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Abstract: The aim of our study was to determine COVID-19 syndromic phenotypes in a data-driven
manner using the survey results based on survey results from Carnegie Mellon University’s Delphi
Group. Monthly survey results (>1 million responders per month; 320,326 responders with a certain
COVID-19 test status and disease duration <30 days were included in this study) were used sequen-
tially in identifying and validating COVID-19 syndromic phenotypes. Logistic Regression-weighted
multiple correspondence analysis (LRW-MCA) was used as a preprocessing procedure, in order to
weigh and transform symptoms recorded by the survey to eigenspace coordinates, capturing a total
variance of >75%. These scores, along with symptom duration, were subsequently used by the Two
Step Clustering algorithm to produce symptom clusters. Post-hoc logistic regression models adjusting
for age, gender, and comorbidities and confirmatory linear principal components analyses were used
to further explore the data. Model creation, based on August’s 66,165 included responders, was
subsequently validated in data from March–December 2020. Five validated COVID-19 syndromes
were identified in August: 1. Afebrile (0%), Non-Coughing (0%), Oligosymptomatic (ANCOS);
2. Febrile (100%) Multisymptomatic (FMS); 3. Afebrile (0%) Coughing (100%) Oligosymptomatic
(ACOS); 4. Oligosymptomatic with additional self-described symptoms (100%; OSDS); 5. Olfac-
tion/Gustatory Impairment Predominant (100%; OGIP). Our findings indicate that the COVID-19
spectrum may be undetectable when applying current disease definitions focusing on respiratory
symptoms alone.

Keywords: COVID-19; pattern recognition; phenotypes; epidemiology; comorbidity; big data

1. Introduction

Since its emergence, COVID-19 has conceptually evolved from a viral pneumonia
to a multisystem disease with insidious onset and diverse outcomes [1]. As additional
cases caused a shift in case definitions, big data, and detailed symptom indexing arose as a
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necessity toward guiding evidence-based medicine and preventing severe outcomes [2].
An intrinsic perturbation in using expert-based definitions is inherent bias (i.e., as this is a
hypothesis- or observation-driven approach), and an expected lack of recognition of fringe
cases or spectrums that may however be deemed as such due to their underrepresentation
within a given cohort.

Conversely, data-driven disease phenotyping aims to identify latent structures of po-
tential or established disease descriptors within a given cohort; subsequently, the structures
are scrutinized based their salient and unique characteristics in order to determine their
characterization as true phenotypes [3]. This has been adopted by other research groups in
obstructive sleep apnea, revealing that, i.e., severity based definitions could ignore non-
linear relationships between disease characteristics and severity indices [3], as well as omit
specific relationships (i.e., latent structures) between clinical manifestations and laboratory
findings [4–6]. Other implementations in sleep-disordered breathing have shown that aside
from classical definitions, i.e., based on an index of morbidity, different combinations of
symptoms or laboratory findings could be used as phenotyping variables [7,8]. Aside from
sleep-disordered breathing, this proposed methodology [3] has been used successfully
in other disease models and implemented in other disease models, enabling the ad hoc
development of diverse phenotyping concepts in idiopathic Parkinson’s disease, obesity,
and venous thromboembolism [9–12]. Furthermore, data from multicenter studies have
also been shown produce biologically relevant phenotypes via our proposed methodol-
ogy [13]. These studies have shown that a data-driven, pattern recognition approach is both
flexible, robust, and allows the discovery of phenotypes that are independent of clinical
preconceptions, which are often subject to salience bias.

We hypothesized that data-driven recognition of COVID-19 phenotypes will allow
an unbiased mapping of the global clinical spectrum. Furthermore, these data-driven
phenotypes would enable the design of clinical studies and enhance outcome design and
evaluation, producing efficacious, bias-free treatments and healthcare policy interventions.

Therefore, the specific aims of the study were the following:

1. The use of reported symptoms to identify latent structures via categorical PCA and di-
mension reduction approaches, using data from the COVID-19 Delphi Facebook study.

2. To scrutinize the previously created latent structures as potential COVID-19 phenotypes
or phenotyping parameters via TSC and artificial intelligence-based classification.

