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Abstract: Understanding the effect of the urban built environment on online car-hailing ridership
is crucial to urban planning. However, how the effects change with the analysis scales are still
noteworthy. Therefore, a multiscale exploratory study was conducted in Chengdu, China, by using the
stepwise regression selection and three spatial regression models. The main findings are summarized
as follows. First, as the grid size increases, the number of built environment factors that have
significant effects on trip intensity decrease continuously. Second, the effects of population density
and road density are always positive from the 500 m grid to the 3000 m grid. As the analysis scale
increases, the effect of proximity to public transportation shifts from inhibitory to facilitation, while
the positive effect of land-use mix becomes stronger. Land-use type has both positive and negative
effects and shows different characteristics at different scales. Third, the effects of built environment
factors on online car-hailing trip intensity show different spatial variability characteristics at different
scales. The effect of population density gradually decreases from north to south. The effect of road
network density shows circling and wave patterns, with the former at relatively fine scales and
the latter at relatively coarse scales. The spatial variation in the effect of land-use mix can only be
observed more significantly at a relatively coarse scale. The effect of bus stop density is only obvious
at the relatively fine and medium scales and shows a wave-like pattern and a circle-like pattern.
The effect of various land-use types shows different spatial patterns at different scales, including
wave-like pattern, circle-like pattern, and multi-core-like pattern. The spatial variation in the effects
of various land-use factors gradually decrease with the increase in the analysis scale.

Keywords: urban built environment; online car-hailing; multiscale; spatial nonstationary

1. Introduction

Before the advent of online car-hailing (e.g., Uber/Lyft/Didi), taxis were one of the
important means of transportation for urban residents in their daily travel, due to providing
flexibility and personalized service capabilities in the current transportation system [1].
However, the cruise-style service of traditional taxis cannot quickly and efficiently match
travel demand and supply in time and space. With the development of location-based
services and mobile internet technologies, online car-hailing which can efficiently integrate
travel supply and demand information has brought a huge impact to traditional taxis [2].
For example, traditional taxis can take passengers only by street hailing, while online
car-hailing carries passengers through the combination of network appointments and street
hailing. Due to the personality, convenience, and flexibility, online car-hailing plays an
increasingly important role in people’s daily travel activities [3]. The company Didi is one
of leading mobile transportation platforms in China, which offers diversified transportation
services to 450 million users in more than 400 cities [4]. A large amount of trajectory data
were produced during the running of online-hailing vehicles. These data provide a good
foundation for studying the temporal and spatial laws of residents’ travel, discovering
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travel hotspots, revealing the urban spatial structure, identifying the functional areas of the
city, etc.

As an area with a high concentration of resident activities, the proper planning of
urban transportation functions is an important factor in the sustainable development of
a city, as well as for the efficiency of people’s work and their well-being. In addition, air
pollution from the transportation industry has had a serious impact on urban environmen-
tal problems, especially in developing countries with rapid urbanization. As one of the
main ways of green travel, online car-hailing can effectively reduce the carbon emission
of residents’ travel and improve the quality of the urban environment. Therefore, under-
standing the spatiotemporal characteristics of online car travel and its relationship with the
built environment can not only prompt the transportation infrastructure design, but also
provides a basis for guiding low-carbon transportation behavior.

The urban built environment, which is the human-made environment provided for
human activities, usually includes the spatial environment formed by the interaction of
multiple factors such as land-use, transportation infrastructure, and urban design [5].
In fact, the rapid development of the online car-hailing transportation mode will also
bring corresponding difficult challenges to urban traffic planning and management [6,7],
especially on how to reasonably integrate the built environment policies (e.g., regional
development planning, comprehensive land development, and street network construction)
with transportation policies (e.g., relevant policies such as bus, taxi, and online car-hailing
operation management) [7]. In order to integrate the built environment policies with
transportation policies, the effect of the built environment on online car-hailing needs to
be explored comprehensively. Previous studies have shown that the relationship between
urban transportation and the built environment is significant and complicated [8,9]. For
example, Cervero et al. found that the built environment, with high density and a high
degree of mixing and grid street network, has a significant impact on reducing travel
distance and encouraging nonmotorized travel [10]. Ge et al. found that the health care area
is the most critical factor in all land-use variables that impact taxi ridership [11]. Yang et al.
found a positive correlation between accessibility to subways and taxi ridership [12].
However, to the best of the authors’ knowledge, more efforts should be made to analyze
the effect of the built environment on online car-hailing travel, especially the multiscale
effect; that is, how do urban built environment factors affect online car-hailing ridership
intensity among different scales? Answering this question can help provide a basis for
decision-making in the planning of transport policies.

Our study attempts to answer this question from three aspects. First, what are the dif-
ferences in built environment factors that have significant effects on online car-hailing travel
behavior between different scales? Second, how do such factors affect online car-hailing
travel behavior in different scales? Third, how do the effects of these built environment
factors vary in the space of different grids? Therefore, this study focuses on three main
tasks. Firstly, based on the principle of 5Ds developed by Ewing and Cervero [13], we
apply the stepwise regression method to improve the selection of independent variables
of the urban built environment in ten grid scales. Secondly, we construct the ordinary
least square regression models from global perspectives of spatial relationship, and then
analyze the impact of built environment factors on the online car-hailing ridership intensity.
Finally, we explore the spatial varieties of the effect of built environment factors on the
online car-hailing ridership intensity based on the local regression results derived by the
MGWR model.

The structure of this paper is organized as follows. In Section 2, we review related
research on the effect of the urban built environment on car-hailing travel behavior. In
Section 3, we describe the study area, data, and methods including stepwise regression,
Moran’s I test, ordinary least square regression model, geographically weighted regression
model, and multiscale geographically weighted regression model. In Section 4, we use
several spatial regression models to fit the multiscale relationship between the urban built
environment and online car-hailing ridership intensity in detail and analyze the regression
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results. In Section 5, we make the conclusions and note the limitations. The findings can
provide invaluable insights into policy formation regarding online car-hailing to guide
transport development in Chengdu, China, and worldwide.

