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Abstract: Antimicrobial resistance (AMR) is a serious public health issue. Due to resistance to current
antibiotics and a low rate of development of new classes of antimicrobials, AMR is a leading cause of
death worldwide. Listeria monocytogenes is a deadly foodborne pathogen that causes listeriosis for the
immunocompromised, the elderly, and pregnant women. Unfortunately, antimicrobial resistance has
been reported in L. monocytogenes. This study conducted the first comprehensive statistical analysis
of L. monocytogenes isolate data from the National Pathogen Detection Isolate Browser (NPDIB) to
identify the trends for AMR genes in L. monocytogenes. Principal component analysis was firstly used
to project the multi-dimensional data into two dimensions. Hierarchical clustering was then used to
identify the significant AMR genes found in L. monocytogenes samples and to assess changes during
the period from 2010 through to 2021. Statistical analysis of the data identified fosX, lin, abc-f, and
tet(M) as the four most common AMR genes found in L. monocytogenes. It was determined that there
was no increase in AMR genes during the studied time period. It was also observed that the number
of isolates decreased from 2016 to 2020. This study establishes a baseline for the ongoing monitoring
of L. monocytogenes for AMR genes.

Keywords: antimicrobial resistance; Listeria monocytogenes; listeriosis; principal component analysis;
hierarchical clustering

1. Introduction

Antimicrobial resistance (AMR) has been a general concern since antibiotics have been
in use. Sulfa drugs, discovered in 1935, were the first widely used antibiotics and today
there is widespread resistance to them [1]. Fleming was concerned about the development
of penicillin resistance, and it was first observed in 1940 before penicillin was in widespread
use. Tetracycline was introduced in 1950 and resistance was first observed in 1959, while
vancomycin was introduced in 1959 and resistance was first observed in 1979 [2]. From
the 1960s to the 1980s, AMR was not a significant concern due to the development of new
antimicrobials and the discovery of new classes of antibiotics [2].

Today there are more than 20 classes of antibiotics available [3], and AMR is a serious
public health issue due to increasing resistance and the low rate of development of new
classes of antimicrobials. It is estimated that AMR is a leading cause of death worldwide
after stroke and heart disease [4]. AMR not only increases the risk of infectious diseases, but
it also negatively impacts other healthcare advances due to the risk of infection during treat-
ments. In 2019, the CDC reported nearly 3 million infections and more than 35,000 deaths
due to resistant microorganisms [5]. In Europe, such infections were responsible for more
than 426,000 illnesses and 33,000 deaths in 2019 [6].

The CDC estimates that there are approximately 48 million cases of foodborne illnesses
per year in the United States. Listeriosis, while not common, is one of the leading causes of
death from foodborne illnesses [7]. In the U.S., there are approximately 1600 infections per
year that result in about 260 deaths, corresponding to a hospitalization rate of 94% and a
mortality rate of 16% [8]. The fatality rate can be as high as 30% in immunocompromised
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people, the elderly, and pregnant women [9]. Listeria monocytogenes, the pathogen that
causes listeriosis, has the third highest mortality of foodborne pathogens in the U.S. [10]. It
is part of the genus Listeria, which contains seven species; however, it is the only species
pathogenic to animals and humans. L. monocytogenes has been found to be a highly occur-
ring pathogen in several countries, including the United States, United Kingdom, Australia,
Canada, and Mexico [11]. It is found in the environment and is carried by animals [12].
Humans are infected with the bacteria primarily by eating or handling contaminated food
or touching contaminated surfaces [12]. It can also be transmitted from mother to child in
utero or at birth [12]. L. monocytogenes is susceptible to a wide range of antibiotics active
against Gram-positive bacteria, except cephalosporins and fosfomycin, for which it has
inherent resistance [13]. The most common treatment for listeriosis is ampicillin used alone
or in conjunction with gentamicin [13].

