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Abstract: Based on the neoclassical framework, we propose the convergence hypothesis of carbon
productivity under sustainable growth and prove the different effects of knowledge spillover and
technology diffusion on convergence. The convergence hypothesis is tested using China’s provincial
spatial dynamic panel data from 1995 to 2019. The results show that China’s provincial carbon
productivity has conditional convergence and club convergence characteristics. The convergence
speed of dynamic panel regression estimation is greater than that of cross-sectional regression.
The convergence rate of dynamic spatial panel regression estimation is faster depending on the
spatial spillover difference between the two technologies. In the early stage, the provincial spatial
dependence of China’s carbon productivity is mainly knowledge spillover, and the convergence rate is
lower than that of the closed economy. Over the past decade, the spatial spillover, dominated by low-
carbon technology diffusion, has become the dominant force. The convergence rate is significantly
faster than that of a non-spatial-dependent economy. In addition, the mechanism test found that
the development of energy efficiency dominates the spatial transfer of technology, so the overall
convergence of carbon productivity in China mainly comes from the apparent convergence of energy
efficiency in provinces and cities. Our conclusion provides a new reference for the emission reduction
actions of countries worldwide because the spatial knowledge spillover carried by capital flows is
not conducive to the pursuit of carbon productivity in less developed regions. On the contrary, the
dissemination and diffusion of low-carbon technologies can significantly reduce carbon equivalent
input in the production process, accelerating the pursuit of developing countries or regions.

Keywords: carbon productivity; convergence hypothesis; fixed effect; spatial effect

1. Introduction

Global warming leads to a rapid increase in the probability of extreme climate events,
and sustainable economic and social development faces various risks. The main reason for
global warming is the greenhouse gas emissions generated by human economic activities [1].
In 2020, the World Meteorological Organization (WMO) released the ‘Greenhouse Gas
Bulletin’, which shows that the radiation intensity caused by greenhouse gases in 2019
increased by approximately 45% compared with 1990, and carbon dioxide accounted
for approximately 80% of the increase. Global politicians made the proposal to control
carbon dioxide emissions to adapt to global climate change [2]. As the largest developing
country, and the most significant carbon emission country, China actively participates
in global governance and responds to climate change and promises to reduce carbon
dioxide emissions per unit of Gross Domestic Product (GDP) by between 60 and 65% by
2030 compared with 2005.

However, there is still a significant gap between the living standards of Chinese
residents and developed countries, and there is a strong demand for development [3]. Co-
ordinating the relationship between carbon emission reduction and economic development
is an urgent problem for governments to address.
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It is generally believed that the motivation of economic growth is to increase input
factors and improve productivity. However, with the increase of input factors, the marginal
benefit decreases. Thus, the source of long-term economic growth are productivity gains [4].
Carbon productivity refers to a region that provides products and services to meet human
needs with fewer carbon emissions, i.e., the ratio of production to carbon emissions is an
important indicator of sustainable regional economic development [5]. Carbon productivity
is based on economic growth and carbon emission reduction. With the increase in carbon
productivity, the economy may increase energy consumption and, subsequently, carbon
emissions will increase, which is known as the ‘rebound effect’ [6,7]. However, carbon
productivity can significantly inhibit the excessive growth of this emission increment, so
carbon productivity is still essential for a low-carbon economy in developing countries [8,9].
It should be noted that there are gaps in resource endowments, the industrial structure,
and the economic base in different regions, and there are differences in the spatial distri-
bution of carbon productivity. Is this difference likely to converge over time? At the same
time, inter-regional linkages continue to strengthen and the emergence of economic ag-
glomeration and carbon productivity agglomeration have also emerged. Different regions
will affect the convergence of carbon productivity through spatial effects such as capital,
labor, and technology spillovers. ‘Efficient reproductive effects’ of carbon productivity
allow regions to learn from each other and improve carbon productivity, i.e., when carbon
productivity in adjacent regions increases, the region will improve its carbon productivity
by imitating its technology and management practices [10]. The convergence of carbon
productivity has important practical significance for the government to formulate relevant
environmental policies, develop a low-carbon economy, and promote regional low-carbon
cooperation. Given convergence, the existing literature includes studies about energy
intensity convergence [11], carbon emission convergence [12], and total factor productivity
convergence [13]. However, they are all based on the traditional Solow model, lacking
theoretical support in the field of spatial convergence, and the empirical results cannot be
reasonably explained.

Based on the above background, we try to expand on the following three aspects.
Firstly, we try to construct a theoretical framework containing different spatial spillover
effects from the perspective of neoclassical theory, which provides theoretical support for
the carbon convergence hypothesis. Secondly, we use Chinese provincial data and dynamic
spatial panel data (SDPD) method to verify the impact of different forms of technology
spillover on carbon productivity convergence and provide a Chinese experience and case.
Finally, our research also provides a new decision-making basis for supporting developing
countries’ energy conservation and emission reduction paths, which has essential practical
significance for global climate governance.