2. Literature Review

Taxis used to be the main cruising car rental service in the city before online car-
hailing [14]. Therefore, extensive research was conducted on many aspects using taxi data,
such as spatiotemporal characteristic analysis of travel behaviors, transportation network
recognition, traffic demand prediction, the impact of the built environment on taxi travel
behavior, the relationship between taxis, buses and subway, and so on [2,9,11,12,15–19].
Numerous scholars believe that taxi trajectory data can reflect the temporal and spatial char-
acteristics of urban traffic flow to a certain extent [20], and the spatiotemporal heterogeneity
shown by it is closely related to the urban form. In recent years, an increasing number of
researchers began to focus on the influence of the built environment on the travel behavior
of car-hailing. For example, according to Jiang’s research in 2009, the human mobility
pattern is mainly attributed to the underlying street network [21]. Li et al. identified
the preferred pick-up places for passengers and drivers [22]. Cervero et al. found that
the improvement in the degree of land-use mixture can reduce the vehicle miles traveled
(VMT) [10]. A positive correlation between accessibility to subway and taxi ridership
was found by Yang et al. [12]. Ge et al. claimed that among all land-use variables, the
health care area has the most critical impact on taxi ridership [11]. Liu et al. explored the
influence mechanism of different built environment variables on car ownership [23]. These
studies have comprehensively explored the relationship between the built environment
and the travel behavior of car-hailing. However, due to the difference between traditional
taxi-hailing and online car-haling, the influence of the built environment on the online
car-haling travel behavior is still a hot issue needing to be explored.

In terms of the “five Ds” principle, numerous studies have been facilitated to inves-
tigate the relationship between the built environment and the travel behavior of online
car-hailing. For example, these scholars claimed that the effects of population density, road
network design, and land-use mix on sharing traveling demand are mainly positively cor-
related [14,24–26]. Due to the floating feature of sharing travel, the studies on the impact of
destination accessibility on online ride-hailing travel are relatively rare [27]. These scholars
claimed that distance to transit, which represents the ease of access to transit services, can
prompt an increase in ride-hailing demand [25,28]. This finding was consistent with Deka’s
travel survey results, which claim that residents living near transit stations use ride-hailing
more frequently [29]. In addition, Kong et al. [30] and Wang and Noland [31] also found a
positive relationship between proximity to the metro station and online car-hailing trips.

Although these studies have provided clues for evaluating the effect of the built
environment on the travel behavior of online car-hailing in our study, there are still two
main problems that need to be answered. First, the measurement factors of the built
environment were not fully controlled when selecting variables in the above study [6],
which may lead to inconsistent and even contrary results. For example, Yu and Peng
found that an increase in road density could generate more online car-hailing travel [24,25],
while Li et al. [7] and Sabouri et al. [32] indicated that the road density had no appreciable
impact or even a negative impact on the ridership of online car-hailing. Second, the
scales of the analysis unit in previous studies were inconsistent, which also may lead to
different conclusions. As we know, the analysis unit is an important issue in travel behavior
studies. The traditional traffic analysis zone (TAZ) is the dominant analysis unit in the
traffic behavior research [33–35]. The division types of TAZ usually include administrative
division, census zones, land-use parcel, residential district, grid geometry, and so on. It
is demonstrated that TAZ in the form of grid geometry with appropriate size will reflect
the impact of the built environment on travel behavior more accurately [36]. Yet, it is
also hard to determine an appropriate size of the grid geometry under different research
scenarios [37]. Coined by geographers during the 1970s, the modifiable areal unit problem
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(MAUP) [38] is one of the most stubborn problems in geography analysis when spatially
aggregated data are used. The modifiable areal unit problem in spatial statistical analysis
usually means that analyzing the datasets in different analysis units (such as shape, scale)
will likely provide inconsistent results [39]. The uncertainty caused by the MAUP impacts
the robustness and reliability of statistical results. Some scholars have explored the MAUP
issue in sharing transport. For example, Gao et al. studied the MAUP issue of dockless
bike sharing usage [40]. However, the MAUP issue in online car-hailing behavior modeling
results are limited. Therefore, the differences between the built environment’s effect on
online car-hailing in different scales need to be explored.

In the term of research methods, the effect of built environment factors on car travel be-
havior is usually quantified by the ordinary least square (OLS) regression model [12,34,35],
due to its efficiency and convenience. However, there are still some limitations in the OLS
model, such as inconsistent parameters or inaccuracy of test results, as the spatial nonsta-
tionary aspect of online car-hailing travel is ignored by the OLS model [41,42]. Therefore,
the spatial effect should be considered in the regression model. Geographically weighted
regression is an analysis method that deals with the spatial nonstationary aspect of the rela-
tionship, which was proposed by Brunsdon, Fotheringham, and other scholars in 1996 [43].
At present, GWR and its extensions have developed into one of the important methods of
spatial relationship analysis. Qian et al. analyzed the spatial variations in taxi behavior
in New York City using the GWR model [17]. Zhang et al. investigated the relationship
between the taxi traffic spatiotemporal congestion pattern and the built environment [44].
Wang et al. analyzed the local effects of land use and capital investment using the global
model and GWR model [14], respectively, and in the local results there appeared a local
spatially inverse relationship in the areas adjacent to the international airport, indicating the
existence of negative externalities. However, the traditional GWR model often uses a single
kernel function and a unified “best average” bandwidth to calculate the weights, which
ignores the spatial scale difference in variable estimation. Compared with the traditional
GWR model, the multiscale geographically weighted regression model can reflect the scale
differences in variable estimates in the multivariate GWR model [45–47]. In the context of
increasingly diverse data modeling scenarios, the scales of spatial data are becoming more
and more complex [48]. Previous research demonstrated that multiscale GWR technology
can achieve model estimation more accurately and comprehensively due to its robustness
and universality [49]. Some existing work claimed that the multiscale GWR model should
be the preferred technology for the multivariate GWR model [45,48–50]. However, the
travel behavior of online car-hailing is different than the behavior of traditional taxis. To
our best knowledge, comparative studies of various spatial models among different scales
are relatively rare in the quantitative analysis of the impact of land use on online car-hailing
travel. In short, the impact of the urban built environment on online car-hailing travel
needs to be strengthened, especially for the spatial variations in effects in diverse scales.

To this end, this article tries to analyze how the built environment affects the online
car-hailing travel intensity in different scales, through spatial regression models such as
the OLS model, the GWR model, and the MGWR model by taking Chengdu, China, as
the study area. The results of this paper can not only enrich the theoretical connotation
and research method of transportation geography, but also provide a reference for online
car-hailing management and transportation policy optimization.

