjective and may
be influenced by patient and physician preferences. Second, the absence of a diagnosis
may mean that a person has not yet been diagnosed with a disease. However, this does not
always mean that the person does not have the disease. Lastly, clinical data may consist of
a variety of variable types (such as binary, continuous, categorical, and ordinal), making it
difficult to model and to merge information from different sources.

Many existing drug recommendation systems have been developed based on different
approaches and algorithms. For ontology- and rule-based systems, drug recommendation
systems are implemented primarily based on hard-coded protocols, which are typically
established by physicians and their institutions’ policies. GelenOWL [6] recommended
drugs for patients using a medical and rule-based reasoning approach developed based on
the patient’s disease, allergies, and known drug interactions for the drugs in the database.
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SemMed [7] used an ontology-based approach based on diseases, drugs, and allergies
to provide a list of recommended drugs. These algorithms required the development of
extensive rules, which is difficult and time-consuming to perform on a large scale.

For machine-learning-based systems, Bajor and Lasko [8] developed a deep-learning
model for drug prediction which uses the most recent 100 billing codes and generates a list
of suggested drugs based on their therapeutic class. LEAP [9] was a drug recommendation
system for patients with complex multimorbidity which broke down the treatment recom-
mendation into a series of decision-making steps and automatically selected the best drugs.
The algorithms take the diagnosis codes of a given visit as inputs and generate a list of
recommended drugs that can avoid adverse drug interactions. Wang et al. [10] developed
a drug recommendation model which jointly learns the representations of patients, diseases
and drugs and fuses them with a trilinear method which takes disease ontology into account.
SMR [11] was a drug recommendation system based on a high-quality heterogeneous graph
by bridging EMRs and medical knowledge graphs. The algorithm used heterogeneous
graphs and joint-learning-embedding models to generate a list of drugs while taking into
account the patient’s diagnoses and adverse drug reactions. Recently, several studies have
examined specific problems in recommending drugs with more sophisticated methods.
Shang et al. [12] investigated a method for drug recommendation that leverages both
patient representation and drug interactions through recurrent neural networks which also
take into account the patient’s previous visits. The method can effectively reduce the rate
of drug-to-drug interactions in recommended medication combinations. Yang et al. [13]
developed a safe drug recommendation engine based on diagnosis codes, procedure codes,
drug molecule structures, and drug–drug interactions using neural networks and graph
representation, which showed some improvement over using only diagnosis and procedure
codes. Wu et al. [14] explored approaches which address newly approved drugs which do
not have much historical prescription data using a few-shot learning problem which lever-
ages the drug ontology to link new drugs to existing drugs with similar treatment effects
and learns ontology-based drug representations. Most studies were conducted with the
public MIMIC datasets [15]. Few studies have been conducted with institutional datasets.
Standards for diagnosis codes, billing codes, and drug codes vary between countries. Most
studies of drug recommendations relied on traditional classification methods.

Collaborative filtering, one of the most popular techniques in recommender systems,
has recently been employed for clinical prediction [5]. It is based on the notion that individ-
uals with similar preferences who agree on certain items are likely to agree on other items of
which they may not be aware. Collaborative filtering can be used to generate a personalized
ranking of items that are of interest. Many collaborative-filtering applications in the medical
domain are for predicting comorbidities based on a patient’s clinical data, such as clinical
variables or diagnosis codes. Davis et al. [16] developed a collaborative filtering model
which uses patients’ ICD-9-CM codes to predict future disease risk. The model predicted
each patient’s disease risk based on the patient’s own medical history and the histories
of patients with similar characteristics. The output was a list of diseases for each patient,
personalized and ranked by severity. Folio et al. [17] developed a similar approach for
predicting comorbidities based on ICD-9-CM codes with additional layers which relied on
clustering and association rules. Hassan and Syed [18] proposed a collaborative filtering
model which incorporated extensive clinical variables (such as clinical measurements, di-
agnoses, and family history) to predict patient outcomes, i.e., sudden cardiac death and
recurrent myocardial infarction. Collaborative filtering was shown to outperform traditional
logistic regression and support vector machines on the same dataset. Recently, Granda
Morales et al. [19] developed a drug recommendation specifically for patients with diabetes
based on a user-based collaborative filtering approach which supports 10 diabetes drugs.
The performance of collaborative filtering depended heavily on the data [5].

This study was motivated by the growing volume of medical records and the desire
to use these data to support clinical decision making. Drug recommendation systems
can assist both physicians in prescribing drugs and pharmacists in reviewing prescribed
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drugs. We took steps to evaluate collaborative filtering and classification approaches in
the context of drug recommendation. We hypothesized that collaborative filtering could
generate a list of recommended drugs based on patient characteristics, while leveraging
patient similarities. This could circumvent the problem of missing data (e.g., the absence
of diagnoses) in the medical domain. In this study, we focused on elderly patients with
diabetes, hypertension, and cardiovascular disease because they share common risk factors
and are one of the largest groups of people who frequently visit hospitals. The results of
this research can be developed into a system which supports clinical decision making in
drug prescription and drug verification.