The first resistant strains of L. monocytogenes were isolated in France in 1988, including
the first multidrug resistant strain [13]. Up through 1999, only sporadic resistance had
been observed in antibiotics, including tetracycline, chloramphenicol, erythromycin, and
streptomycin [13]. A foodborne strain was found to be resistant to trimethoprim, part
of a secondary treatment for listeriosis for patients who are allergic to penicillins [13].
Notably, resistance to penicillins and gentamicin was not observed [13]. Similar trends
were observed in a study of AMR in L. monocytogenes strains isolated in France between
1926 and 2007. That study also confirmed the presence of resistance genes and compared
the minimum inhibitory concentrations (MICs) for various antibiotics. It was found that
MICs from 1989–2007 increased compared to 1926–1988 [14].

In a study published in 2001, antimicrobial susceptibility testing (AST) was performed
on Listeria isolates from retail foods purchased in the greater Dublin area. Resistance to
penicillin and ampicillin was observed in 3.73% and 1.98% of 1001 isolates, respectively [15].
These were the second and third highest percentages of resistance observed, after tetracy-
cline resistance, which was observed in 6.3% of isolates [15]. AST of 317 L. monocytogenes
isolates collected from food, humans, and the environment in Italy between 1998 and 2009
found resistance to ampicillin, penicillin, gentamicin, and trimethoprim-sulfamethoxazole
in 100% of the isolates [16]. That study also found that there was an increase in resistance
in isolates from 2007–2009 compared to isolates analyzed from 1998–2006 [16].

In a 2014 study of L. monocytogenes from meat products and processing environments,
resistance was observed in 34.5% of 206 isolates. The highest resistance was to oxacillin.
There was low resistance to tetracycline and no resistance to penicillin [17]. Additionally,
in a recent study in Uruguay, 50 L. monocytogenes isolates from various sources were subject
to AST and analyzed for AMR genes. All of the samples were determined to be fully
susceptible to penicillin, gentamicin, and trimethoprim-sulfamethoxazole [18]. This study
also found that all L. monocytogenes isolates contained the resistance genes fosX and lin [18].

In a review published in 2021 and focused on foodborne pathogens isolated from
dairy cattle and poultry manure in Northeastern Ohio, L. monocytogenes was the second
highest pathogen found in the isolates. All the isolates were resistant to at least one of the
antibiotics tested. Significantly, 89.5% of the 67 L. monocytogenes isolates were found to have
ampicillin resistance and 47% were found to have penicillin resistance [19].

These studies show a trend of increasing AMR observed in L. monocytogenes. While
resistance to antibiotics used in the first-line treatment used for listeriosis has not yet been
widely reported in humans, resistance has been reported in animals, as discussed in the
studies cited above. This is concerning because resistance in animals could eventually
be transferred to humans. These observations demonstrate the importance of continued
surveillance of AMR in L. monocytogenes and the need for the development of other thera-
peutic options. A potential method for monitoring the development of AMR is to monitor
the occurrence of AMR genes.

An active surveillance program is critical to monitoring the development of AMR
among pathogens. In the United States, the National Center for Biotechnology Information
(NCBI) (Bethesda, MD, USA) maintains the National Database of Antibiotic Resistant
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Organisms (NDARO) to aid surveillance of pathogens [20]. As part of this effort, the NCBI
Pathogen Detection Isolate Browser (NPDIB) was developed to identify AMR genes ob-
served in pathogen bacterial genomic sequences [21]. The NPDIB consists of the Reference
Gene Catalog and AMRFinderPlus. The Reference Gene Catalog includes sequences from
food, the environment, and patients received from public health agencies around the world.
AMRFinderPlus is a program that identifies the AMR genes in both protein and nucleotide
sequences that have been submitted to the Reference Gene Catalog. AMRFinderPlus has
been validated against two different datasets [22]. While the data from the NPDIB data
have been used to determine common AMR genes for general pathogens as a whole, few
studies have been conducted for the deadly L. monocytogenes. In this work, a statistical
analysis of isolate data from the NPDIB was thus performed to: (1) identify the major
AMR genes found in L. monocytogenes samples; (2) assess changes over time to study the
occurrence and development of AMR genes in L. monocytogenes; and (3) establish a baseline
for ongoing monitoring. The collection date and location were determined from previous
work in which it was found that the NPDIB was more widely used from 2010 onwards. In
this previous work, it was also found that the locations in which the L. monocytogenes is
highly occurring are United States, United Kingdom, Australia, Canada, and Mexico [11].
Therefore, this study is focused on the NPDIB data from 2010 to 2021 for several regions
in the world with data available. These regions include: Australia/New Zealand, Asia,
Europe, North America, South Africa, and United Kingdom/Ireland.