3. Materials and Methods
3.1. Study Area

Chengdu city was selected as the study area of our research. Chengdu is the capital
of Sichuan Province, which is an important central city in western China approved by
the State Council, and a comprehensive transportation hub. Chengdu has 12 municipal
districts, 3 counties, and 5 county-level cities under its jurisdiction, with a total area of
14,335 square kilometers. The main data of the seventh national census of Sichuan Province
show that the permanent population of Chengdu reached 20.938 million by the end of



Int. J. Environ. Res. Public Health 2022, 19, 5325 5 of 25

2020 [51]. Chengdu has a flat terrain, vertical and horizontal river networks, and accessible
roads. It has a humid subtropical monsoon climate. According to statistics from the national
online car-hailing regulatory information exchange platform in March 2021, the number
of Chengdu’s online car-hailing vehicle licenses is the largest among the 36 central cities
(municipalities, provincial capitals, and cities under separate planning) in the country, and
the number of online car-hailing orders ranks second among 36 central cities [52]. It can be
seen that online car-hailing has already occupied a pivotal position in the travel system of
Chengdu residents. Since more than 98% of the trip origins and destinations fell within the
89 streets of Chengdu, the study area was set to coincide with the area where the 89 streets
are located. The location of the study area is shown in Figure 1.
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3.2. Data Source and Preprocessing

The online car-hailing order data were provided by the Didi Gaia open dataset project
(https://gaia.didichuxing.com, accessed on 24 January 2021). The data period is from
7 November 2016 to 13 November 2016, with a total of 1,610,652 records. The weather
conditions in Chengdu during this period were good and did not have a major impact on
online car-hailing travel. The original data include fields such as order number (encrypted
and desensitized), pick-up time, drop-off time, pick-up location longitude, pick-up location
latitude, drop-off location longitude, and drop-off location latitude. The coordinate system
of the longitude and latitude fields is GCJ-02, which is the official Chinese geodetic datum
formulated by the Chinese State Bureau of Surveying and Mapping. The coordinates of
pick-up and drop-off location were converted to the WGS1984 coordinate system. The
administrative boundary vector data were collected from the road traffic monitoring plat-
form of Chengdu; the collection time was June 2021, the data format is shapefile, and
the coordinate system is the WGS1984 coordinate system. POI data were collected from
Gaode Map (https://lbs.amap.com/, accessed on 7 March 2018), which includes four-
teen POI categories: catering facilities; scenic spots; public service facilities; companies;
shopping facilities; transportation facilities; financial facilities; educational, scientific, and
cultural facilities; residence district; living service facilities; sports and leisure facilities;
medical service facilities; government agencies; and accommodation service facilities. By
cleaning the original POI data, 274,175 POI records were obtained for further analysis.
Population density was calculated using the WorldPop dataset with a resolution of 100 m
(https://www.worldpop.org/, accessed on 17 April 2020). The bus station data were

https://gaia.didichuxing.com
https://lbs.amap.com/
https://www.worldpop.org/
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extracted from the transportation facilities category of POI data. Finally, the coordinate
system of all spatial data was unified as the project coordinate system of WGS1984 UTM
Zone 48N.

Traffic analysis zone is the geography unit that is most commonly used in conventional
transportation planning models. The type and spatial extent of zones typically varies in
models. The square grid is one of the classic geography units for transportation analysis.
There is no doubt that the gridded map with appropriate cell size can reveal the spatial
varieties of transportation patterns more clearly. However, there is still no authoritative
and uniform standard for obtaining grid size in academia. The purpose of this paper is to
investigate how the built environment affects the intensity of online car trips in different
grid scales. The criteria for scale division mainly includes two aspects. First, the minimum
grid size for previous studies of online car-hailing in Chengdu is 500 m. Therefore, 500 m
was set as the minimum analysis size for this paper. Second, as approximately 93% of
the online taxi trip distances in this paper are shorter than 5000 m, 5000 m was set as the
maximum analysis size in this paper. To ensure that we can reveal the characteristics of the
effect of the built environment on online car-hailing trips at different scales, while reducing
the computational burden, 500 m was chosen as the criteria for scale division. Then, we
created ten grids with sizes ranging from 500 m to 5000 m at 500 m intervals, by using the
create fishnet tool of ArcGIS software (Esri, Redlands). Moreover, we used the tools of
ArcGIS software (Esri, Redlands) such as zoning statistics, spatial join, and field calculator
to calculate the built environment indicator values for each cell. In addition, all data were
standardized using zero-mean normalization method.

3.3. Methods
3.3.1. Indicator System of Urban Built Environment

The well-known “five Ds” principle, which was proposed by Ewing and Cervero
in 2010, is one of the most widely used metrics to measure the urban built environment.
According to the “five Ds” principle, the urban built environment can be measured from
five aspects: design, diversity, density, distance to transit, and destination accessibility.
The destination accessibility is usually measured by distance to the CBD (central business
district) in previous studies. However, the assumption of using distance to the CBD as an
indicator is that the CBD includes the vast majority of destinations for taxi trips. The CBD in
our study includes subdistricts such as Chunxilu, Hongxinglu, Yanshikou, Luomashi, and
Shunchengjie, with a total area of about 2.45 km2. According to the drop-off distribution of
our study, the CBD does not hold the majority of destinations for taxi trips. In addition, the
main purpose of our study is to explore how the urban built environment affects online
car-hailing trip (pick-up) intensity among different analysis scales. Previous studies show
that land use has a great impact on the trip generation. Therefore, we chose different
land-use types to replace the destination accessibility. Eighteen indicators were selected as
the initial variables following the modified “five Ds” principle (see Table 1).

Table 1. The indicators of urban built environment based on “five Ds” principle.

Features Main Indicators in
Previous Literatures Indicators in Our Study

density population density,
employment density population density (PD)

diversity land-use mix,
job–housing imbalance land-use mix (LM)

design neighborhood, road density, etc. road density (RD)

distance to transit bus stop density, distance to
metro, etc. bus stop density (BD)

different land-use types − POI density
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The diversity was measured by the land-use mix based on the principle of the Herfind-
ahl Hirschman Index (HHI), which is a classic metric to reflect diversity [53]. The formula
of land-use mix is shown as follows:

LMi = ∑k
j=1

(Nij

Ni

)2

(1)

where LMi denotes the land-use mix of cell i, Ni is the total POI numbers in cell i, Nij is the
total POI numbers of type j in cell i, and k is the category of POIs. For ease of description, a
simplified name is given for each metric (see Table 2).

Table 2. The abbreviations of indicators.