2. Materials and Methods

Drug recommendation systems based on both classification and collaborative filtering
algorithms were developed and evaluated using data from the Songklanagarind Hospital
Information System. This section describes data collection, data preparation, algorithms,
and evaluation procedures.

2.1. Dataset

Our study used retrospective cross-sectional data taken from the Hospital Informa-
tion System of Songklanagarind Hospital, Thailand. We used data from patients aged
more than 65 years who visited the primary-care clinics and general-practice clinics of
Songklanagarind Hospital between January 2015 and December 2021 and were diagnosed
with diabetes (ICD-10 code: E10-E14), hypertension (ICD-10 code: I10), or cardiovascular
disease (ICD-10 code: E78). Our dataset contains patient demographics (age and sex),
diagnosis codes (ICD-10), and prescribed drugs (generic name) for each outpatient visit.
We did not include personal identifiable information (PII). We excluded patients who were
not prescribed drugs or did not have diagnosis codes reported. The study protocol was
approved by the Office of Human Research Ethics Committee, Faculty of Medicine, Prince
of Songkla University under Approval No. REC.65-340-38-2.

Table 1 shows the descriptive statistics for our dataset. Our dataset consists of 28,728 out-
patient visits from 3925 different patients, with an average number of visits of 7.25 per patient
over five years. The total number of diagnosis codes assigned for all visits was 109,625 with
946 unique ICD-10 codes and an average of 3.82 ICD-10 codes per visit. The total number
of drugs prescribed for all visits was 182,743, with 523 unique drugs and an average of
6.36 drugs per visit. Data entry standards were consistent across the dataset.

Table 1. Descriptive statistics of the dataset.

Characteristics

Duration January 2015 to December 2021
Number of visits 28,728
Number of patients 3925
Number of visits per patient 1 7.25 (6.46)
Age 1 74.25 (6.66)
Sex

Male 2 1676 (42.27%)
Female 2 2289 (57.73%)

Number of diagnosis codes 3 109,625 (946)
Number of diagnosis codes per visit 1 3.82 (1.18)
Number of prescribed drugs 3 182,743 (523)
Number of prescribed drugs per visit 1 6.36 (2.94)

1 mean (standard deviation); 2 frequency (proportion); and 3 total count (unique values).

Figure 1 shows the distribution of patient age at visit in our dataset, ranging from 65
to 105 years.
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Figure 1. Distribution of patient age at visit (N = 28,728).

2.2. Data Preparation

Patients come to the doctor for a wide variety of reasons. Our dataset contains
946 unique ICD-10 codes and 523 unique generic codes for drugs (see Table 1). Some
diseases and conditions have a high prevalence, while others are coded less frequently.
The same applies for drugs. It is difficult to develop a model which supports all ICD-10
codes and all drugs. Some less frequently coded features may not have strong predictive
power or may not be sufficient to represent the problem.

Our process of data transformation was as follows. First, we selected the 40 most frequent
ICD-10 codes and the 60 most frequent generic names of drugs. All selected features have
more than 200 occurrences. Figure 2 shows the distribution of ICD-10 codes and drugs’ generic
names for all records. Second, because different drugs have similar therapeutic functions,
we grouped drugs according to their therapeutic functions using a panel of physicians. This
resulted in 30 different drug groups from 60 individual generic names of drugs, as shown in
Figure 3. Finally, the categorical variables, i.e., ICD-10 codes and generic names of drugs, were
transformed into dummy or indicator variables which take the value 0 or 1 only to indicate
the presence or absence of each category. Figure 4 illustrates an example of the preprocessed
data frame used in the study.

We randomly divided our preprocessed data into two sets: a training set (90%); and
a test set (10%). Patients in the training and test sets were assumed to be mutually exclusive.
This resulted in the training set containing 25,855 inpatient visits, whereas the test set
contained 2873 inpatient visits. We used 10-fold cross-validation in the training set to find
optimal hyper-parameters and select the best model to evaluate with the test set.

Figure 2. Distribution of (a) ICD-10 codes and (b) drugs’ generic names for the 40 most frequent
ICD-10 codes and the 60 most frequent generic names of drugs in the dataset. All chosen features
have at least 200 occurrences.
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Figure 3. Medications are grouped according to their therapeutic function. Different drugs may
belong to the same group.

Figure 4. Example of the preprocessed data frame.