2. Materials and Methods
2.1. Antimicrobial Resistance Data from the NCBI Pathogen Detection Isolate Browser

The NCBI Pathogen Detection Isolate Browser (NPDIB) currently contains almost a
million total isolates covering 34 organism groups [21]. The data for this analysis were
downloaded from the NPDIB on 24 February 2022, using the following search criteria:

• Organism group = Listeria monocytogenes;
• Collection date = from: 31 December 2009, to: 31 December 2021.

For this analysis, the NPDIB data were downloaded into a Microsoft Excel worksheet.
The data were then organized into a matrix where each row corresponded to a L. monocyto-
genes sample with the columns including the following: scientific name, collection date,
location, isolation type, serovar, and AMR genotype. As for the isolation type, the clinical
category represents samples isolated from human sources, while the environmental/other
category represents samples isolated from all other sources including the environment,
animals, and food. Table 1 shows a detailed description of each column category.

Table 1. Description of data downloaded from NPDIB.

Category Description

Scientific name Listeria monocytogenes
Collection date Date the sample was collected

Location Location from which the sample was collected
Isolation type Clinical or environmental/other

Serovar Serovar
AMR genotype List of the AMR genotypes identified in sample

After the data were downloaded from the NPDIB, they were formatted for subsequent
analysis. A MATLAB program was written to extract the AMR genotype data from a single
column into multiple columns. As downloaded from NPDIB, the AMR genotype data are
in the following format: “aac(6′)-I = COMPLETE, abc-f = COMPLETE, fosX = COMPLETE,
lin = COMPLETE, msr(C) = COMPLETE”. These data were processed to create one column
per gene, populated with a 1 if the gene was found in the sample and 0 if the gene was not
found. The data in the other columns were manipulated to align the formats and to replace
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text entries with numerical entries. Table 2 summarizes the data in the final spreadsheet
that was used for analysis.

Table 2. Description of processed NPDIB data matrix used for analysis.

Category Abbreviated Name Entries Comments

Scientific name Sci_name 1 = Listeria monocytogenes

Collection date Year 2010 through to 2021

Location Region

1 = Australia/New Zealand
2 = Asia

3 = Europe
4 = North America

5 = South Africa
6 = United Kingdom/Ireland

Isolation type Epi_type 1 = clinical
2 = environmental

Serovar Serovar
1 = 1/2a
2 = 1/2b

3 = 4b

AMR gene Gene name, e.g., fosX 0 = not found in sample
1 = found in sample There is 1 column for each gene

2.2. Principal Component Analysis and Hierarchical Clustering

The data from the NPDIB were downloaded as described above. The data matrix
contains a total of 35,753 rows, each of which corresponds to an isolate sample of L.
monocytogenes entered from January 2010 through December 2021. These samples were
further analyzed to obtain a matrix in which each row represents one gene while each
column represents one year with the detection occurrence of the gene in the corresponding
year recorded in the matrix cell. The data contained a total of 65 AMR genes for 2010 to
2021 resulting in a matrix that contains 65 rows and 12 columns.