Indicators in Our Study Abbreviations

population density PD
land-use mix LM
road density RD

bus stop density BD
catering facility density cat_D

scenic spot density sce_D
public service facility density pub_D

company density com_D
shopping facility density sho_D

transportation facility density tra_D
financial facility density fin_D

educational, scientific, and cultural facility density edu_D
residential district density res_D

living service facility density liv_D
sports and leisure facility density spo_D

medical service facility density med_D
government agency density gov_D

accommodation service facility density acc_D

3.3.2. Independent Variable Selection Based on Stepwise Regression

As mentioned above, eighteen initial indicators were selected to represent the urban
built environment based on the “5Ds” theory. However, the multicollinearity test was not
performed. It is well known that multicollinearity is a common problem when two or
more of the predictors in a regression model are moderately or highly correlated. Variance
inflation factors (VIF) is a commonly used metric to help detect multicollinearity. The VIF
values of indicators in different scales are shown in Table 3.

Using the VIF value greater than ten as the criterion for the multicollinearity test, it
can be seen from Table 3 that there are multicollinearity problems in the selected inde-
pendent variables at all scales. Since the multicollinearity problem can seriously affect
the performance of the regression model, it must be dealt with. Stepwise regression is
a classic method for explanatory variable selection, which mainly solves the problem of
multicollinearity among variables. The commonly used stepwise regression methods are
forward selection, backward elimination, and bidirectional elimination. In this paper, we
use bidirectional elimination for the selection of optimal independent variables. The bidi-
rectional elimination is a combination of the forward selection and backward elimination,
testing at each step for variables to be included or excluded. In general, the process of
bidirectional elimination consists of two basic steps: one is to remove variables from the
regression model that are not significant by t-tests, and the other is to introduce new vari-
ables into the regression model that are significant by F-tests. The bidirectional elimination
algorithm in this paper is implemented programmatically using the python language and
the statistical analysis software named statsmodels. The detailed information of statsmod-
els can be found at the URL: https://www.statsmodels.org/stable/index.html (accessed
on 15 June 2021).

https://www.statsmodels.org/stable/index.html
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Table 3. The VIF values of initial variables in ten scales.

Variables VIF Values in Different Scales

500 m 1000 m 1500 m 2000 m 2500 m 3000 m 3500 m 4000 m 4500 m 5000 m

PD 1.31 1.48 1.96 2.22 2.40 3.10 3.68 6.90 1.28 6.43
RD 1.49 1.93 1.96 1.78 2.18 1.28 5.87 5.65 2810.33 2.76
BD 1.74 − 4.14 5.36 3.53 4.85 10.41 9.21 2773.74 −
LM 1.65 1.44 1.38 1.33 1.31 1.65 2.02 1.80 2.29 1.61

acc_D 1.45 2.20 2.62 4.28 5.10 6.54 7.59 8.85 20.04 17.24
cat_D 5.22 − 23.32 28.28 41.87 48.72 105.02 111.09 159.23 −

com_D 1.95 2.76 3.64 4.65 4.89 7.26 9.99 11.40 14.40 33.39
spo_D 3.27 6.75 10.51 17.64 26.85 33.58 66.73 79.37 82.84 152.48
gov_D 2.05 3.66 5.86 9.41 11.55 26.83 48.56 6.49 52.51 84.32
fin_D 3.30 6.35 11.45 18.21 17.67 28.63 58.06 50.37 71.78 49.36
liv_D 5.51 8.60 17.83 26.38 43.15 50.57 77.50 93.28 191.42 219.01

med_D 2.55 4.84 6.43 10.94 21.78 21.32 57.37 44.59 60.18 178.04
pub_D 1.69 2.81 4.58 7.19 11.18 16.65 31.21 25.10 23.59 48.20
res_D 3.85 5.86 7.74 13.56 21.97 36.93 52.25 29.12 92.19 68.57
sce_D 1.21 1.63 2.10 3.45 4.21 7.25 10.50 10.14 20.67 20.19
edu_D 3.29 7.01 9.79 19.10 29.67 46.26 95.77 82.53 102.28 180.11
sho_D 2.45 4.82 9.30 13.79 19.84 26.89 57.56 42.83 52.01 157.12
tra_D 5.19 10.80 17.76 27.95 31.89 45.85 82.30 105.11 113.41 110.55

3.3.3. Ordinary Least Squares (OLS) Regression

Regression analysis is a quantitative technique that studies the relationship between
the dependent variable and the independent variable. OLS regression is a regression
analysis method that uses ordinary least squares to model the linear relationship between
the independent variable and the dependent variable. The OLS model is usually the starting
point of spatial regression analysis. The common form of the OLS regression equation is
as follows:

yi = ∑n
i=1 βixi + εi (2)

In Formula (2), yi is the value of the dependent variable; xi (i = 1, 2, . . . n) is the value
of the independent variable; βi(i = 1, 2 . . . n) is the coefficient of regression model; εi is the
error term of the model.

The OLS model is a global regression model, which is usually used to identify the
significant built environment variables. However, the value of the regression coefficient
estimated by the OLS model is the average value of the entire study area, which cannot
reflect the spatial variation in the regression parameters. Therefore, the spatial variation in
the coefficients needs to be addressed using local regression techniques such as the GWR
series model.

3.3.4. Moran’s I Test

Spatial nonstationarity is a prerequisite for the application of the GWR. The test for
spatial nonstationarity is to measure the presence of spatial autocorrelation in the residual
distribution of the regression model. Moran’s I is an important measure of global spatial
autocorrelation proposed by Patrick Alfred Pierce Moran in 1950 [54]. The value range
of the Moran’s I is between −1 and 1. A positive value of Moran’s I indicates that the
data exhibit positive spatial autocorrelation, and the larger the value, the more obvious
the spatial autocorrelation. A negative value of Moran’s I indicates that the data exhibit
negative spatial autocorrelation, and the smaller the value, the greater the spatial variation.
A zero value of Moran’s I indicates that the spatial distribution is random. The p-value and
the Z-score are required to interpret the Moran’s I test result. That is, the Moran’s I test
result is considered valid when the p-value is less than 0.05 (passing the 95% confidence
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test) and the Z-score exceeds the critical value of 1.65 (the threshold set by rejecting the null
hypothesis). The calculation formula of Moran’s I is as following:

I =
∑n

i=1 ∑n
j=1 ωi,jzizj/S0

∑n
i=1 z2

i /n
(3)

where ωi,j is spatial weight between sample i and sample j; n is the number of samples; zi
(zj) is the difference between sample i (j) and the mean of all samples; S0 is the sum of all
spatial weights.