In this paper, the following sections are arranged: Section 2 summarizes the empirical
literature on carbon productivity convergence; Section 3 introduces the convergence hy-
pothesis and estimation methods; Section 4 introduces our research results in detail using
previous data; Section 5 concludes.

2. Literature Review
2.1. Economic Convergence

The neoclassical growth model believes that the economy has a ‘steady state’ and
‘conditional convergence’; that is, under the assumption of diminishing returns to the
scale of input factors, economic growth will eventually reach equilibrium [14]. Economists
have frequently discussed whether there is economic convergence in a region’s economic
growth. Many scholars use different regional sample data to prove that the region with
lower per capita income has faster economic growth than the region with higher per capita
income [15–17]. The convergence of regional economic growth can be divided into absolute
convergence, relative convergence, and club convergence. However, some scholars believe
that there is no ‘steady state’ in the economy, changes in initial conditions will have a
long-term impact on the economy, and there is no mechanism to ensure that economies
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tend to ‘converge’ [18–20]. Romer improves the endogenous growth model and thinks that
knowledge spillover produces economies of scale, making developed countries have higher
per capita output [21]. Lucas uses the optimal technological progress model, which assumes
that the renewable capital’s returns remain unchanged, and concludes that the per capita
output growth rate is independent of the initial per capita output level [22]. Therefore,
after relaxing the hypothesis of diminishing marginal returns to capital, it is impossible
to obtain the economic growth convergence. However, Bloom et al. (2002) improved the
technology diffusion model, considering that the technology diffusion utility shortens the
regional technology gap, which makes the economy that of conditional convergence [23].

2.2. Environmental Convergence

With the deepening of research, the convergence hypothesis extends to other fields,
such as energy efficiency, environmental quality, financial development, and so on [24–26].
The sustainable development of the economy has always been the focus of global attention.
According to the Environmental Kuznets Curve (EKC), there is an inverted ‘U’ relationship
between income and environmental quality [27]. Will economic convergence make the
environment converge? Scholars have conducted in-depth studies on this issue [28]. Some
scholars have incorporated environmental pollution into the Solow model and found that
countries with low environmental efficiency/regions catch up with high environmental effi-
ciency, which verifies the environmental convergence hypothesis [29–32]. At the same time,
scholars’ studies on the externality of environmental pollution have found that environ-
mental efficiency has a spatial spillover effect [33]. Some scholars use Chinese data to find
that the convergence rate of carbon productivity in the spatial panel model is higher than
that in the non-spatial panel model, which verifies that resource concentration externalities
play an important role in improving carbon productivity, narrowing regional disparities,
and achieving sustainable growth convergence [5,12]. Economic development brings var-
ious resources and environmental problems, especially global warming. Governments
are committed to energy conservation and emission reduction, and sustainable growth
convergence under carbon emission constraints, that is, carbon productivity convergence,
has attracted widespread attention [10,34].

2.3. Carbon Productivity Convergence

Scholars mainly focus on the convergence analysis of carbon intensity and carbon
emissions and seldom study carbon productivity [35,36]. Scholars use empirical data to
analyze the convergence of construction [37], manufacturing, industry, and energy indus-
tries [38]. Regional carbon productivity convergence has also received attention. Dong et al.
(2013) studied the convergence of regional carbon productivity in China. They found a
convergence trend in Chinese carbon productivity, but there is a gap in the convergence rate
of regional carbon productivity [39]. Shen et al. (2021) analyzed the convergence of Chinese
carbon productivity from urban agglomeration and found that Chinese carbon productivity
showed noticeable stickiness and spatial dependence in adjacent areas [40]. Scholars also
discussed the influencing factors of carbon productivity. They found that carbon produc-
tivity is affected by socio-economic, policy, and energy factors. Technological progress
can increase carbon productivity and reduce regional disparities in carbon productivity.
With the wide application of space measurement technology, more and more literature
strengthens the research on the spillover effect when analyzing the factors affecting carbon
productivity. Wu et al. (2021) analyzed 17 cities in Central and Western China. They found
that the industrial development and urbanization patterns affecting carbon productivity
are homogeneous and mutually imitated and have apparent spatial spillover effects [41].
Zheng et al. (2020) also proved the multiple effects of the economic development level, the
industrial structure, and urbanization on carbon productivity [42].

It is worth noting that, due to the complexity of carbon emissions, there is no unified
theoretical model and research paradigm. The existing research mainly focuses on carbon
emission convergence, per capita carbon emission convergence, and carbon emission
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intensity convergence [9], which lacks theoretical support and is purely an empirical study.
Therefore, from the perspective of carbon productivity, we try to treat carbon equivalent
emissions as input factors, reflect the meaning of sustainable growth, and further explore
whether there is a convergence hypothesis as traditional economic growth to make up for
the lack of existing research.