Due to the number of dimensions, these data were analyzed using principal component
analysis (PCA) and hierarchical clustering (HC) to identify the highly occurring AMR genes
by region and setting. PCA allows the visualization of multi-dimensional data in two
dimensions. The data are expressed in terms of new variables that are linear combinations
of the existing variables. The principal components PC1 and PC2 are those that retain the
most variation from the original data [23]. In this work, PCA is used to project AMR genes
into the PC1~PC2 two-dimensional space so that the outlier genes, which typically show
higher occurrence over years, are identified for further investigation. While AMR genes can
be visualized in PCA, certain genes are lumped together. PCA does not directly provide the
correlation relationship between individual AMR genes. Therefore, hierarchical clustering
is further used to group the genes projected onto the PC1~PC2 space into clusters that
are similar to each other in the format of dendrograms. PCA and HC were performed,
and graphs were generated using the free statistical software package R, version 1.4.1106,
implemented in RStudio (Boston, MA, USA) [24].

3. Results
3.1. Occurrence of Listeria monocytogenes

The data matrix generated from the NPDIB data included 35,753 Listeria monocytogenes
isolates from the six regions identified above: Australia/New Zealand, Asia, Europe, North
America, South Africa, and UK/Ireland. In Figure 1A, the total number of samples peaked
in 2016 and then declined during the subsequent years. Figure 1B shows this trend is
driven by North America, consisting of USA, Canada, and Mexico, where L. monocytogenes
is most prevalent. In UK/Ireland, the occurrence of L. monocytogenes increased modestly
over the time period. In the other four regions, the occurrence of L. monocytogenes was
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relatively constant over the time period. In all cases, the number of samples declined in
2020 and 2021.
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Lower numbers of samples were expected in 2020 and 2021, likely a result of public
health measures enacted due to the COVID-19 pandemic. The decline in the number
of samples from 2016 through 2019 could potentially be due to an actual decrease in
the occurrence of L. monocytogenes or simply due to fewer samples being submitted to
the NPDIB.

The decline in the number of samples of L. monocytogenes from 2016 through 2019 was
further investigated by determining the total number of samples submitted to NPDIB per
year from North America for all pathogens. Figure 2A indicates that the total number of
samples submitted per year from North America for all pathogens shows a similar trend as
L. monocytogenes samples. However, Figure 2B shows the percentage of L. monocytogenes
samples declined over the time period starting in 2013. This suggests that the decrease in L.
monocytogenes samples is due to a lower prevalence of the pathogen in North America and
not simply due to an overall lower number of samples being collected and submitted to
the NPDIB.

3.2. Presence of Antimicrobial Resistance Genes

A comprehensive analysis of Listeria monocytogenes isolates was performed to deter-
mine the highly occurring AMR genes and to determine if AMR genes increased over time.
For the time period 2010 to 2021, there are 35,753 samples for which the organism group is
identified as L. monocytogenes. There were a total of 65 AMR genes found in these samples.
Multivariate statistical analysis, mainly PCA and hierarchical clustering, was performed
and the highly occurring genes were identified by region and isolation type.
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Upon initial review of the data, it was found that the genes fosX and lin are present in
nearly every sample. The gene fosX is present in 99.98% of the samples and lin is present in
97.8% of the samples. The following analysis was performed using samples that contained
at least one AMR gene other than fosX or lin. This resulted in a modified data matrix of
10,039 samples, in which reach row represented a L. monocytogenes sample, each column
represented a gene, and the entries represented if the gene was detected in the sample.
PCA was performed to determine the highly occurring genes. Figure 3 shows that fosX, lin,
and abc-f are the most frequently occurring genes, followed by tet(M) and vanC, vanR, vanS,
vanT, and vanXY-C, which occur at a greater frequency than the remaining 56 AMR genes.
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Hierarchical clustering (HC) was also performed to identify clusters of genes that
occurred with similar frequencies. Figure 4 shows that fosX, abc-f, and lin are clustered
together, followed by tet(M) and the vancomycin resistance genes vanC, vanR, vanS, vanT,
and vanXY-C. The gene dfrG was also clustered with the vancomycin resistance genes.
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PCA and hierarchical clustering were also performed to compare regions based on
the occurrence of AMR genes. For this analysis, a data matrix was generated in which
each column represented the region from which the sample was collected and there was
one column per gene in which the entries represented if the gene was detected in the
region for each row. This resulted in a modified data matrix of 32,509 samples as there
were a number of samples for which the location was not identified. The PCA and HC
results are shown in Figure 5, which indicate that similar resistance genes were observed
in the following clusters: (1) North America, (2) Europe and UK/Ireland, and (3) Asia,
Australia/New Zealand, and South Africa. These results are not unexpected because the
regions are clustered by geographical proximity.