2. Materials and Methods
2.1. Study Population

Data for this study were extracted from the CTIS Trends and Impact Survey (CTIS),
based on symptom surveys developed by the Delphi group at Carnegie Mellon University
(CMU). Initially, Facebook selects a random sample among its users in the United States.
The users are then presented with the option to participate in the study. In turn, participa-
tion entails the administration of the surveys’ iteration, and covers data on COVID-19-like
symptoms, behavioral, mental health, and economic parameters, as well as estimates the
impact of the pandemic on the responders daily life. Individual, anonymized survey re-
sponses are stored in CMU’s servers and made accessible to healthcare professionals under
a project-specific data use agreement. Approximately 50,000 responders participate in the
study per day, with monthly survey results comprising more than 1 million responders
per month.

A detailed overview of the CTIS, its conception, and evolution are available from:
https://delphi.cmu.edu/covid19/ctis/ (accessed on 25 April 2020).

2.2. Study Design

We performed a retrospective analysis of CTIS data collected between May to Decem-
ber in this study, and we included responders with a certain COVID-19 status, i.e., having
answered either “Yes” or “No” in the corresponding item of the survey.

https://delphi.cmu.edu/covid19/ctis/
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An indicative item structure from Wave 4 of the study is the following (note that B10
and B10a are the codes for the corresponding questionnaire items):

B10—Have you been tested for coronavirus (COVID-19) in the last 14 days?
B10a—Did this test find that you had coronavirus (COVID-19)?

A positive COVID-19 status was assigned to responders answering “Yes” in B10a,
whereas a negative COVID-19 status was assigned to responders answering “No” in the
same item. Responders that answered “I do not know” in item B10a were excluded from
further analyses.

As a subsequent exclusion criterion, we employed a cutoff of ≤30 days in symptom
duration. This cutoff was selected on the premises of an approximate “return to wellness”,
estimated to occur at 14–21 days for 65% of patients a positive outpatient test result, in a
recent report by the CDC [14]. The purpose of this cut-off was to simultaneously include
COVID-19 patients with longer durations of illness and to exclude symptom durations
unlikely to be attributable to COVID-19 manifestations, such as 60 days or more. In order
for our approach to be forward and backward compatible, we opted to use the very first
incarnation of symptoms attributed to COVID-19 and captured by the survey (i.e., the first
wave). As such, a core of the 13 first symptoms recorded by the survey would remain the
same, regardless of future additions.

2.3. Statistical Analysis
Pattern Recognition via Multiple Correspondence Analysis

Symptom data were used by combining a logistic regression-based case scoring (See
Supplementary Materials) dimension reduction technique and cluster analysis algorithm,
as previously described [9,15]. Specific COVID-19 symptoms, encoded as survey items,
were used as input variables for multiple correspondence analysis (MCA). In turn, MCA
derived object scores for each case, which were subsequently used as input variables for the
cluster analysis, along with symptom duration of COVID-19 positive responders [9,16]. The
optimal number of MCA-derived dimensions was determined based on achieving a total
variance (i.e., cumulative variance per dimension) of >70% [17]. MCA and MCA prepro-
cessing prior to cluster analysis are techniques that allow the identification of latent patterns
within a population, based on a set of nominal response variables [18]; OR-weighting of
the input variables was used here as a ranking scheme, based on their association with
COVID-19-positive responders vs. COVID-19-negative responders.

2.4. Two-Step Clustering and Phenotype Extraction

OR-weighted MCA-produced case-wise object scores (i.e., composite quantifications
of symptoms per case) along with symptom durations were subsequently used by the
Two Step Clustering (TSC) algorithm to produce symptom phenotypes. Initially, Two Step
Clustering merges raw input data into primary subclusters. The second step employs a
hierarchical clustering method that aims to merge the subclusters into progressively larger
clusters. This process does not require the a priori determination of a set number of clusters.
As we and others have previously demonstrated, TSC is well suited for the identification
of latent phenotypes in a given population [9,18]. In this study, the Log-likelihood was
used as a distance measure, and the Bayesian Information Criterion (BIC) was used as the
clustering criterion for the automatic determination of cluster number.