3.3.5. Geographically Weighted Regression

Spatial heterogeneity is a universal phenomenon in geography, which is also the
premise of the existence of the first law of geography. Therefore, it is necessary to consider
the spatial heterogeneity of variables when carrying out regression analysis for geographic
phenomena. GWR is a locally weighted regression analysis model about location. GWR
quantifies the heterogeneity or nonstationary characteristics in the spatial data relationship
through the parameter estimation results that change with different locations. Because
the local effects of spatial objects are taken into account, GWR has higher accuracy than
OLS in the aspect of spatial regression. The basic GWR model can generally be expressed
as follows:

yi = β0(ui, vi) + ∑m
k=1 βk(ui, vi)xik + εi (4)

In Formula (4), yi is the value of the dependent variable at position i; xik (k = 1, 2, . . . m)
is the value of the independent variable at position i; (ui, vi) are the coordinates of position
i; β0(ui, vi) is the intercept term; βk(ui, vi)(k = 1, 2, . . . m) is the coefficient of regression
model; εi is the error term of the model.

3.3.6. Multiscale Geographically Weighted Regression

Multiscale geographically weighted regression is an extension of traditional geograph-
ically weighted regression developed by Fotheringham et al. [47]. MGWR relaxes the
assumption that all processes to be modeled are on the same spatial scale, and can be
regarded as a geographically weighted regression model with spatially variable parameters.
Previous studies have shown that the MGWR model that takes into account the bandwidth
of variability has stronger explanatory power and robustness than the traditional GWR
model [50,55]. The calculation formula of the MGWR model is as follows:

yi = β0(ui, vi) + ∑m
k=1 βbwk(ui, vi)xik + εi (5)

In Formula (5), bwk represents the bandwidth used by the regression coefficient of
variable k. The meanings of the remaining variables are the same as variables in Formula (4).

3.3.7. Model Evaluation Metrics

Three commonly used metrics, determination coefficient (R2), residual sum of squares
(RSS), and Akaike information criterion (AIC) [56], were selected to evaluate the model
performance. R2 is mainly used to evaluate the goodness of fit of the model. The higher the
R2 value, the better the fitting performance of the model. RSS is mainly used to measure the
deviation between the measured value and the predicted value of the dependent variable.
The lower the RSS value, the closer the model’s estimated result is to the actual measured
value. AIC can be used to measure the practicality and complexity of the model. The
smaller the AIC value, the better the fitting effect of the model.

4. Results and Discussion
4.1. The Global Regression Results Using the OLS Model in Different Scales

The global regression results of the OLS model using the stepwise method and model
evaluation information are shown in Table 4.
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Table 4. The regression results of OLS model in ten scales.

Variables Coefficients and SE in Different Scales

500 m 1000 m 1500 m 2000 m 2500 m 3000 m 3500 m 4000 m 4500 m 5000 m

PD 0.087
(0.012)

0.125
(0.021)

0.164
(0.031)

0.205
(0.038)

0.186
(0.047)

0.263
(0.055) − − − −

RD 0.053
(0.013) − − − − − 0.997

(0.143) − − −

BD −0.034
(0.013) − −0.153

(0.040)
−0.183
(0.041)

−0.196
(0.051)

−0.212
(0.063)

−0.714
(0.179) − 0.274

(0.097) −

LM 0.075
(0.013)

0.040
(0.040) − − − − 0.286

(0.085)
0.125

(0.034)
0.569

(0.097)
0.578

(0.110)

acc_D 0.167
(0.012)

0.306
(0.025)

0.312
(0.036)

0.454
(0.052)

0.328
(0.060)

0.515
(0.081) − −0.176

(0.057) − −

cat_D − − − − − − − − − −
com_D − − − − − − − − − −

spo_D − − −0.129
(0.057)

−0.195
(0.060) − − − − − −

gov_D − − 0.193
(0.050)

0.391
(0.064) − 0.727

(0.123)
−1.192
(0.284)

1.903
(0.067) − −

fin_D 0.129
(0.018)

0.156
(0.035) − − − − − −0.375

(0.105) − −

liv_D − 0.133
(0.051) − − − − − − − −

med_D − −0.125
(0.038) − − − − − − − −

pub_D 0.146
(0.013)

0.202
(0.027)

0.251
(0.048)

0.362
(0.067)

0.546
(0.098)

0.491
(0.109) − − − −

res_D 0.261
(0.017)

0.245
(0.034)

0.208
(0.055) − 0.159

(0.069) − − −1.035
(0.098) − −

sce_D 0.033
(0.011) − −0.070

(0.032)
−0.184
(0.045)

−0.135
(0.055)

−0.281
(0.073) − −0.174

(0.070) − −

edu_D 0.043
(0.017) − − − − −0.613

(0.159) − − − −

sho_D 0.103
(0.014)

0.129
(0.038)

0.166
(0.050) − − − 0.581

(0.261) − − −

tra_D 0.075
(0.023) − − − − − 0.764

(0.163) − − −

Metrics 500 m 1000 m 1500 m 2000 m 2500 m 3000 m 3500 m 4000 m 4500 m 5000 m

Adj. R2 0.572 0.671 0.730 0.771 0.774 0.821 0.586 0.931 0.548 0.321
AIC 8053.725 1862.015 779.284 409.614 273.811 171.820 218.667 24.577 143.535 145.077
RSS 1723.607 348.318 132.847 65.224 42.660 24.317 41.410 5.204 29.374 37.985

Moran I of
Residual 0.508 0.529 0.515 0.462 0.408 0.247 0.128 0.014 0.072 0.022

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.598 0.215 0.623

As can be seen from Table 4, the built environment factors that affect the intensity of
online car-hailing trips vary among different scales. The p-values show that the involved
variables are significant at least in the level of 0.05. The amount of built environment
factors that affect the online car-hailing travel intensity decreased with the increasing of the
analysis scale. The details are described for each scale in the following text.

At the scale of 500 the m grid, the positive influence of built environment factors, such
as residential district density, accommodation service facility density, public service facility
density, financial facility density, and shopping facility density, on the intensity of online
car-hailing trips are more prominent, and the positive effect of factors such as population
density, land-use mix, transportation facility density, road density, educational research
institution density, and scenic spot density are relatively weak.
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At the scale of the 1000 m grid, the built environment factors which have stronger
positive effects on the online car-hailing trip intensity are the same as factors in the scale
of grid 500 m, besides the density of living service facility density and population density,
while the positive effects of land-use mix are relatively weak. The negative effects of
medical facility density and sports and leisure facility density on the intensity of online
car-hailing trips are stronger, while the negative effects of catering facility density are less
significant. From this, it can be speculated that in a relatively fine scale, the effects of built
environment factors such as density, land-use type, and distance to transit on the intensity
of online car-hailing trip are significant. Our result is consistent with the results of previous
studies proposed by Wang, Bi and Li et al. [6,7,31,37].