2.3. Classification Algorithms

Classification is a predictive modeling problem which predicts a class label for input
data. A model uses the training dataset with many examples of inputs and outputs to
learn to map input data to class labels. Drug recommendation can be formulated as a
supervised multi-class multi-label classification problem in which patient demographics
and diagnosis codes are the inputs and the drugs are outputs. In this study, four different
classification algorithms were assessed: nearest neighbors, logistic regression, random
forest, and multilayer perceptron.

Nearest neighbors [20] looks for a certain number of training samples which are
closest to the new data and then uses them to predict the class label by a simple majority
vote of the closest neighbors of the new data. Probability scores are a fraction of votes
among the closest neighbors. Nearest neighbors was a simple baseline method for our
classification models. We implemented a nearest neighbor algorithm with 24 nearest
neighbors and the Minkowski distance metric.
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Logistic regression [20] is a statistical model which predicts the probability of an event
based on independent variables. Given a set of m input variables x = {x1, x2, . . . , xm},
the binary logistic function has the form:

p(x) =
1

1 + e−(β0+β1x1+β2x2+···+βmxm)
(1)

where β = {β0, β1, β2, . . . , βm} are the regression coefficients learned from the data by
minimizing a loss function. We used the lbfgs optimizer [21] with L2 regularization and a
C parameter of 1.

Random forests [22] is an ensemble learning model based on multiple decision trees
created from the training data. Decision trees are a popular method for non-parametric
supervised-learning problems. However, deep decision trees tend to have low bias but high
variance because they often overfit their training data. The strategy of random forests is to
average multiple shallow decision trees trained from different parts of the same training set
with the aim of reducing variance. The output of random forests is the class label chosen
by the majority of the decision trees. Probability scores are aggregated by averaging the
class probability estimates for all decision trees. In our implementation, we used the Gini
impurity criterion to estimate the best feature for the split, the number of decision trees of
200, and the maximum tree depth of 8.

Multilayer perceptron [20] is a fully connected feedforward artificial neural network
consisting of an input layer, one or more hidden layers, and an output layer. One layer
can have multiple nodes. Each node is equipped with a weighted neuron with a nonlinear
activation function. Every node in one layer has a weighted connection to every node in
the following layer. Learning is performed by adjusting the weights of each neuron based
on the errors in comparison to the expected results. The inputs pass through each layer
in turn and are weighted until they reach the output layers. Subsequently, the softmax
function is applied to normalize the output of the network into a vector of probability
scores. Multilayer perceptron is able to find approximate solutions to complex problems.
We implemented a multilayer perceptron network with two hidden layers in which each
layer has 128 nodes. Each node was equipped with a ReLU activation function. The network
was trained using the Adam optimizer with a constant learning rate of 0.001 until the loss
did not improve by 0.0001 over 10 consecutive iterations.

We used the scikit-learn library [23] on Python 3.8.10 for the development of all classi-
fication algorithms. In our case, with multiple classes and multiple labels, the one-vs-rest
scheme was used to train multiple binary classification models in which each model is re-
sponsible for only one class label. All hyperparameters, as listed above, were determined by
10-fold cross-validation on the training set. We provided class weights which are inversely
proportional to class frequencies to compensate for imbalances between classes.

2.4. Collaborative Filtering Algorithms

Relational learning is the process of determining unknown values in a relationship
utilizing a database of entities and their relationships to each other [24]. In our case, we
employ relational learning for drug recommendation, where the entities include patients,
drugs, and diagnoses. The relationships encode the drugs prescribed by physicians and the
diagnoses of the patients. In domains with multiple relationships, information from one
relationship can be used to predict another.

Relational data is composed of entities and the interactions between them [24]. In many
relational domains, the number of entity types and interactions is often fixed. They may
consist of only one or two entity types, such as patients and drugs. Given a relational
schema with t entity types: ε1, . . . , εt in which εt ∈ εt. An interaction between a pair of entity
types, εi and ε j, is denoted as an ni× nj interaction matrix, X(ij), where ni is the number of εi

entities and nj is the number of εj entities. The element xεi ,εj ∈ X(ij) specifies an interaction
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between two entities, εi and εj. Using the low-rank matrix factorization, the interaction
matrix X(ij) can be expressed as the product of two lower dimensional matrices:

X(ij) ≈ f (ij)(U(i)(U(j))T) (2)

where U(i) ∈ Rni×kij , U(j) ∈ Rnj×kij and kij � ni, ni. The two lower dimensional matrices,
U(i) and U(j), can be thought of as latent factors determined for entity type εi and ε j,
respectively. The latent dimension k is the number of latent factors and f (ij) is a non-linear
indicator function [24]. If εi is involved in more than one interaction, each interaction can
be modeled separately. The latent factors, U(i) and U(j), can be obtained by minimizing
a loss function [25] based on the observed interaction matrix, X(ij):

min
U(i),U(j)

|| f (ij)(X(ij) − b(i) − b(j) −U(i)(U(j))T)|| (3)

where b(i) and b(j) are biases for εi and ε j, respectively [25]. The prediction for the unknown
values of X(ij) can be obtained by the product of the two latent factors, U(i) and U(j).
Recommendations can be made by sorting the predictions in descending order.