3. Convergence Hypothesis and Estimation Method
3.1. Spatial Solow Model
3.1.1. Spatial Spillover and Production Function

The generalized Solow model usually uses empirical norms with spatial spillover eco-
nomic growth and regional convergence effects. We also consider two forms of technology
spillover, so the Cobb–Douglas production function with constant returns to scale is set
as follows

Qit = BitKα
it(AitCit)

1−α, 0 < α < 1 (1)

where Q is the output level, K is the capital level, C is the carbon emission level, B is the
Hicks neutral technology level, A is the low-carbon enhanced technology level, and i and t
are the subscript sum which represents the above variables of a given region in a certain
period α and is the output share of capital. Let k = K/(AC) and q = Q/(AC) denote
the adequate capital and output per unit carbon element, respectively, then a compact
production function qit = Bitkα

it can be obtained.
Referring to the neoclassical growth model, assuming that Ait and Cit are exogenous

rates g and p, there are:
Cit = Ci0ept (2)

Ait = Ai0egt (3)

This paper introduces spatial correlation from the perspectives of knowledge spillover
and technology diffusion, so technological progress in one region can have spillover effects
on other regions [43,44]. We specify the technical level to:

Bit = ∏
j 6=i

k
γwij
jt (4)

Ait = Ai0egt∏
j 6=i

A
ρwij
j (5)

The above function describes that the technological level of the region i is determined
by three factors: Firstly, assuming that the technological level of Hicks Bit depends on
the knowledge spillover effect of factor flow, it is expressed as the weighted average of
adequate capital of three units of carbon in j(j 6= i) regions. Secondly, it represents the low-
carbon enhanced technology level. It is assumed that Ait has partial Solow exogeneity and
remains unchanged between regions, that is egt. Finally, we assume that Ait has a traditional
technology diffusion effect, which shows the weighted average of technology level in other
regions. Ai0 is the initial level of low-carbon technology in a certain region, and γ and ρ
represent the interdependence between unit effective capital and low-carbon technology
level between regions. The element wij of the spatial weight matrix W defines the adjacent
structure of the technology spillover from other regions to the i region, satisfying the
constraints to exclude their own impact. We normalize the row of W, namely, ∑j 6=i wij = 1,
so that all weights are between 0 and 1. As a result, the higher the proportion of capital
and carbon elements in efficiency units, the more advanced low-carbon technologies, the
stronger the regional spillover effect. The more advanced the nearby areas, the higher the
possibility of learning new technologies.

We can write formula (5) into the following form:

ln At = (I− ρW)−1 ln A0 +
gt

1− ρ
l (6)
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Among them, At is the column vector composed of a certain period of low-carbon
technology level in each region, A0 is the column vector of the initial low-carbon technology
level in each region, I is the unit matrix, and l is the unit row vector with all elements of
1. Throughout the process, we represent matrices or vectors in bold letters. The further
derivation of time is: .

Ait
Ait

=
g

1− ρ
(7)

The spillover effect makes the progress of low-carbon technology faster. We allow the
iteration of the initial technical level Ai0, which has been described in detail in the literature.
This does not change the spatial spillover effect of low-carbon technologies [45].

3.1.2. Steady Equilibrium and Convergence Analysis

Assuming that the exogenous savings rate is si, the unified depreciation rate is δ, and
the change of capital stock is ∆K = siQit − δKit. Then, according to the chain rule, we can
get the dynamic equation of the ratio of efficiency unit capital and carbon elements:

.
kit = siqit −

(
p +

g
1− ρ

+ δ

)
kit (8)

Since the economy is in a steady-state
.
kit = 0, the steady-state solution of the capital

and output of efficiency unit can be obtained:

k∗i =

(
siB∗i

p + g/(1− ρ) + δ

)1/(1−α)

(9)

q∗i = B∗i

(
siB∗i

p + g/(1− ρ) + δ

)α/(1−α)

(10)

The matrix form of the steady-state logarithmic equation can be further sorted out by
the inclusion of (4):

ln k∗ =
1

1− α

(
I− γ

1− α
W

)−1
ln

s
p + g/(1− ρ) + δ

(11)

ln q∗ =
1

1− α
(αI− γW)

(
I− γ

1− α
W

)−1
ln

s
p + g/(1− ρ) + δ

(12)

Here k∗ and q∗ is the steady-state capital and output vector, and s is the savings rate
vector. When the spillover parameter satisfies 0 < γ < 1− α and (I− [γ/(1− α)])W is a
reversible matrix, we can obtain a balanced growth path. The equation can be simplified if
savings rates are the same in all regions (I− [γ/(1− α)]W)−1l = (1− α)/(1− α− γ). It
is not difficult to see that the two technological advances have different spatial spillover
effects. The diffusion of low-carbon technology will accelerate the overall technological
growth rate and reduce the steady-state capital level because the practical carbon factor
input in the production function increases. Hicks’s neutral technology spillovers further
expand output, raising steady-state capital levels. When γ = ρ = 0, there is no spatial
spillover effect between regions, which is the same as the steady-state level of the traditional
Solow model.
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In order to obtain the output dynamics of practical unit carbon elements, we first
write the production function into a matrix form of ln qt = (αI + γW) ln kt, and then
logarithmically linearize it around its steady-state:

∂ ln qt
∂t = (αI + γW) ∂ ln kt

∂t
≈ −(1− α)

(
p + g

1−ρ + δ
)(

I− γ
1−α W

)
(αI + γW)(ln kt − ln k∗)

= −(1− α)
(

p + g
1−ρ + δ

)(
I− γ

1−α W
)
(ln qt − ln q∗)

:= −Φ(ln qt − ln q∗)

(13)

Since the eigenvalue of W is a real number and satisfies |λi| ≤ 1, and the correspond-
ing standardized eigenvector matrix is P, then it must be diagonalized to P−1WP = Diag(λi).
Further analysis shows that P−1ΦP = (p + g/(1− ρ) + δ)Diag(1− α− γλi). Because
0 < λ < 1− α, the eigenvalues of the matrix Φ are positive real numbers. Therefore, the
differential equations of the above spatial Solow model are also stable, which means that
the low-carbon economy system will converge to a unique steady state. The solution of the
equations can be given by the following equation [46]:

ln qt = e−Φt ln q0 +
(

I− e−Φt
)

ln q∗ (14)

Here e−Φt = I − Φt + Φ2(t2/2!
)
− · · · . From the eigenvalue (p + g/(1− ρ) + δ)

(1− α− γλi) of Φ, it can be seen that low-carbon technology spillover improves the con-
vergence speed, and neutral technology spillover reduces the convergence speed because
the former accelerates the overall technology growth rate, while the latter slows down the
decline of marginal output.

3.2. Estimated Equation

Defines carbon productivity as y = Q/C = Aq and rewrites it as matrix form
ln yt = ln At + ln qt, and then brings in Equations (6), (12), and (14), which are left multi-
plied by the matrix (I− ρW) on both sides:

ln yt = ρW ln yt + e−Φt ln y0 − ρe−ΦtW ln y0 +
(
I− e−Φt) ln A0 + gt · l

+ 1
1−α

(
I− e−Φt)(αI + γW)

(
I− γ

1−α W
)−1 ln s

p+g/(1−ρ)+δ

− 1
1−α

(
I− e−Φt)(αI + γW)

(
I− γ

1−α W
)−1

ρW ln s
p+g/(1−ρ)+δ

(15)

Using the assumption that the exogenous savings rate is equal to simplify the above
equation, we can obtain an empirical system consistent with the theoretical system. There-
fore, we have the following estimation equation [47]:

ln yt = ρW ln yt + β ln yt−1 + θW ln yt−1 + cn + gt + vnt (16)

Here λ = (p + g/(1− ρ) + δ)(1− α− γ) is set, then the time lag parameter in the
above equation is β = e−Φt · l = e−λ, and the time-space lag parameter is θ = −ρβ.
cn =

(
1− e−λ

)(
ln A0 +

α+γ
1−α−γ

)
ln s

p+g/(1−η)+δ
− ρ α+γ

1−α−γ W ln s
p+g/(1−η)+δ

is the individ-
ual effect, in addition to the initial technical level and savings rate, and can also include other
individual characteristics. gt is the time effect, and the remaining part
vnt = (v1t, v2t, · · · , vnt)

′ is the temporary error term satisfying the assumption of i.i.d.
It is not difficult to see that the estimation Equation (16) is consistent with the spatial
Durbin model (SDM), and the time lag term on the right side of the equation also satis-
fies the dynamic panel model. Therefore, we use the quasi-maximum likelihood (QML)
method of spatial dynamic panel data to estimate the model implied in the above theory.
Since Equation (16) includes time lag term, spatial lag term, and spatial-temporal lag term
simultaneously, we will mainly choose between the SDM model of dynamic panel data and
the spatial lag model (SLM). Of course, we also report the cross-sectional regression results
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for comparison [48]. In order to ensure that the empirical results are compatible with more
general settings, we do not impose parameter limitations (θ = −ρβ) in the estimation.

When the spatial spillover parameters are all 0, Equation (16) has the same form as the
Solow model in the textbook. However, due to the spatial spillover effect, the growth of
carbon productivity in a region depends not only on its initial level but also on the initial
level of neighboring regions. Individual characteristics such as savings rate also have a
spatial spillover effect. The regions with high external connectivity or proximity benefit
more from the spatial spillover effect, and the corresponding carbon productivity growth
will be more obvious. There are significant differences in the direction of the two types of
technology spillover on the convergence of carbon productivity. The spatial spillover of
low-carbon technology will accelerate the convergence, and the spatial spillover of neutral
technology will reduce the convergence rate. The overall direction of the effect depends
mainly on the difference in the spatial spillover intensity of the two types of technology.