Table 3 lists the highly occurring genes found in each region. In all cases except Asia
and North America, fosX, lin, and abc-f represent greater than or equal to 97% of the AMR
genes observed. For North America, they represent 93% of the observed genes and for Asia,
they represent 72% of the observed genes.
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Table 3. Highly occurring AMR genes by region.

Aus/NZ Asia Europe N. America S. Africa UK/Ireland

fosX fosX fosX fosX fosX fosX
abc-f lin abc-f abc-f lin abc-f
lin abc-f lin lin abc-f lin

erm(G) tet(M) tet(M) tet(M) fexA tet(M)
tet(M) dfrG vanC tet(M)

tet(S) vanR dfrG
ant(6)-Ia vanXY-C tet(S)
erm(B) vanT

aph(3′)-IIIa vanS
lnu(B) tet(S)

spw catA1
catA
catA1
mef(A)
msr(D)
erm(C)
fexA

lnu(A)

Table 4 lists the highly occurring genes by isolation type. In both cases, the genes listed
represent 99.5% of the genes observed in each setting. It is expected to find more variety in
AMR genes in the environmental/other category because these represent a wider variety
of sources and typically AMR genes originate in these sources before being transferred
to humans.

3.3. Investigation of Highly Occurring AMR Genes

Figure 6A shows the number of samples of Listeria monocytogenes with genes fosX, lin,
abc-f, and tet(M) and the second chart (b) shows the number of samples with vanC, vanR,
vanS, vanT, and vanXY-C. The genes fosX and lin show the same trend as the number of
samples because they are present in nearly all the samples. The gene abc-f is relatively
constant from 2013 through to 2019, suggesting that the frequency of this gene is increasing
since the number of samples is declining over the time period. The gene tet(M) shows a
similar trend to the number of samples suggesting the frequency of this gene remained
constant over the time period. The five vancomycin resistance genes (vanC, vanR, vanS,
vanT, and vanXY-C) spiked in 2014 and 2016 but have not been observed in recent years.
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Table 4. Highly occurring AMR genes by isolation type.

Clinical Environmental/Other

fosX fosX
lin abc-f

abc-f lin
tet(M) tet(M)
catA1 vanC
catA vanR

mef(A) vanXY-C
msr(D) vanT

dfrG vanS
fexA tet(S)

dfrE
fexA
dfrG

erm(B)
lnu(G)

blaTEM-116
erm(C)
lsa(A)

mph(B)
tet(L)
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Figure 7 confirms that the percentages of samples containing genes fosX, lin, and tet(M)
fluctuated around the same values for samples from 2010 through to 2021. However, there
was an increase in the frequency of abc-f from 2017 through to 2020.

3.4. The Biological Functions of the Highly Occurring Genes

The four highest occurring genes were fosX, lin, abc-f, and tet(M). The fosX and lin
AMR genes are present in nearly all samples. These genes impart antimicrobial resistance
to fosfomycin, quinolones, and expanded-spectrum cephalosporins [18]. The abc-f gene is a
lincomycin resistance gene [25] and the tet(M) gene is a tetracycline resistance gene [26].
Table 5 summarizes the biological functions of all the highly occurring AMR genes.
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Table 5. Biological functions of highly occurring AMR genes.