Collective matrix factorization (CMF) extends the low-rank matrix factorization by
jointly factorizing the interaction matrices along with their side information, while sharing
the latent factors between them [25]. Our CMF model was based on two entity types: ε1 for
patients and ε2 for drugs. The CMF model jointly factorizes the interaction matrix X(12),
which indicates which drug is prescribed for which patient, along with the patient attribute
matrix S(1), which indicates patient demographics and the diagnoses a physician makes
for each patient, and the drug attribute matrix S(2), which indicates the distribution of each
diagnosis code for each drug. Using low-rank matrix factorization, the side attribution
matrices can be expressed as S(1) ≈ U(1)(V(1))T and S(2) ≈ U(2)(V(2))T , where V(1) and
V(2) are the two new latent factors for the patient and drug attribute matrices, respectively.
The latent factors can be obtained by minimizing a squared loss:

min
U(1),U(2),V(1),V(2)

|| f (12)(X(12) − b(1) − b(2) −U(1)(U(2))T)||2 + ||S(1) −U(1)(V(1))T ||2 + ||S(2) −U(2)(V(2))T ||2 (4)

where U(1) and U(2) are shared between factorizations [25]. This non-convex optimization
can be solved using the alternating least squares method to find local minima.

Offsets [25] is a recommendation model which provides another alternative to the
CMF model in which the low-rank matrix is decomposed into linear additive components:

X(ij) ≈ f (ij)((U(i) + S(i)V(i))(U(j) + S(j)V(j))T). (5)

The latent vectors are obtained by optimizing a squared loss based on the observed interac-
tion matrix:

min
U(1),U(2),V(1),V(2)

|| f (12)(X(12) − b(1) − b(2) − (U(1) + S(1)V(1))(U(2) + S(2)V(2))T)||2. (6)

The Offsets model is aimed at making cold-start recommendations because the predictions
can be obtained by a simple vector–matrix product rather than by solving a complex
linear system.

Most Popular [25] is a recommendation model which fits a model with only biases in
order to provide non-personalized recommendations (see Equation (3)). The Most Popular
model is a simple model which resembles the CMF model without the latent factors that
serve as a benchmark.

In our study, we applied the CMF, Offsets, and Most Popular models to our dataset.
Similar to classification approaches, 10-fold cross-validation was applied to the training
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set to find appropriate model hyperparameters. Our models were then evaluated with the
test set.

2.5. Hybrid Strategy

The prediction scores from both classification and collaborative filtering models, as
computed above, can be combined into a final prediction score as follows:

pcombine(x) = α · pclass(x) + (1− α) · pcollab(x) (7)

where α is a weighting factor. The appropriate α value was determined by cross-validation.
The class labels which had scores in the top K, or more than a predefined threshold,
were recommended.

2.6. Evaluation Metrics

We performed inference for each model on the hold-out test set to obtain a top-K of rec-
ommended drugs, ranked by their scores, for each outpatient visit. Results were compared
with a list of actual prescribed drugs. We employed the following evaluation metrics:

• Recall at K (Recall@K) is the proportion of the actual drugs prescribed for a given
patient that are included in the top-K recommendation list:

Recall@K =
1
|τ|

K

∑
i=1

{
1 ri ∈ τ
0 otherwise

, (8)

where ri is the recommended item ranked at position i (sorting by the prediction scores
in descending order) and τ is the set of actual drugs prescribed by a physician).

• Precision at K (Precision@K) is the proportion of top-K recommendation list that
contains the actual drugs prescribed for a given patient:

Precision@K =
1
k

K

∑
i=1

{
1 ri ∈ τ
0 otherwise

. (9)

Precision@K is the most intuitive metric, which captures what a recommendation
system is aiming for.

• Hit rate at K (Hit@K) is a metric which examines whether any of the top-K recom-
mended items were included in the list of actual drugs prescribed for a given patient.

• Normalised discounted cumulative gain at K (NDCG@K) is a metric which considers
the presence of an item in the top-K recommendation list and applies a discount
according to the rank of each item in the top-K list.

• Average precision (AP) calculates the average value of precision over precision-recall
pairs for different thresholds. It describes how well a system recalls the actual items in
the top ranks.