3.3. Data and Variables Description

This paper adopts the panel data of 30 provinces and cities in China from 1995 to
2019, and Hong Kong, Macao, Taiwan, and Xizang are not included due to the lack of data.
The GDP, energy consumption, and fixed asset investment of each province and city can
be directly obtained from the National Bureau of Statistics (NBS) website. However, the
database lacks any information on provincial carbon emissions. Under the assumption of
carbon balance, the carbon content in the supply of raw coal, crude oil, and natural gas
is equal to that in the total consumption of other fossil fuels. Therefore, this paper uses
the reference method given by the Intergovernmental Panel on Climate Change (IPCC) in
2006 to calculate the carbon equivalent emissions from the combustion of primary fossil
fuels, namely:

Ct =
3

∑
i=1

ADi × NCVi × CEi ×Oi (17)

Among them, Ct is the carbon emissions generated by fossil energy consumption in a
specific province in the t year; ADi is the physical consumption of the i type of primary
energy; NCVi is the average low calorific value of the corresponding energy; CEi is the
carbon content per unit calorific value of the corresponding energy; Oi is the corresponding
oxidation efficiency. The average low calorific value data were extracted from Chinese
‘General Principles for Comprehensive Energy Consumption Calculation’ (GB/T2589-2020),
and the carbon content and oxidation rate were derived from the recommended values of
‘Provincial Guidelines for the Preparation of Greenhouse Gas Inventories’ (UNDP Climate
1041). Considering the differences in the energy quality and combustion technology among
regions, we use the total annual standard coal energy consumption of each province and
city recently updated by NBS to adjust the heating factor in Equation (17).

Carbon productivity is calculated by the ratio of GDP to carbon equivalent emissions,
and the GDP of each province is adjusted to the comparable price in 2010. The year selection
of the base period has little effect on the result analysis. Considering that Chinese economic
growth rate from 2011–2019 is significantly lower than from 1995–2010, this paper chooses
2010 as the base period. This paper further controls the individual characteristics of the
ratio of savings rate to effective depreciation rate, called effective investment rate. Among
them, the saving rate index is measured by the proportion of total investment in fixed assets
to GDP, and the depreciation rate of fixed assets is assumed to be 5%. Thus, the dependent
variable carbon productivity in the regression model is denoted as ln y, the influential
investment rate is denoted as ln s, and w is used to represent the row standardization
matrix of geographical adjacency weight (adjacent to Hainan and Guangdong). In addition,
the mechanism test later involves two variables, energy consumption per unit of carbon
emissions (es) and energy productivity (ye). es is the ratio of total energy consumption to
carbon equivalent emissions, and ye is the ratio of GDP to energy consumption. Table 1
reports the descriptive statistics and stationary test results of the above variables. The panel
unit root test mainly uses the LL and C test and the Fisher-ADF test. The former is the test
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under the same root condition, and the latter under different root conditions. The results
show that the unit root tests of carbon productivity, effective investment rate, unit emission
energy consumption, and energy productivity are significant, at least at the statistical level
of 5%, which meets the modeling requirements of the panel data.

Table 1. Variable Description and Stability Test (1995–2019).

Variable Mean Std. Dev. Min Max Obs. LL and C Fisher-ADF

lny overall 0.450 0.517 −1.087 1.970 750 −2.45 ***
(0.007)

9.54 ***
(0.000)(carbon productivity) between 0.409 −0.335 1.095 30

within 0.324 −0.438 1.332 25
lns overall 1.216 0.509 0.105 2.611 750 −2.69 ***

(0.004)
8.62 ***
(0.000)(Effective investment rate) between 0.177 0.793 1.601 30

within 0.478 0.061 2.656 25
lnes overall 0.465 0.038 0.421 0.702 750 −1.81 **

(0.036)
3.92 ***
(0.000)(Unit emission

energy consumption) between 0.033 0.424 0.562 30

within 0.020 0.324 0.624 25
lnye overall −0.015 0.501 −1.507 1.269 750 −3.89 ***

(0.000)
10.00 ***
(0.000)(energy productivity) between 0.398 −0.777 0.553 30

within 0.313 −0.895 0.859 25

Note: *** and **, are significant at the 1% and 5%levels, respectively; p-values are in parentheses for parameters.

In addition, before the regression analysis, we further examined the spatial correlation
of carbon productivity. Figure 1 draws the Moran scatter diagram of the carbon productiv-
ity of provinces and cities from 1995 to 2019 and reports the global Moran index and its test
results. Throughout the study period, the global Moran’I over the years was significant at
least at the 1% level, and the carbon productivity of provinces and cities showed indigenous
spatial agglomeration characteristics. This suggests that factor flows and technical coop-
eration in neighboring provinces will indeed be more adequate and ignoring the spatial
effects will lead to an estimation of the model and even wrong conclusions.
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Figure 1. Moran scatter plot of provincial carbon productivity in China.