At the scale of the 1500 m grid, factors such as residential district density, accommo-
dation service facility density, public service facility density, government agency density,
shopping facility density, and population density have a greater positive effect on travel
intensity, while bus stop density, sports and leisure facility density, and scenic spot density
have a greater negative effect on travel intensity. Similar to the characteristics in the 1500 m
grid, residential district density and shopping facility density are no longer factors with a
greater positive effect on travel intensity at the scale of the 2000 m grid, while factors with
a greater negative effect remain unchanged.

At the scale of the 2500 m grid, the factors such as public service facility density,
accommodation service facility density, population density, and residential district density
have a greater positive effect on travel intensity, while the factors that have a greater
negative effect on travel intensity are still bus stop density and scenic spot density.

The characteristics of the 3000 m grid are more similar to those of the 2500 m grid.
The difference is that the government agency density replaces the residential district
density among the factors that have a greater positive effect on travel intensity, while the
educational, scientific, and cultural facility density is included in the factors that have a
greater negative effect on travel intensity.

At the 3500 m grid, the top three factors that have a positive effect on travel intensity
are road density, transportation facility density, and shopping facility density, while the
top two factors with a negative effect are government agency density and bus stop density.
At the 4000 m grid, the top two factors that have a positive effect on travel intensity are
government agency density and land-use mix, while the top three factors with a negative
effect are residential district density, financial facility density, and accommodation service
facility density.

At the scale of the 4500 m grid, two indicators, land-use mix and bus stop density,
have a significant positive effect on the intensity of online car-hailing travel. At the scale of
the 5000 m grid, the land-use mix is the only indicator that has a significant positive effect
on the travel intensity.

Therefore, it can be summarized that the five types of built environment features have
different impacts on online car-hailing travel intensity. As the scale of the analysis unit
increases, the number of built environment factors that have a significant effect on travel
intensity decreases. The differences in the effects of the five built environment factors on
online car travel in different scales are described in detail below.

In the range of the 500 m grid to the 3000 m grid, density always has a positive effect
on the intensity of online car-hailing trips. In the remaining analysis scales, density does
not reflect an effect on the travel intensity. For this reason, it can be hypothesized that
higher population densities can generate a higher intensity of online car trips. However,
the prompting effect of population density can only be observed at small and medium scale
of analysis. This result is inconsistent with the results of previous studies. Two studies
investigated by Li Ting [7] and Wang Sai [6] showed no significant effect of population
density on the traffic volume of online car-hailing. The reason may be that the population
data used in these papers are the sixth census data and the study area and analysis unit of
them are not consistent with our paper.
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In the range of the 500 m grid to the 3500 m grid, there is a significant negative effect of
public transportation proximity on the intensity of online car-hailing trips. On the contrary,
there is a positive effect of public transportation proximity on the intensity of online car-
hailing trips at the 4500 m grid. Therefore, it can be concluded that the effect of public
transportation proximity on the intensity of online car-hailing trips shifts from a significant
inhibitory effect to a facilitative effect as the scale of analyzed unit increases. The reason
may be that there is a competitive relationship between public transportation and online car
trips. When the travel distance is relatively short (maybe have a threshold), residents who
live in the cells with well-developed public transportation are more likely to travel by public
transportation than by online car-haling. When the travel distance exceeds the threshold,
even in the cells with well-developed public transportation, residents are more likely to take
online car-hailing to travel. This result also reflects that in long-distance travel behavior,
the online car-hailing is more favored by the urban residents than public transportation.

In the range of the 500 m grid to the 1000 m grid, there is a slight positive effect of
land-use mix on the intensity of online car-hailing trips. In the range of the 3500 m grid
to the 5000 m grid, the land-use mix has a significant positive effect on the intensity of
online car-hailing trips, and the effect force keeps increasing. In the range of the 1500 m
grid to the 3000 m grid, the effect of land-use mix on the online car-hailing trip intensity is
not significant. It is hypothesized that with the increasement of analysis scale, land-use
mix gradually becomes the dominant factor influencing the intensity of online car-hailing
trips. Therefore, a reasonable speculation is that enhancing the mixture of urban functional
space can effectively promote the intensity of online car-hailing trips in the coarse spatial
scales. Our finding is consistent with the findings of Li Ting et al. [7] and Cervero [10], but
inconsistent with the findings of Munishi [57], Xie Weihan [18], Wang Sicheng [31], and
Wang Sai [6]. The reason may be due to inconsistencies of the analysis scale and study area.

At the 500 m grid and 3500 m grid, the neighborhood design represented by road
density has a positive effect on the intensity of online car-hailing trips but does not show a
significant effect at the rest of the grid scales. It can be inferenced that the positive effect
of road density on the intensity of online car-hailing trips can only be captured at certain
scales. Our finding is inconsistent with studies investigated by Li Ting et al. [7]. Since the
road density was excluded by multicollinearity analysis through VIF values, the authors
concluded that road density had no significant effect on online car-hailing trip volume.

In the range of the 500 m grid to the 4000 m grid, the effects of land-use types on the
intensity of online car-hailing travel were all significant and showed different character-
istics with scale changes. Among them, the factors include public service facility density,
residential district density, accommodation service facility density, and government agency
density, showing significant positive effects at most of the analysis scales, while sports
and leisure facility density and scenic spot density show significant negative effects. Our
findings are consistent with previous studies.

It can be seen from Table 4 that the residual of the OLS model exhibits significant
spatial autocorrelation in almost all grid scales. Unlike traditional cross-sectional data and
panel data, the spatial correlation of the model residual will lead to spatial nonstationarity
of the relationship. Compared with the ordinary square least regression model, spatial
regression models such as the GWR model and the MGWR model can deal with the
spatial nonstationarity more appropriately [58,59]. Therefore, the local regression models
considering the spatial nonstationarity should be used for further analysis.

4.2. The Local Regression Results in Different Scales

The evaluation results of local regression models are summarized in Table 5.
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Table 5. Model evaluation results of local models in different scales.