• Area under the receiver-operating characteristic curve (AUROC) takes the entire
ranking of items and gives a standardized number between 0 and 1. AUROC describes
the overall classification ability of the system.

In our evaluation scheme, we used K = 5 and calculated the macro average and macro
average across class labels for both AP and AUROC.

2.7. Physician Evaluation

While it was tempting to test the model under real-world conditions, this required
a certain level of confidence in the model and passing several rounds of the assurance
process. Instead, we developed a web-based system to ask whether a physician would
accept or reject the list of recommendations if it appeared when prescribing medication.

From the test set, 200 inpatient visits were selected to create a physician evaluation set
using stratified random sampling, with each ICD code associated with at least ten inpatient
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visits. This was done to ensure that our physician evaluation set covered all ICD codes
and drugs.

For each inpatient visit, our highest-scoring model processed patient demographics
and ICD codes to suggest a list of drugs whose scores were above the threshold, which
yielded a recall score of 0.80 in the validation set. We presented the input and the output to
three physicians and asked whether they agreed or disagreed with a list of recommended
drugs. We asked the physicians to make a judgment based on diversity, explainability,
and ranking. After all physicians completed the task, we calculated the percentage of
when physicians agreed with the recommended drugs and a Fleiss’ kappa coefficient which
describes agreement between annotators.

3. Results

This section presents the performance of the classification, collaborative filtering,
and hybrid models. For each model, we performed 10-fold cross-validation to optimize
and select the best hyperparameters. During the cross-validation, we found neither under-
fitting nor over-fitting for all models. All models were evaluated with the hold-out test set.
The list of recommended drugs was compared with the actual prescribed drugs using the
evaluation metrics mentioned in the previous section, and it was assessed by physicians
whether they agreed with the recommendations.

3.1. Recommendation Performance

Table 2 shows the performance of the classification, collaborative filtering, and hybrid
models for recommending drugs on the hold-out test set. Among the classification algo-
rithms, the multilayer preceptron model, which was based on feedforward neural networks,
scored highest on most metrics. Among the collaborative filtering algorithms, the Offsets
model, which was based on linear additive combinations, scored highest on most met-
rics. Overall, the classification models outperformed the collaborative filtering models.
The hybrid model, which was based on weighting the scores from the best classification
and collaborative filtering models, scored highest on most metrics.

Table 2. Performance of the classification, collaborative filtering, and hybrid models for recommend-
ing drugs on the test set.

Recall@5 Precision@5 Hit@5 NDCG@5 Macro AP Micro AP Macro AUC Micro AUC

Classification Models
Nearest neighbors 74.76 44.67 96.89 77.06 24.53 61.56 70.62 88.10
Logistic regression 74.78 44.63 97.07 77.26 22.94 63.35 69.32 88.54
Random forests 76.11 46.31 97.49 76.09 32.95 64.10 73.23 89.49
Multilayer perceptron 76.19 45.94 96.89 78.56 32.50 67.40 75.65 89.67

Collaborative filtering models
Most popular 73.18 43.55 95.92 75.02 11.01 53.96 50.00 84.22
Collaborative matrix factorization 73.78 43.71 96.78 76.07 14.52 59.26 58.89 85.90
Offsets 73.87 43.81 96.75 76.31 15.79 60.78 60.27 86.28

Hybrid model 76.61 46.20 97.00 78.97 32.53 68.26 74.52 90.09

The bold texts indicate the algorithms that achieved the highest score for each evaluation metric.

Table 3 details the AUCs of the multilayer preceptron, Offsets, and hybrid models when
recommending each drug in the test set. The Offsets model performed worse compared
with the other models for all drugs. The hybrid model performed better on the more
common drugs. The differences in performance between the multilayer perceptron model
and the Offsets model were much more pronounced for less common drugs.

Figure 5 shows the distribution of recommended drugs at the threshold, which yielded
a recall score of 0.80 in the validation set. The multilayer perceptron model offered clear
advantages over the Offsets model, which did not perform well for the less common drugs.
It is more biased toward popular drugs.
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Table 3. Performance of the multilayer perceptron, Offsets, and hybrid models for recommending
each drug in the test set.