2.5. Phenotype Validation: Cross-Sectional and Longitudinal Aspects

The model that was created on the pilot analysis of 66.165 responders within
the August dataset, and was subsequently validated in monthly data ranging from
March–December 2020. Specifically, the procedure was as follows:

(a) The weights extracted from August’s responders were applied to an MCA based on
symptom data recorded for each subsequent and preceding month’s responders.

(b) Object scores were calculated for each responder.
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(c) Object scores and symptom duration per month were used in TSC.

2.6. Crossectional Validation: Phenotypes vs. Controls

Cross sectional validation of the produced phenotypes essentially answers the ques-
tion of whether a COVID-19 syndrome is associated with a positive COVID-19 test. For
this purpose, Receiver Operator Characteristic (ROC) curves were used to determine the
diagnostic accuracy of a symptom-based probability for each phenotype when compared
to controls. Specifically, ROC curves were fitted by the probability pi, extracted from the
application of the logistic regression model derived from August’s data. Hence, pi would
be expressed as follows:

pi =
ea0+a1i1+a2i2+...anin

1 + ea0+a1i1+a2i2+...anin
, 0 < p < 1 (1)

where i1, i2, . . . , in is the symptom per i-th month, and a0, a1, . . . , an are the f extracted
from August’s dataset. This computed probability Pi of cluster membership was used as
an input variable for ROC curve fitting. Finally, COVID-19 status was used as a binary
dependent variable for the ROC curve, and the area under curve (AUC) was calculated per
month, for each cluster.

2.7. Longitudinal Validation: Phenotype Re-Emergence and Symptom Invariance

The primary criterion for validation was the emergence of consistent phenotypes in
at least one month other than August, based on complete or quasi-complete symptom
separation per phenotype. Essentially, this would translate to the identification of each
phenotype based on the most salient symptoms.

The secondary criterion was based on the hypothesis that re-emergent phenotypes would
be furthermore identified based on non-salient, non-preclusive symptoms. To meet this crite-
rion, frequency tables for each symptom were constructed per each month and phenotype.

For each symptom S reported on each month M, for a number of months N, we
consider the mean, µs:

µs =
S1 + S2 + . . . SN

N
(2)

In order to assess symptom perseverance and their non-random contribution as
patterns within each phenotype, we perform a normality test under the null hypothesis
that the distribution of a symptom/month [S1, S2, . . . , SN] is normal, and therefore 95% of
the observations lie within two standard deviations of µs. The following concept has been
previously used in face recognition algorithms [19]. Here, we used the Shapiro–Wilk test of
normality, and a p-value < 0.05 was considered statistically significant. Symptoms achieving
below threshold p-values were considered variable for each corresponding phenotype.
Correspondingly, longitudinal symptom invariance (SI) is described as follows:

SI = 1− Sv

M
(3)

where Sv is the number of variant symptoms (defined by a Shapiro–Wilk p-value < 0.05)
and M is the total number of symptoms. SI is equal to 1 (100%) when S(v) = 0 and SI is equal
to 0 (0%) when S(v) = M.

2.8. Post-Hoc Analyses

Associations between each phenotype and symptoms were determined via a combina-
tion of the χ2 test with adjusted standardized residuals (Standardized Pearson residuals).
A χ2 test p-value < 0.05 and adjusted standardized residuals either greater than 1.96 or
less than −1.96 was considered statistically significant. Associations among phenotypes
and responder demographic and medical history characteristics (age group, gender, and
comorbidity) were investigated via a logistic regression model.
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2.9. Determination of Data-Driven Diagnostic Rules via Decision Tree Analyses

For each of the symptom-based phenotypes, certain symptoms were obligatory, i.e.,
characterized 100% for this purpose; we performed Decision Tree Analyses (DTA) via the
Quick, Unbiased, Efficient, Statistical Tree (QUEST) algorithm [20]. Decision tree analysis is
a data mining technique that is implemented in order to create a classification scheme from
a set of observations; in biomedical research, its main applications include the creation of
data-driven diagnostic or predictive rules [21,22]. A detailed presentation of the method is
included in Supplementary Materials.