Scales Models Adj. R2 AIC RSS Bandwidth Moran I of Residual p-Value

500 m
GWR 0.922 2713.854 235.732 1143.620 −0.017 0.033

MGWR 0.917 2245.675 281.408 Varied 1 −0.034 0.000

1000 m
GWR 0.946 515.039 39.678 1924.210 0.025 0.110

MGWR 0.967 −140.070 26.100 Varied −0.075 0.000

1500 m
GWR 0.955 207.513 14.360 2466.280 0.061 0.010

MGWR 0.969 173.983 8.683 Varied −0.044 0.101

2000 m
GWR 0.942 183.366 11.281 3066.800 0.110 0.000

MGWR 0.972 99.093 4.477 Varied −0.021 0.590

2500 m
GWR 0.935 145.831 8.402 3524.190 0.131 0.000

MGWR 0.967 111.092 3.389 Varied −0.059 0.183

3000 m
GWR 0.923 109.618 7.868 5290.090 0.028 0.445

MGWR 0.957 39.289 2.941 Varied −0.080 0.139

3500 m
GWR 0.944 49.544 4.202 5862.660 0.013 0.677

MGWR 0.957 39.289 2.941 Varied −0.009 0.999

4000 m
GWR 0.982 −32.981 0.928 5511.2 −0.026 0.813

MGWR 0.970 41.006 1.305 Varied −0.047 0.587

4500 m
GWR 0.980 −39.450 0.961 5414.45 −0.132 0.032

MGWR 0.978 −30.664 1.085 Varied −0.001 0.834

5000 m
GWR 0.973 −16.039 1.103 5223.95 −0.099 0.173

MGWR 0.981 −20.242 0.712 Varied −0.002 0.850
1 The bandwidth of factors in the MGWR model are varied, not fixed.

By comparing the evaluation results of the OLS model (see Table 4) and the GWR
model, it can be found that the GWR model is able to deal with spatial nonstationarity
better than the OLS model at almost all grid scales. However, the GWR model residual
distributions still exhibit some positive spatial autocorrelation at the 2000 m grid and
the 2500 m grid. This result indicates that the GWR model cannot deal with spatial
nonstationarity at all scales. Compared with the GWR model, the MGWR model fits better
than the GWR model at almost all scales (evaluated by the AICc and the Moran’s I test
results of the model residuals), except for the 4000 m grid. The possible reason is that the
differences in the impact bandwidth of each factor are not significant under the 4000 m
grid, so the results of the GWR model that use the average bandwidth are instead slightly
better than the result of the MGWR model. The results demonstrate that the MGWR model
can deal with the spatial nonstationarity problem better than the GWR model in the vast
majority of scenarios. Therefore, the fitting results of the MGWR model will be used in the
subsequent analysis of the estimated coefficient distribution patterns.

4.3. The Spatial Variation in Coefficient Estimation by MGWR Model in Different Scales

The estimated coefficient maps derived by the MGWR model in ten scales are shown
Figures 2–11.

To simplify the description, the analysis results of three scales, 500 m, 2500 m, and
5000 m, were selected as representatives of fine, medium, and coarse scales for detailed
interpretation.

At the finest scale (the 500 m grid in our study), the effect of residential service density
(including residential districts and accommodation service facilities) on the intensity of
online car-hailing trips was mainly in the northeast of the study area. Among them,
the density of accommodation service facilities generated a high-value cell aggregation
area near the geometric center of the study area. This means that the contribution of
residential density is biased over space in the study area. Our finding is consistent with the
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conclusion by Li et al. and Yang et al. that residential density would contribute to taxi trips
positively [7,12].
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of the study area, is one of the prominent commercial areas in the study area. The Chunxi 
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The estimated coefficient values of shopping facility density generated a high-value 
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bution of shopping facility POIs, which can also be demonstrated by the high shopping 
facility density in the Chunxi Road commercial area. The estimated coefficient values of 
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to southwest, showing a wave-like pattern. The estimated coefficient values for the den-
sity of scenic spots were relatively small and showed a trend of decreasing from northwest 
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The effect of financial facility density was also mainly presented in the northeastern
part of the study area and generates two high-value cell aggregation areas. The high-value
cells of the estimated coefficient of public service facility density were mainly distributed
near the geometric center of the study area. This result is consistent with the actual situation
in the study area. For example, Chunxi Road, which is close to the geometric center of the
study area, is one of the prominent commercial areas in the study area. The Chunxi Road
commercial area was well served by various public services facilities, while generating a
high intensity of online car-hailing trips.

The estimated coefficient values of shopping facility density generated a high-value
aggregation near the geometric center of the study area and showed a circle structure
that gradually spreads from the inside to the outside. This result is consistent with the
distribution of shopping facility POIs, which can also be demonstrated by the high shopping
facility density in the Chunxi Road commercial area. The estimated coefficient values of
the density of educational and research institutions gradually decreased from northeast to
southwest, showing a wave-like pattern. The estimated coefficient values for the density
of scenic spots were relatively small and showed a trend of decreasing from northwest to
southeast. Similar to the distribution of the estimated coefficients of educational, research,
and cultural institutions, the estimated coefficient values of the density of transportation
facilities showed a wavy pattern that gradually decreases from northeast to southwest.

The density of bus stops showed a wavy pattern, decreasing gradually from north
to south. The estimated coefficient values of population density were small overall. The
coefficient values gradually decreased from northwest to southeast, indicating that its
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effect on the volume of online car-hailing shifts from positive to negative. The estimated
coefficient values of land-use mix showed a decreasing pattern from west to east. The
results indicate that the influence of land-use mix on the intensity of online car-hailing trips
is mainly concentrated in the western region. As early as 1996, Randall Crane inferenced
that the improved accessibility to multiple destinations increases nonwork taxi trips due to
low trip costs [60], which is also demonstrated by our results. However, the impact pattern
can only be observed in the coarse scales. The estimated coefficient values of road density
also generated an inside-out decreasing circle pattern near the geometric center of the study
area, indicating that the influence of road density is mainly limited to the region that is
close to the geometric center of the study area. In summary, except for population density,
land-use mix, and scenic spot density, the effects of the built environment factors on online
car-hailing travel intensity showed a clear spatial variety in the 500 m grid.