N
AUC

Multilayer Perceptron Offsets Hybrid

1. Statins 726 70.17 59.91 70.33
2. Antidiabetic Medication 1331 69.55 60.50 69.73
3. Antiplatelet Medication 1041 75.61 65.43 75.52
4. Antihypertensive Medicaiton 2478 71.92 62.78 71.91
5. Gastrointestinal Medication 541 70.50 62.17 70.64
6. Methyl Salicylate 288 66.26 51.28 66.00
7. Oral Analgesics 231 67.86 51.52 67.69
8. Folic Acid 201 74.34 64.08 75.00
9. Vitamin B Complex 190 72.77 57.71 73.24
10. Constipation Medication 127 69.64 61.91 70.89
11. Allopurinol 120 85.15 75.11 86.15
12. Influenza Vac 151 61.05 58.71 61.53
13. Alcohol 156 78.10 69.69 79.12
14. Benzodiazepines 190 71.43 56.96 71.58
15. Calcium Carbonate 122 80.45 64.55 80.83
16. Loratadine 105 72.25 51.82 71.32
17. Vitamin D2 90 83.80 61.74 83.51
18. Betahistine Mesylate 104 63.79 41.70 61.82
19. Triamcinolone Acetonide 86 68.05 48.99 67.19
20. Sodium Bicarbonate 65 90.83 84.55 92.87
21. Ferrous Fumarate 72 81.82 70.66 82.32
22. Diuretics 204 87.66 78.91 87.68
23. Thyroxine-L 66 82.25 62.61 80.78
24. Gabapentin 55 69.17 56.15 68.88
25. Colchicine 44 78.25 47.32 74.25
26. Cream Base 55 77.48 62.99 77.04
27. Multivitamin 58 67.24 46.60 67.77
28. Potassium Chloride 55 85.28 60.83 83.80
29. Acetylcysteine 42 78.67 63.70 78.63
30. Clotrimazole 42 67.44 47.18 67.66

The bold texts indicate the algorithms that achieved the highest score for each drug.

Figure 5. Distribution of recommended drugs in the test set.
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3.2. Physician Evaluation

Figure 6 shows the histogram of ICD codes, actual prescribed drugs, and recom-
mended drugs in our physician evaluation set of 200 inpatient visits. The average number
of ICD codes, actual prescribed drugs, and recommended drugs were 5.38, 4.86, and 7.35 per
inpatient visit, respectively.

Figure 6. Distribution of (a) ICD-10 codes and (b) recommended drugs in our physician evaluation set.

We ran each sample in our physician evaluation set through the hybrid model to
obtain a list of recommended drugs for physician evaluation, as the hybrid model scored
highest overall. The average of the percentages upon which physicians agreed with the
recommendations was 47.50% with a multi-rater Fleiss’ Kappa coefficient of 30.54% (see
Table 4).

Table 4. Physician acceptance of drug recommendations.

Acceptance (%) Inter-Rater
AgreementPhysician A Physician B Physician C Mean

34.50 52.00 56.00 47.50 30.54

4. Discussion

The growing amount of medical records has motivated the secondary use of data
to support clinical workflow. Drug recommendation systems learn from the diagnostic
and prescription data already in the system to suggest drugs which might be of interest
to a physician. The systems recommend drugs that correspond to the patient’s diagnostic
concerns. This could reduce the time it takes to prescribe drugs in the EMR system.
The model trained for the drug recommendation system could also be used to automatically
review prescriptions to determine if they are consistent with their diagnostic details.

The objective of the study was to examine a problem of drug recommendation using
classification-based and collaborative filtering-based algorithms on real-world hospital
data. In this present study, we specifically focused on patients with diabetes, hypertension
and cardiovascular disease, which were prevalent in primary-care clinics. This allowed a
better understanding of the performance of different recommender systems on medical
data which may have different characteristics compared to other real-world data.

Although collaborative filtering is widely used to provide personalized recommen-
dation by collecting data characteristics from many subjects, we found that collaborative
filtering did not perform well in our problem. All classification approaches outperformed
the best collaborative filtering model, even with the simplest nearest-neighbor classification.
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For the classification models, multilayer perceptron slightly outperformed random
forests, and a large difference was observed in the macro-averaged AUC. Both models have
proven successful on nonlinear problems and are inherently flexible for mixed predictors
of continuous, categorical, and binary variables. In our view, both models can well handle
severe class imbalance and missing data, which are common in medical data.

Among the collaborative filtering models, the collaborative matrix factorization and
Offsets models that account for side information performed better than the most popular
model, which was the baseline. While differences between recommendation metrics for the
top-five recommendations were marginal, large differences in performance were observed
for AP and AUC values. When comparing the best classification model, multilayer percep-
tron, with the best collaborative filtering model, Offsets, a large difference in performance
was observed. This may be because our dataset is largely unbalanced, which may cause
collaborative filtering to give unfair predictions for minority classes. They did not seem
to capture some of the less frequently coded labels (see Figure 5). This problem could be
mitigated by a larger dataset.

The purpose of implementing the hybrid model was to combine the scores of the best
classification and collaborative filtering models into a single score in order to improve
performance. As expected, the hybrid model produced the best overall results, even with
the simple weighting combinations. Unfortunately, because the Offsets model performs
poorly on less frequent labels, it also degrades the performance of the hybrid model on less
frequent labels (see Table 3).