4. Empirical Results
4.1. Empirical Results of Cross-Sectional Data

Without considering the time effect and spatial effect of Equation (16), the estimation
equation is degenerated into a cross-sectional regression model, which is similar to the
cross-sectional setting in the traditional convergence literature [49]. In order to compare
the effects of spatial effects, we first use different periods of interval data for cross-sectional
ordinary least squares (OLS) regression: 1995–2010, 2010–2019, 1995–2019, and 2003–2019.
Among them, 1995–2019 is the entire sample period, and 1995–2010 and 2010–2019 are its
two sub-periods. This division considers that Chinese economy has entered a medium-
low growth stage since 2011, while economic growth in the longer sub-period 2003–2019
is clearly driven by Chinese implementation of regional development strategies. For
the entire sample period, we conducted a combined regression of mixed cross-sectional
data at a four-year interval. The results are shown in Table 2. The number in the small
brackets is the estimated robust standard error, and the convergence coefficients β of
Equations (1)–(5) are highly indigenous at the 1% level. From 1995–2010 and 1995–2019,
the carbon productivity of provinces and cities in China showed a convergence trend.
The annual average convergence rates estimated by the single-section regression were
1.6% and 1.2%, respectively. The combined regression with four years as the interval also
found similar observations. However, carbon productivity in the sub-periods of 2003–2019
and 2010–2019 showed divergent characteristics, with estimated annual convergence rates
of −0.2% and −1.7%, respectively. It is necessary to point out that the above section
regression estimation based on the traditional convergence model should be interpreted as
absolute convergence because the influence of individual characteristics is not controlled in
the equation.

Table 2. Absolute Convergence Test of Cross-Sectional Data.

Equation (1) (2) (3) (4) (5)
1995–2010 2010–2019 1995–2019 2003–2019 Pooled

lny0 0.7493 *** 1.1616 *** 0.7319 *** 1.0287 *** 0.9759 ***
(0.0853) (0.1050) (0.1438) (0.1516) (0.0261)

Constant 0.5356 *** 0.4256 *** 1.0385 *** 0.6681 *** 0.1847 ***
(0.0449) (0.0724) (0.074) (0.0813) (0.0181)

Implied λ 0.0192 −0.0166 0.0130 −0.0018 0.0061
β = e−λt t = 15 t = 9 t = 24 t = 16 t = 4
R-square 0.6352 0.843 0.3786 0.6963 0.8903

n 30 30 30 30 180
Note: *** is significant at the 1% levels, respectively; robust standard errors are in parentheses for parameters.

Therefore, controlling the difference in the effective investment rate in the cross-
sectional regression equation, we further estimate the conditional convergence of carbon
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productivity in each province. The results are shown in Table 3, and the corresponding
period settings are the same as those in Table 2. The results show that the convergence
coefficient is still highly indigenous at the 1% level, whether single-section or combined
regression. The combined regressions for 1995–2010, 1995–2019, and four-year intervals
estimated annual convergence rates of 3.0%, 1.5%, and 0.9%, respectively, significantly
higher than the absolute convergence rates in Table 2. In addition, although the estimation
results for 2010–2019 and 2003–2019 are still divergent, the convergence rate has also been
significantly improved, indicating that ignoring the differences in individual characteristics,
such as the effective investment rate, will lead to errors in the convergence estimation
results. Similar situations also appear in the estimation results in Table 4.

Table 3. Conditional Convergence Test of Cross-Sectional Data.

Equation (1) (2) (3) (4) (5)
1995–2010 2010–2019 1995–2019 2003–2019 Pooled

lny0 0.6378 *** 1.1914 *** 0.7014 *** 1.0128 *** 0.9661 ***
(0.0909) (0.1163) (0.1360) (0.1494) (0.0272)

lns −0.3793 * 0.0771 −0.1502 −0.0607 0.0590 ***
(0.2122) (0.0645) (0.1499) (0.1136) (0.0223)

Constant 1.0111 *** 0.2685 1.3143 *** 0.7854 *** 0.1116 ***
(0.2575) (0.1592) (0.2865) (0.2190) (0.0350)

Implied λ 0.0300 −0.0195 0.0148 −0.0008 0.0086
β = e−λt t = 15 t = 9 t = 24 t = 16 t = 4
R-square 0.6724 0.8474 0.3966 0.6991 0.8936

Note: *** and * are significant at the 1% and 10% levels, respectively; robust standard errors are in parentheses
for parameters.

Further introducing the spatial effect, Table 4 shows the QML estimation of the cor-
responding equation. Equations (1) to (5) can all be degenerated into the spatial error
model (SEM) and pass the likelihood ratio (LR) test, indicating that the cross-sectional data
constructed based on different periods tend to attribute the spillover effect to the spatial
correlation of the error term. Compared with Table 3, these regressions produce similar
estimation results. The spatial error term is statistically very significant, which prelimi-
narily reflects the critical influence of the spatial effect contained in the theoretical model
on the convergence of carbon productivity. Considering the spatial effect, the estimated
conditional convergence rate improves significantly, and it also shifts from the previous
divergence to convergence in the years from 2003–2019. It is worth noting that there is
no conclusion that the effect of low-carbon technology spillover on convergence is greater
than that of neutral technology spillover because the cross-sectional data based on interval
structure omit time utility and cannot effectively identify the interaction between the spatial
lag and time lag of carbon productivity, which is also fully verified in the estimation of
panel data later.