At the medium scale (the 2500 m grid in our paper), the estimated coefficient values
of public facility density generated a high-value aggregation near the geometric center of
the study area and showed a circle structure that gradually spreads from the inside to the
outside. The estimated coefficients of accommodation service density showed a decreasing
pattern from northwest to southeast, which indicates that the influence of accommodation
service density on the intensity of online car-hailing trips at this scale is mainly concentrated
in the northwestern region. The estimated coefficient values of scenic spot density were
smaller and showed a decreasing trend from north to south. The estimated coefficient
values of the density of accommodation service facilities were all negative and showed
a decreasing trend from north to south. The estimated coefficient values of population
density showed a pattern of decreasing from east to west, but the spatial variation was not
significant. The density of bus stops generated a high-value aggregation near the geometric
center of the study area, and the spatial variation in the overall pattern was more significant.
In conclusion, except for the density of accommodation services, population density, and
scenic spot density, the selected built environment factors both showed significant spatial
variety in their effect on online car-hailing travel intensity.

At the coarsest scale (the 5000 m grid in our study), the land-use mix is the only factor
that has a significant effect on the intensity of online car-hailing travel. The estimated
coefficient values of land-use mix gradually decreased from north to south, showing a
wave-like pattern. At the remaining scales, the effects of built environment factors on the
online car-hailing trip intensity showed different spatial variation characteristics.

In conclusion, the effect of built environment factors on the intensity of online car-
hailing trips showed different spatial characteristics at different scales. At ten scales
involved in our study, the effect of population density on the intensity of online car-hailing
trips showed a spatial pattern of decreasing from north to south. At the finest scale (the
500 m grid in our study), the effect of road density on the travel intensity showed a circle
pattern spreading from inside to outside. At the coarser scale (the 3500 m grid in our
study), the effect of road density on the intensity of online car-hailing trips showed a
wave-like pattern decreasing from southeast to northwest. At the finer scale (the 500 m
and 1000 m grids in our study), the spatial variation in the effect of land-use mix on the
online car-hailing travel intensity was not significant. At the coarser scale (the 4500 m
and 5000 m grids in our study), the spatial variation in the effect of land-use mix on the
intensity of online car-hailing trips can be clearly identified. Accordingly, a reasonable
inference is that the land-use mix may have a larger scale of effect on the intensity of online
car-hailing travel.

At the finest scale (the 500 m grid in this paper), the effect of bus stop density on the
intensity of online car-hailing trips showed a wave-like pattern with significant spatial
variation. At the medium scale (the range from the 1500 m grid to 3000 m grid in this
paper), the effect of bus stop density on the intensity of online car-hailing trips showed
a pattern of higher inside and lower outside, with significant spatial variation. At the
coarser scales (the 3500 m grid and 4500 m grid in this paper), the spatial variation in the
effect of bus stop density was not significant. This result demonstrated the competitive
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relationship between public transportation proximity and online car-hailing travel in short
distance trips. The land-use type had both positive and negative effects at different scales
and showed different spatial patterns. A common feature was that the spatial variability of
the effect of various land-use type factors becomes smaller as the scale increases.

5. Conclusions and Prospect

This paper analyzed the effects of urban built environment factors on the intensity of
online car-hailing trips by applying the OLS model, the GWR model, and the MGWR model
in ten grid scales of Chengdu, China. The main findings can be summarized as follows.

(1) The built environment factors that significantly affect the intensity of the online
car-hailing travel varied under different grid scales. As the grid size increases, the
number of built environment factors that have significant effects on trip intensity
decreased continuously.

(2) From the 500 m grid to the 3000 m grid, there was always a positive effect of population
density on the online car-hailing travel intensity. As the analysis scale increased, the
effect of proximity to public transportation on the online car-hailing travel intensity
shifted from an obvious inhibitory effect to a certain degree of facilitation. Meanwhile,
the positive effect of land-use mix on the online car-hailing travel intensity was more
and more significant. At the 500 m grid and 3500 m grid, road density had a positive
effect on the online car-hailing travel intensity, but its effect was not significant at
the remaining analysis scales. From the 500 m grid to the 4000 m grid, land-use type
had both positive and negative effects on the online car-hailing travel intensity and
showed different characteristics at different scales.

(3) The results of the Moran’s I test for the OLS model residual indicated that there is
spatial nonstationary in the effect of the built environment on the online car-hailing
traveling intensity in the study area. By comparing the fitting results of involved
models, it can be found that both the GWR model and the MGWR model can cope
with spatial nonstationary better than the OLS model at almost all scales, and the
performance of the MGWR model is better than that of the GWR model.

(4) At different scales, the effects of built environment factors on the online car-hailing
trip intensity showed different spatial variability characteristics. At various scales,
the effect of population density on the online car-hailing trip intensity gradually
decreased from north to south. The spatial patterns of the effect of road network
density on the online car-hailing trip intensity include circling and wave patterns, in
that the former is a characteristic at relatively fine scales while the latter at relatively
coarse scales. The spatial variation in the effect of land-use mix on the online car-
hailing trip intensity can only be identified more significantly at a relatively coarse
scale. At the relatively fine and medium scales, the effect of bus stop density on the
online car-hailing traveling intensity showed a wave-like pattern and a circle-like
pattern. At the relatively coarse scale, the spatial variation in its effect was not obvious.
The effect of various land-use types showed different spatial patterns at different
scales, including wave-like pattern, circle-like pattern, and multi-core-like pattern.
The spatial variation in the effects of various land-use factors gradually decreased
with the increase in the analysis scale. It can be inferenced that different analysis
scales may lead to different and even contrary conclusions.

In terms of theoretical contributions, the variation in the influence of the built environ-
ment on the intensity of online car-hailing trips at different scales obtained in this study
provides some impetus for solving the MAUP problem in the online car-hailing travel be-
havior study. In terms of practical value, the findings of this paper can not only help policy
makers to better understand the spatiotemporal characteristics of online car-hailing travel
behavior in the city of Chengdu, but also can help to develop more refined transportation
optimization policies, especially with the consideration of variation in the effect among the
analysis scales.
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Undoubtfully, our study still has some limitations. For instance, urban land use is
represented using the POI data, which are not detailed enough to capture the land use
accurately. Therefore, more research on fine-scale land-use data is needed in the future. In
addition, the traffic analysis unit in this paper has only one type of grid, and the criteria
for dividing the grid size are not fine-grained enough, thus potentially making the results
not comprehensive. In the future, more refined analysis unit types and sizes should be
incorporated to comprehensively explore the modifiable analysis unit problem issue in the
study on online car-hailing traveling and the built environment. Finally, the study area is
only a local area of Chengdu, which may lead to different and even conflicting conclusions
in different areas. Therefore, more empirical research is needed to validate whether our
findings hold in other cities.
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