Due to the inherent complexities of the drug recommendation problem, there were
a number of uncertainties in both the task itself and the data. For example, the chief
complaints, which are the main reason for the patient’s visit, were not explicitly coded in
our dataset. We only have the patient’s demographic data and a list of unranked diagnosis
codes. It is possible that relevant drugs were not prescribed because a patient already had
them on hand from previous visits. It is also possible that patients came to the consultation
for reasons unrelated to the chronic diseases in which we are interested. Some degree of
error was, therefore, to be expected.

4.1. Comparison to Other Studies

Our results are consistent with those of Hao and Blair [5], who investigated classifi-
cation and collaborative filtering approaches for clinical prediction on various simulated
and real-world datasets. Their study focused on the performance of the algorithms under
different degrees of missing data. They concluded that the collaborative filtering approach
was consistently inferior to classification-based approaches, such as logistic regression and
random forests, under various imputations on both real-world and simulated data. They
suggested that collaborative filtering might not be desirable in the clinical setting, where
classification may be an acceptable alternative. Although there was a slight difference in
both the implementation of the collaborative filtering algorithms, where our algorithms
take into account side information, and the objective of the algorithm, i.e., clinical predic-
tion vs. drug recommendation. We observed similar results with collaborative filtering.
Collaborative filtering performed poorly on datasets with severe class imbalances.

Our results differ from those by Hassan and Syed [18], which used collaborative
filtering for clinical prediction. They reported that collaborative filtering approaches had
a higher prediction accuracy than classification counterparts for certain tasks, i.e., sudden
cardiac death and recurrent myocardial infraction. They noted that collaborative filtering
exploits similarity between individual patients in the historical dataset in determining
patient risk by comparing new patients to historical datasets. They also found that collabo-
rative filtering can provide benefits when the data are complete, that is, without missing
data or unknown outcomes.

Compared with other studies in the field of drug recommendations, many studies
were based on complicated rule-based ontology reasoning approaches which consider do-
main knowledge, such as drug–drug interactions [9–14]. Compared with our study, which
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obtained a micro-averaged AUC of 90.09% for the hybrid model on the de-identified Songk-
lanagarind’s EHR dataset, Bajor and Lasko [8] obtained a micro-averaged AUC of 92.70%
on the de-identified Vanderbilt’s EHR dataset, and Wu et al. [14] obtained micro-averaged
AUCs of 86.08% and 72.75% on the MIMIC-IV dataset and the Claims dataset, respectively.
These results are slightly different because the studies were designed differently and dif-
ferent datasets were used. Our approaches were based on the knowledge discovered by
learning patterns in data, similar to Bajor and Lasko’s study [8]. In their study, they trained
a recurrent neural network model on a larger dataset of over 600,000 patient records. Similar
to us, they grouped similar drugs based on their therapeutic class (e.g., beta blockers, diuret-
ics, and immune suppressants), resulting in over 1000 drugs grouped into 182 therapeutic
classes. Their model processed 100 recent ICD-9 codes to generate a list of suggested drugs.
It was reported that their recurrent neural network model outperformed a feedforward
neural network model by 1 percent in micro-averaged AUC. Such a small difference could
possibly be noticeable in clinical use [8]. While we focused on the patient’s current visit,
their approaches may be biased toward patients who visit the hospital frequently compared
to patients who are visiting the hospital for the first time. To date, no study has examined
both classification and collaborative filtering approaches together for drug recommendation.

4.2. Physician Acceptance

Physician acceptance is critical to getting the most value from systems designed to
support physicians. They must be accurate, because physicians will ignore inaccurate
and ineffective decision support systems. They must support existing clinical workflows
without requiring additional inputs or actions. They must help physicians improve the
quality of care while maximizing their own productivity and efficiency.

When developing a recommendation system, we can expect an algorithm to have other
good algorithmic properties besides numerical metrics, such as diversity and explainability.
We do not want a user to be trapped in the confinement area of popular classes. Currently,
none of the studies take physician acceptance into account. We conducted a human-based
evaluation to assess the quality of the recommendations provided by the systems. We
obtained an average agreement rate of 47.50% with an inter-rater coefficient of 30.54% (see
Table 4). This indicates that physicians agreed with the list generated from the recom-
mendation model fairly often. Physicians criticisms included that the algorithms often
recommended drugs that they did not think were relevant to the patient condition based on
the given ICD-10 codes alone, e.g., analgesics and diuretics. If the algorithm was integrated
with a drug–drug interaction database, a disease ontology database, and a drug ontology
database, this problem could still occur. To address the problem, the algorithm should
process the patient’s chief complaint or clinical notes in addition to ICD-10 codes. More
studies, however, need to be carried out on the algorithms to see how the systems are ready
to be used and adopted by physicians.