Each p-value < 0.05 was considered statistically significant. All analyses were per-
formed SPSS version 24.0 (IBM, Chicago, IL, USA).

3. Results
3.1. Study Population

The total study population included 320,326 responders with a certain COVID-19 test
status and disease duration < 30 days (Figure 1). Table 1 presents the study population’s
demographics per month. Supplementary Table S1 presents multinomial regression results
per month and phenotype (A1–A5). Figure 2 presents temporal relationships between
phenotypes and symptoms, i.e., whether clusters identified in August re-emerged in
preceding and succeeding months. Based on our approach, rose charts can effectively
visualize the (i) symptom invariance criterion and (ii) symptom pattern re-emergence, both
of which were required for the recognition of phenotype stability from concept (August) to
validation (preceding and succeeding months).
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Oligosymptomatic (ACOS); 4. Oligosymptomatic with additional self-described symptoms (100%;
OSDS); 5. Olfaction/Gustatory Impairment Predominant (100%; OGIP).
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Figure 2. Rose charts presenting the temporal relationships between phenotypes and symptoms.
Phenotype legends: 1. Afebrile (0%), Non-Coughing (0%), Oligosymptomatic (ANCOS); 2. Febrile
(100%) Multisymptomatic (FMS); 3. Afebrile (0%) Coughing (100%) Oligosymptomatic (ACOS);
4. Oligosymptomatic with additional self-described symptoms (100%; OSDS); 5. Olfaction/Gustatory
Impairment Predominant (100%; OGIP). The numbers in parentheses represent the cluster numbers
from the validation process, e.g., cluster number n in August and cluster number c in June would
both correspond to FMS.

Table 1. Demographics per month of the study population.

April
(n = 22,320)

May
(n = 38,043)

June
(n = 51,582)

July
(n = 78,951)

August
(n = 66,155)

September
(n = 12,801)

October
(n = 19,137)

November
(n = 22,698)

December
(n = 48,629)

COVID-19 4000 4955 6573 13,370 10,279 1773 5936 10,026 21,617
Age Group 18–24 1783 2973 4202 7047 5965 1194 1211 1606 3312

25–34 4856 7423 9837 15,559 12,158 2204 3353 4805 9002
35–44 4794 7249 8919 14,450 11,502 2116 3886 4856 9529
45–54 4281 7030 8886 13,660 11,146 2119 3519 4095 8809
55–64 3220 6235 8661 12,385 10,775 2173 3320 3227 7440
65–74 1447 3597 5655 7791 7218 1483 1808 1539 3907
>75 312 907 1632 2317 2155 531 573 427 1181
NA 1627 2629 3790 5742 5246 981 1467 2143 5449

Gender M 5001 9754 13,230 20,313 17,427 3434 4555 4752 10,684
F 15,459 24,985 33,672 51,556 42,364 8170 12,732 15,360 31,612
NB 149 284 366 613 532 104 141 176 347
SD 102 219 252 357 297 72 119 144 248
NA 153 325 449 653 565 100 128 128 322
N/A 1456 2486 3613 5459 4980 921 1462 2138 5416
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Table 1. Cont.

April
(n = 22,320)

May
(n = 38,043)

June
(n = 51,582)

July
(n = 78,951)

August
(n = 66,155)

September
(n = 12,801)

October
(n = 19,137)

November
(n = 22,698)

December
(n = 48,629)

Cancer 1223 2338 3209 4353 3783 816 1082 1040 2289
HD 6556 7768 8450 13,352 10,792 2036 4738 6213 12,229
HTN 3952 4682 5129 8263 6486 1302 2979 3931 7785

Asthma 12,222 19,035 24,962 38,645 32,205 6031 11,461 14,309 28,597
CLD 9361 14,946 19,201 30,197 25,728 5141 9644 12,504 25,272
KD 8035 12,264 14,668 22,830 19,393 3907 8203 10,029 20,615
AD 8807 14,702 19,365 28,438 23,692 4587 8450 10,533 21,677