4.2. Empirical Results of Panel Data

We further use the dynamic panel data method to estimate Equation (16). In order to
overcome the impact of business cycles, the usual practice in the literature is to divide the
sample into several shorter periods for regression with 5-year intervals [45,50]. However,
our sample period is only 25 years. If a long period is adopted, many sample observations
will be lost, which is not conducive to the effective identification of parameter estimation.
Moreover, technology spillovers within China do not take years to occur relative to the
spatial effects of cross-country panel data, as inter-regional factor flow and technical
cooperation are less constrained. Therefore, based on the above considerations, this paper
mainly uses the three years of dynamic panel data for regression analysis. Of course, we
also further report the robustness test results based on the four-year span of the latter.
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Table 4. Conditional Convergence Test of Spatial Cross-Sectional Data.

Equation (1) (2) (3) (4) (5)
1995–2010 2010–2019 1995–2019 2003–2019 Pooled

lny0 0.5709 *** 1.1716 *** 0.4932 ** 0.8942 *** 0.8819 ***
(0.1261) (0.1114) (0.1962) (0.1442) (0.0435)

lns −0.2281 0.0251 −0.1146 −0.0877 −0.0128
(0.1798) (0.0613) (0.1177) (0.0860) (0.0319)

Constant 0.8071 *** 0.3226 1.1635 *** 0.8165 *** 0.2948 ***
(0.3070) (0.2140) (0.3958) (0.2902) (0.0670)

w*e 0.8134 *** 0.8182 *** 0.8213 *** 0.8182 *** 0.6089 ***
(0.0961) (0.0943) (0.0933) (0.0944) (0.0805)

Implied λ 0.0374 −0.0176 0.0295 0.0070 0.0314
β = e−λt t = 15 t = 9 t = 24 t = 16 t = 4

Pseudo R2 0.6692 0.8454 0.3965 0.698 0.8667
n 30 30 30 30 180

LR_SLM 5.77 * 20.97 *** 1.45 8.37 ** 52.06 ***
LR_SEM 0.30 1.12 0.17 0.66 0.11

Note: ***, **, and * are significant at the 1%, 5%, and 10% levels, respectively; robust standard errors are in
parentheses for parameters.

As mentioned above, when the lag dependent variable is specified on the right side of
the regression equation, sufficient time-series observations should be included; otherwise,
estimation bias of the dynamic panel data will occur. In order to ensure more effective
convergence parameter estimation, we use the dynamic panel difference Gaussian Mixture
Model (GMM) as the initial estimation and use the least squares dummy variable (LSDV)
method for deviation correction estimation [51]. The results are shown in Table 5. Without
spatial considerations, the average annual convergence rates for 1995–2019, 1995–2010,
and 2010–2019 were 6.2%, 20.3%, and 4.3%, respectively, which were greater than the
corresponding cross-sectional estimates of 3.0%, 3.7%, and−1.8% in Table 3. The higher
estimation results are obtained by controlling the unobserved individual factors. The
earlier convergence rate of carbon productivity is faster, consistent with the convergence
results of Chinese carbon intensity estimated by the same method in the literature [52].
The convergence rate estimated in this paper is higher. The main reason is that we further
add the identifiable individual effective investment rate factor to the right side of the
equation. This variable also passes the statistical significance at least at the 10% level,
showing a positive role in promoting the growth of carbon productivity. According to the
2010–2019 estimates, carbon productivity growth shifted from conditional divergence in
cross-sectional regression to conditional convergence, indicating that the omission bias
of cross-sectional regression was due to both individual factors and their spatial effects.
Based on the sufficient sample size provided by the panel data, we further estimate the
club convergence characteristics of Chinese carbon productivity. The division of Eastern,
Central, and Western regions is consistent with the statistical norms published by NBS. The
results show an aboriginal club convergence phenomenon in Chinese provincial carbon
productivity. The β convergence coefficients in the Eastern, Central, and Western regions
are highly aboriginal at the 1% level, and the annual convergence rates are 2.7%, 18.9%,
and 7.4%, respectively.