AMR Gene Biological Function References

fosX Catalyzes hydration of fosfomycin breaking the oxirane ring [18]

abc-f
ATP-binding cassette protein that mediates resistance to a
broad array of antibiotic classes that target the ribosome of

Gram-positive pathogens
[25]

lin Ribosomal protection protein, lincomycin [18]
tet(M) Tetracycline resistance (ribosome protection), class M [27,28]
vanC Glycopeptide resistance gene; vancomycin, class C [29]
vanR Glycopeptide resistance gene; vancomycin, class R [30]

vanXY-C Glycopeptide resistance gene; vancomycin [31]
vanT Glycopeptide resistance gene; vancomycin, class T [32]
vanS Glycopeptide resistance gene; vancomycin, class S [30]
tet(S) Tetracycline resistance (ribosome protection), class S [27,28]
dfrE Trimethoprim resistance [33]
fexA Active efflux, phenicols [28]
dfrG Trimethoprim resistance [34]

erm(B) Ribosome modification-mediated resistance; macrolide,
lincosamide, and streptogramin B [27]

lnu(G) Enzymatic inactivation by nucleotidylation, lincomycin [35]
blaTEM-116 B-lactamase, broad-spectrum cephalosporin [36]

erm(C) Ribosome modification-mediated resistance; macrolide,
lincosamide, and streptogramin B [28]

lsa(A) Lincosamide and streptogramin A resistance [37]

mph(B) Encode phosphotransferases conferring
macrolide resistance [38]

tet(L) Tetracycline resistance (active efflux), class L [27,28]

4. Discussion

The results presented in Section 3.1 indicate that the frequency of L. monocytogenes
has been declining in North America since 2015. To corroborate this result, the number of
Listeria infections in the United States was reviewed from two other sources: the Foodborne
Diseases Active Surveillance Network (FoodNet) and NORS. These two sources support the
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conclusion from the NPDIB data that L. monocytogenes did not increase from 2010 through
to 2021.

FoodNet tracks infections commonly transmitted through food since 1996. FoodNet’s
surveillance area includes 15% of the US population across 10 states [39]. Table 6 shows
the results for Listeria from the pathogen surveillance tool from 2010 through to 2020 [39].
These results show a more consistent rate of Listeria infections with a small peak in 2017.
However, it is noted that the FoodNet data are smaller datasets over a small segment of the
United States and the results support the general observation that Listeria infections are not
increasing over time.

Table 6. FoodNet data for Listeria infections by year.

Year Infections (Incidence Per 100,000 Population)

2010 0.26
2011 0.28
2012 0.26
2013 0.25
2014 0.24
2015 0.25
2016 0.26
2017 0.32
2018 0.26
2019 0.27
2020 0.2

The National Outbreak Reporting System (NORS) reports outbreaks for foodborne
disease per year. Table 7 shows the results reported by NORS for Listeria from 2010 through
to 2018 [40]. Similar to the FoodNet data, the NORS data do not align exactly with the
trend seen in the NPDIB results, but they also support the general observation that Listeria
infections are not increasing over time.

Table 7. NORS outbreak data for Listeria per year.

Year Outbreaks Illnesses Hospitalizations Deaths

2009 4 35 18 0
2010 5 32 29 9
2011 6 209 184 39
2012 5 41 38 6
2013 10 86 77 16
2014 14 84 79 20
2015 6 75 61 7
2016 6 77 69 10
2017 11 54 47 7
2018 4 43 38 4

From the results in Section 3.2, it is noted that a diversity of AMR genes was not
observed in L. monocytogenes during the time period. There are two AMR genes, fosX and
lin, that were present in nearly all samples. The fosX gene has been demonstrated to be part
of the core genome of L. monocytogenes [41]. There are two additional AMR genes, abc-f and
tet(M), that occurred at higher frequency. The frequency of occurrence of the gene tet(M)
did not change over time and is consistent with observations of tetracycline resistance in
the works cited in Section 1. The frequency of occurrence of the gene abc-f increased from
2017 through to 2020 but decreased in 2021. Based on the information included in Table 5,
this gene does not confer resistance to the primary antibiotics used to treat listeriosis.