Diabetes T1D 4817 8313 9950 17,181 12,822 2627 5102 5565 12,807
T2D 4202 4397 4556 7698 5899 1110 2803 3933 7743
IC 3091 5150 5847 10,235 7325 14755 3519 4087 9238

Notes: Age Groups are measured in years. Cancer was specified as any form of neoplasm except skin cancer.
AD: Autoimmune Disease; CLD: Chronic Lung Disease such as COPD; F: Female; HD: Heart Disease; HTN:
Hypertension; IC: Immunocompromised. KD: Kidney Disease; M: Male; N/A: Not answered; NA: Not available;
NB: Non-Binary; SD: Self-Described. Please note that for November’s responders we selected participants that
received wave 4 of Delphi Study Questionnaire.

3.2. Phenotype Extraction

Based on the latent structures between symptom data and disease duration, five
COVID-19 syndromes (Figure 2; Table 2) were extracted from August’s 61,165 responders:

1. Afebrile (0%), Non-Coughing (0%), Oligosymptomatic (ANCOS).
2. Febrile (100%) Multisymptomatic (FMS).
3. Afebrile (0%) Coughing (100%) Oligosymptomatic (ACOS).
4. Oligosymptomatic with additional self-described symptoms (100%; OSDS).
5. Olfaction/Gustatory Impairment Predominant (100%; OGIP).

Table 2. Cluster composition and symptom-based prediction vs. COVID-19—(controls)—August.

N AUC p-Value 95% CI

ANCOS (1) 2506 <0.5 NA NA
FMS (2) 2266 0.963 <0.001 0.961–0.965
ACOS (3) 2060 0.737 <0.001 0.729–0.746
OSDS (4) 1013 0.777 <0.001 0.762–0.792
OGIP (5) 2434 0.983 <0.001 0.982–0.984

Notes: Five COVID-19 syndromes were identified in August: 1. Afebrile (0%), Non-Coughing (0%), Oligosymp-
tomatic (ANCOS); 2. Febrile (100%) Multisymptomatic (FMS); 3. Afebrile (0%) Coughing (100%) Oligosymptomatic
(ACOS); 4. Oligosymptomatic with additional self-described symptoms (100%; OSDS); 5. Olfaction/Gustatory
Impairment Predominant (100%; OGIP). AUC: Area Under Curve.

Validation and further characterization

Repeating the multiple correspondence and cluster analyses per subsequent and
preceding month (April–December), resulted in the validation of each phenotype as follows:

(a) ANCOS and OSDS emerged in 10/10 months
(b) MFS and ACOS emerged in 9/10 months
(c) OGIP emerged in 4/10 months.

Based on the most salient symptoms, decision trees were subsequently constructed
(Figure 3), providing a structured approach in identifying each phenotype.

Further characterization of these five phenotypes was achieved via identifying invari-
ant symptoms between April–December (Figure 2); based on these observations and the
results of the Shapiro–Wilk tests:

(a) ANCOS was characterized by general malaise in the absence of fever and upper
respiratory tract symptoms.

(b) ACOS was characterized as a mainly afebrile upper respiratory tract viral infection.
(c) FMS was a more typical, febrile syndrome covering respiratory and gastrointestinal

(GI) manifestations.
(d) OGIP, the most invariant syndrome, was characterized by the absence of fever and diarrhea.
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(e) OSDS did not typically include symptoms of pain or pressure on the chest, nor
difficulty in breathing.
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Figure 3. Decision tree developed using the QUEST algorithm. The decision tree’s branches are
based on splits, i.e., variables that were selected based on a Chi-squared test-determined p-value.
The dependent variable for this analysis was a cluster number, represented as a nominal categorical
variable with 5 levels, corresponding to the initial 5 clusters detected in August.
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Interestingly, the implementation of “Headache” in December as a standalone question
resulted in a decomposition of the OSDS phenotype. This is further exemplified by the
comparison between text-mined headache as a symptom in August (10% of OSDS) versus
a three-fold increase in prevalence when asked directly in December.

Multiple nominal regression of comorbidities, adjusted for age group and gender,
revealed several statistically significant associations (Supplementary Table S1). Notably,
a history of asthma and chronic lung disease were abortive comorbidities for certain
phenotypes (ANCOS, ACOS, OGIP for asthma, and additionally OSDS for chronic lung
disease). Gender and age group did not display sequentially consistent associations with
any phenotype.