4.3. Study Limitations

The study was subject to certain limitations. First, we did not consider domain knowl-
edge, such as disease ontology or drug–drug interactions, in developing the models. We
relied solely on the model to discover complex patterns in the data. Integrating these medi-
cal concepts could improve drug recommendation and physician acceptance. Second, apart
from the diagnosis codes, we did not consider any other context around the visit, such as
physical examination, laboratory tests, and patient notes. Third, with collaborative filtering,
it is notoriously difficult to incorporate side features for items. We used collective matrix
factorization approaches [25], which can incorporate side features, but little performance
improvement was observed. Deeper investigation of approaches, e.g., with advanced feature
embedding, could lead to further improvements in the results. Finally, our model did not
consider the patient’s historical records. Past medical records can provide information about
what medications the patient was prescribed in the past and what medications the patient is
currently taking. Incorporating these into the model would allow physicians to make better
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recommendations and lead to better physician acceptance. Models based on long short-term
memory (LSTM), gated recurrent units (GRU) or transformers which can handle sequential
or historical data could further improve results.

4.4. Future Work

Our recommendation systems can be improved by considering more comprehensive
patient profiles (such as current and historical weight, height, body mass index, laboratory
tests, diagnosis, and treatment), domain knowledge (such as disease ontology and drug–
drug interactions), as well as laboratory and diagnostic tests when making recommendations.
Drug recommendation systems can also be improved by incorporating unstructured data
such as clinical notes, both from nurses and physicians, which often contain important
contextual information about each patient visit. For example, patients’ chief complaints,
which indicate the main reasons for their visits, are often written as free text in clinical notes.
The chief complaints might include information about the patient’s condition which is some-
times not included in diagnosis codes, thus improving the outcomes of recommendations.
Such an implementation requires more complex feature engineering and neural network
architectures, such as a language model for processing natural language data and a recurrent
neural network model for processing clinical data with irregular times. Although it seems
that collaborative filtering approaches may also be appropriate for this context due to their
scalability and dynamic learning, the present study and Hao and Blair’s study [5] prove
otherwise. They do not handle complex clinical data well. In addition, recommendation
systems can also be extended to support more disease codes and drugs by leveraging
a larger set of clinical data. Further investigation into more advanced algorithms and more
comprehensive clinical data is our focus for future work.

4.5. Implementation Considerations

The overabundance of medical information has made it difficult for health-care profes-
sionals to make patient-centered decisions. These difficulties highlight the need to implement
healthcare recommendation systems to help both end users and healthcare professionals
make more efficient and accurate clinical-related decisions. These systems must gain the
confidence of users in the sense that they draw robust and causal inferences from clinical data.
They must also be fast enough and integrate well with the current system. Such complex
artificial intelligence systems may need to be deployed locally at the edge of the system to
enable rapid performance. Sever-side processing may result in some latency. Deployment
considerations must be made before developing clinical recommendation engines.

Recommendation systems are often based on medical codes (such as medicinal code,
ICD-9, ICD-10, or the most recent ICD-11). The use of these codes varies from country to
country and from institution to institution. There are also some variations of these codes,
such as country-specific extensions. At some point, there may be a change from the current
version to a newer version. Although mapping between different versions is possible,
the newer versions of the codes generally include more diseases and symptoms and may
be more specific. Some institutions may use SNOMED-CT, which contains more detailed
clinical information than ICD variants. It could also be that new drugs will be introduced
at some point. This creates hurdles in implementing the systems and makes it difficult to
maintain them. The system must be dynamic enough to cope with such constant changes.
It is certainly difficult to create a one-size-fits-all solution.

5. Conclusions

Recommendation systems can help healthcare professionals make better and faster
clinical decisions in this age of overloaded medical information. This study aims to explore
approaches for drug recommendations in patients with diabetes, hypertension and cardiovas-
cular disease on a real-world institutional dataset. Drug recommendation systems learn from
the diagnostic and prescription data already in the EHR system to recommend drugs that
correspond to the patient’s diagnostic concerns to a physician. We investigated both collabora-
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tive filtering approaches and traditional machine-learning classifiers. Although collaborative
filtering is widely used in recommender systems to provide personalized recommendations
based on data characteristics from many subjects, collaborative filtering consistently under-
performed traditional classification in our problem of interest. We observed that collaborative
filtering was sensitive to severe class imbalances and tended to favor more popular labels.
Performance improvements could be observed by incorporating more comprehensive pa-
tient profiles into the learning process. Drug recommenders could be an important tool for
healthcare professionals as they can streamline clinical workflow. There are practical and
implementation issues that need to be considered, such as deployability, prediction latency,
clinical coding changes, and long-term maintainability.
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