There are five AMR genes, vanC, vanR, vanS, vanT, and vanXY-C, that occurred at
a lower frequency. These were observed in the period 2014 to 2016 and have not been
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observed since. It is interesting to note that these genes were present only in environmen-
tal/other isolates and only in the years that L. monocytogenes had the highest frequency of
occurrence. Going forward, isolates in the NPDIB should be monitored closely to see if
these AMR genes occur again as that could potentially be an indicator of increased AMR
and a rise in frequency of L. monocytogenes.

The current treatment regimen for serious cases of listeriosis is ampicillin either used
alone or in conjunction with gentamicin. The findings in this analysis are important because
they demonstrate that AMR genes that confer resistance against ampicillin and gentamicin
are not widely present in L. monocytogenes at this time. For example, the AMR gene ampR,
which confers ampicillin resistance, and the AMR genes aac(6′) and aph(2′′), which confer
gentamicin resistance, were not found in any of the L. monocytogenes isolates. This indicates
that the current treatment regimen will continue to be medically relevant. However, the
results from NPDIB are in contrast with more recent studies cited in Section 1 in which
resistance to penicillin, ampicillin, and gentamicin has been observed, e.g., [15,16,19]. As a
result, ongoing monitoring of AMR genes in L. monocytogenes in the environment, animals,
and humans is important because tracking the occurrence of genes that impart resistance to
the first-line antibiotics will improve understanding of the future risks of the effectiveness
of these treatments. In addition, the highly occurring genes can guide research for new
treatments against L. monocytogenes. These AMR genes serve as potential drug targets for
new and alternative treatments, for example, new antibiotics or compounds that will work
synergistically with current antibiotics to treat resistant L. monocytogenes infections.

Overall, these results demonstrate that the AMR genes present in L. monocytogenes
samples from six regions are not changing over time and AMR resistance genes that
impact the current treatment regimen were not observed in the NPDIB data. Although
the observations from the NPDIB data are conclusive and generally supported by other
sources, there are a couple of questions regarding the NPDIB data. First, the database is
incomplete in several ways. For example, metadata are either missing or not consistently
formatted, and there are very little data for antibiotic susceptibility testing. Second, the
total number of samples reported in the NPDIB for all countries, all organisms declined
from 2018 to 2019 and declined in the United States from 2017 to 2019. It is not clear if these
declines are due to lower frequencies of isolates or due to lower compliance in submitting
samples. Lower compliance in submitting samples to the NPDIB could potentially impact
the validity of conclusions made from analysis of NPDIB data. For example, it may affect
how representative the data are if not all health agencies in the USA or internationally are
not uniformly collecting and sequencing samples and submitting to NCBI for analysis and
inclusion in the NPDIB.

5. Conclusions

It is concluded from the NPDIB data that there was no increase in antimicrobial
resistance genes in L. monocytogenes during the time period from 2010 through to 2021.
This is supported by the fact that AMR genes, with the exception of fosX and lin, are not
observed in a significant number of samples over the time period and by the fact that L.
monocytogenes isolates are observed to be decreasing over time. It would be expected that
an increase in antimicrobial resistance in L. monocytogenes would also result in an increase
in the number of reported isolates.

Going forward, efforts should focus to ensure samples are submitted to NCBI and to
improve the consistency in metadata because, as shown in this work, the database can be
used for the surveillance of antimicrobial resistance for the 34 pathogens included in the
database. L. monocytogenes isolates should be monitored closely for any changes in AMR
genes, as well as for the appearance of ampicillin or gentamicin resistance genes. It would
be critical to track and trace these cases closely as they could potentially be indicators of a
rise in the frequency of L. monocytogenes.
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