4. Discussion

In our study, five distinct COVID-19 phenotypes were identified: (a) Afebrile (0%),
Non-Coughing (0%), Oligosymptomatic (ANCOS); (b) Febrile (100%) Multisymptomatic
(FMS); (c) Afebrile (0%) Coughing (100%) Oligosymptomatic (ACOS); (d) Oligosymp-
tomatic with additional self-described symptoms (100%; OSDS); (e) Olfaction/Gustatory
Impairment Predominant (100%; OGIP). Validation of these phenotypes revealed that,
based on symptom pattern re-emergence: (a) ANCOS and OSDS emerged in 10/10 months,
(b) MFS and ACOS emerged in 9/10 months, (c) OGIP emerged in 4/10 months. The symp-
tom invariance criterion revealed that, between April–December: (a) ANCOS was charac-
terized by general malaise in the absence of fever and upper respiratory tract symptoms,
(b) ACOS was characterized as a mainly afebrile upper respiratory tract viral infection,
(c) FMS was a more typical, febrile syndrome covering respiratory and gastrointestinal (GI)
manifestations, (d) OGIP, the most invariant syndrome, was characterized by the absence
of fever and diarrhea, and (e) OSDS did not typically include symptoms of pain or pressure
on the chest, nor difficulty in breathing. Additionally, direct inquiry for headache as a
symptom in December resulted in a decomposition of the OSDS phenotype. This is further
exemplified by the comparison between text-mined headache as a symptom in August
(10% of OSDS) versus a three-fold increase in prevalence when asked directly in December.
Multiple nominal regression of comorbidities, adjusted for age group and gender, revealed
that asthma and chronic lung disease were abortive comorbidities for certain phenotypes
(ANCOS, ACOS, OGIP for asthma, and additionally OSDS for chronic lung disease).

The presence or absence of fever, cough, olfactory/gustatory dysfunction, and atypical
symptoms defined these phenotypes as their primary features. The concept of symptom
invariance was subsequently used to further determine their stability regarding symptom
composition, indicating that the olfactory/gustatory predominant phenotype OGIP was
the most invariant, i.e., the most stable, across the 4 months that it emerged in. Finally,
while several comorbidities such as heart disease and diabetes were associated with the
risk of manifesting specific phenotypes, other comorbidities such as asthma were found to
be abortive.

After its initial identification as a novel pneumonia, the increasing numbers of COVID-19
cases began to outline a spectrum [23], rather than a linear progression from mild viral
infection to a severe one [24]. The recognition of COVID-19′s heterogeneity however was
initially limited within the setting of treatment response or severity phenotypes [25,26],
while the heterogeneity of non-severe cases or those lacking a salient respiratory aspect was
not addressed. Even within the concept of point care phenotyping however, phenotypes
similar to those identified in our study have been described by independent studies.
Bayesian approaches have identified phenotypes corresponding to FMS, OGIP, and ACOS
in the clinical setting, and have included them in diagnostic algorithms [27].

In our cohort, a similar diagnostic rule emerges and recurs in monthly aggregated
data, corresponding to the phenotypes identified here (Figure 2).

The importance of phenotyping COVID-19 outside the initially severe or point of care
spectrum becomes evident when examining previous iterations of diagnostic criteria; fever
and respiratory symptoms were initially the only manifestations considered relevant in
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defining cases [28]. One of the largest studies on initially asymptomatic or non-respiratory
symptom (NRS) phenotype of COVID-19 patients has shown that this approach may miss
a portion of active cases that may subsequently convert to severe manifestations [29].
Our findings support this concept, with NRS overlapping with the OGIP, OSFS, and
ANCOS phenotypes.

As previous research has suggested, comorbidities were found to be independent
predictors of COVID-19 phenotypes, even after adjustments for age group and gender
(Supplementary Table S1, S1–S5). As a general rule, two broad categorizations of comor-
bidities can be inferred: those that can intertwine with the pathophysiology of SARS-CoV-2,
such as diabetes [30] and heart disease [31], and those where a treatment effect may restrict
phenotype manifestations.

In this light, several noteworthy associations include comorbid asthma and chronic
lung disease, which appear to reduce the risk of manifesting the FMS phenotype
(Supplementary Table S1, S2). This seemingly paradoxical relationship has been previ-
ously explored in the literature, and mainly attributed to the protective effects of inhaled
corticosteroids (ICS); Specifically, while their use may lead to quiescent type I/III inter-
feron responses, the concomitant downregulation of ACE2 and TMPRSS2 may restrict
SARS-CoV-2 from entering pneumonocytes [32,33]. As our data are limited regarding
medication use and the specific respiratory disease of each responder, we cannot safely
attribute the associations observed to ICS usage.

Based on current literature, ICS treatment plausibly presents a potential phenotype
abortive effect in otherwise vulnerable populations such as asthma patients [34]. Recent
evidence on the efficacy of ICS as ad hoc COVID-19 treatments provide further support for
this concept [35].

In a similar fashion, the phenotype abortive effect of cancer as a comorbidity could
reflect yet another treatment rather than disease effect. Such an effect may account for
this association, considering that several anti-cancer treatments are undergoing trials as
repurposed COVID-19 treatments [36]. As no data were collected on primary tumors,
staging, or treatment [37], due to the nature of the survey, this hypothesis cannot be
scrutinized further.

Limitations and Strengths

The results of our study should be interpreted within the context of their limitations.
As a survey administered via Facebook, our source data incur the corresponding selection
bias. This however is potentially balanced by the large sample size of the final cohort, and
represents the single largest study of its kind. Survivor bias is also inherently present in
our study, considering that responders are unlikely to have had severe COVID-19 at the
time of survey administration. The lack of follow-up data correspondingly precludes that
phenotype shifts (e.g., ANCOS or OSDS to FMS) cannot be explored. Another important
consideration is that OSDS inevitably absorbs symptoms not originally covered by the
initial study iterations and is correspondingly decomposed when these symptoms are
identified and added. A prime example of this case is headache as symptom; when left to
the discretion of the responder, it might not be evaluated properly as a feature [36]. This
paradigm becomes evident by the discordance between text-mining (April–November data,
10% of OSDS) vs. being asked directly (i.e., 30% in all phenotypes and decomposition of
OSDS as a “pure” phenotype). Comorbidities, reported by majority as broad categories,
cannot be safely considered in strict interpretations as to their associations with phenotypes.
Finally, as gender categories beyond male/female are underrepresented in the monthly
samples, they cannot be safely used to extrapolate their contribution on clinical phenotypes.
These intrinsic caveats of the study are inherited from the broader structure of the data, and
the post-hoc extraction of a data subset for a specific concept (i.e., data driven phenotyping
of COVID-19 syndromes).
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5. Conclusions

The main strength of the study was the determination and retro- and anterograde
validation of COVID-19 syndromes in the largest community sample to date. The phe-
notypes we uncovered solidify phenotypes previously described by independent studies,
and furthermore provide the basis and tools for the development of utilizable diagnostic
rules. One of the most important concepts explored here is that the febrile respiratory
phenotype represents a lesser portion of COVID-19 phenotypes in the community, a finding
that should be considered both in epidemiological profiling and healthcare provision. Our
findings support the concept of symptom-based phenotypes of COVID-19 that remain
distinct within 9–12 days from first symptom onset. The existence of phenotypes rather
than severity strata may further explain the low diagnostic accuracy achieved by rule in or
rule out algorithms based solely on symptoms, without accounting for their dependency
and intercorrelations, even between different systems (i.e., GI and respiratory). In order
to utilize our findings in the clinical setting and make them available to other researchers,
we have developed an online application that calculates the symptom-based logistic prob-
ability Px (Available from: http://se8ec.csb.app, (accessed on 24 April 2020)). In this
community-based sample, febrile respiratory disease was infrequent when compared to
atypical presentations within a range of 9–12 days from symptom onset; this finding may
be critical in current epidemiological surveillance and the development of transmission
dynamics concepts.
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