Thethree years of dynamic panel data are still used, and Table 6 further reports the
QML estimation results containing spatial factors. The SDPD estimation equation here
is consistent with the previous theoretical model. We first carried out the Hausman test
on it, and the results show that the individual fixed effect model is more effective at
a higher statistical level. At the same time, the Davidson–MacKinnon test also rejects
the general endogeneity problem of the model, and the QML estimation is robust and
consistent. Specific estimates show, the spatial lag parameters of the two sub-periods and
the entire sample period are positively statistically significant at the 1% level, indicating
that carbon productivity and effective investment rate have a significant spatial correlation.
At the same time, it can also be seen that the spatial effect is significant, whether it is
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synchronous lag or space–time lag. This means that spatial correlation should be considered
in the regression of carbon productivity growth otherwise it may lead to omitted variable
deviation. After considering spatial factors, the average annual convergence rates of
1995–2019 and 1995–2010 decreased to 3.7% and 13.4% compared with the corresponding
model in Table 5, and the average annual convergence rate of 2010–2019 increased to 7.5%.
This empirical conclusion is not inconsistent with the previous theoretical expectation but
reflects the spatial spillover intensity differences between the two forms of technology at
different development stages. Because the early Chinese economy had more extensive
growth in rapid capital accumulation, knowledge spillover characterized by capital flow is
stronger than the diffusion effect of technology diffusion, so the spatial technology spillover
in this stage will delay the convergence rate. After 2010, Chinese economy has entered
a stage of low- and medium-speed growth. The extensive input of elements has been
further alleviated, and sustainable development characterized by structural transformation
and technological innovation has become the dominant strategy. Therefore, during this
period, the spatial spillover effect mainly manifests as technology diffusion. The late
development advantages of less developed provinces are more fully reflected, and the
overall convergence rate of carbon productivity is significantly accelerated. This conclusion
is significant for promoting low-carbon technology diffusion to achieve intensive emission
reduction policies.

Table 5. Conditional Convergence Test of Dynamic Panel Data.

Equation (1) (2) (3) (4) (5) (6)
1995–2019 1995–2010 2010–2019 East Central West

L.lny 0.8299 *** 0.5433 *** 0.8779 *** 0.9210 *** 0.5675 *** 0.8021 ***
(0.0381) (0.0486) (0.0573) (0.0392) (0.0774) (0.0724)

lns 0.1201 *** 0.1255 ** 0.0712 ** 0.0882 ** 0.2604 *** 0.1374 ***
(0.0224) (0.0511) (0.0325) (0.036) (0.0576) (0.0409)

Implied λ 0.0622 0.2034 0.0434 0.0274 0.1888 0.0735
β = e−λt t = 3 t = 3 t = 3 t = 3 t = 3 t = 3

n 240 150 90 88 64 88
Note: *** and ** are significant at the 1% and 5% levels, respectively; robust standard errors are in parentheses
for parameters.

From the results of regional regression in Table 6, the convergence coefficients of
the Eastern, Central, and Western regions are statistically significant at 1%. The growth
of carbon productivity in the Eastern, Central, and Western regions has prominent club
convergence characteristics, and the convergence rate decreases in turn. Among them, the
convergence rate of the Eastern region is 5.2%, which is higher than the 2.7% estimated by
the non-spatial dynamic panel model, indicating that the low-carbon technology diffusion
effect mainly characterizes the spatial spillover between the Eastern provinces and cities.
The convergence rate in the Western region is 2.4%, lower than the 7.4% estimated by the
non-spatial dynamic panel model, which means that the spatial spillover in the Western
region mainly comes from the knowledge spillover effect of capital flow. The convergence
rate in the Central region has not changed significantly, indicating an offset effect of spatial
spillover between provinces and cities in the region. From the effective investment rate
results, the local investment rate fails to pass the statistical test in most cases. On the
contrary, its spatial interaction term has statistical significance in most cases. However,
this is not necessarily interpreted as evidence that the local investment rate does not affect
carbon productivity growth. It only shows that the spatial spillover of investment rate in
adjacent areas contributes the most to the total effect [53].
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Table 6. Conditional Convergence Test of Spatial Dynamic Panel Data.

Equation (1) (2) (3) (4) (5) (6)
1995–2019 1995–2010 2010–2019 East Central West

L.lny 0.8944 *** 0.6693 *** 0.7975 *** 0.8562 *** 0.5678 *** 0.9302 ***
(0.0605) (0.0772) (0.0756) (0.051) (0.1250) (0.070)

w*lny 0.5754 *** 0.4194 *** 0.5341 *** 0.4647 *** 0.3195 *** 0.5656 ***
(0.0478) (0.0882) (0.0793) (0.0973) (0.0832) (0.0398)

L.w*lny −0.5942 *** −0.4539 *** −0.4341 *** −0.4380 *** −0.2530 −0.5250 ***
(0.0813) (0.1155) (0.1097) (0.0928) (0.1689) (0.1280)

lns −0.0153 −0.1198 * 0.0335 0.0103 0.0810 0.0334
(0.0290) (0.0618) (0.0224) (0.0420) (0.0721) (0.0470)

w*lns 0.1028 ** 0.2810 *** 0.0944 ** 0.1442 *
(0.0419) (0.0433) (0.0435) (0.0767)

Implied λ 0.0372 0.1338 0.0754 0.0518 0.1887 0.0241
β = e−λt t = 3 t = 3 t = 3 t = 3 t = 3 t = 3
R-square 0.9289 0.8193 0.9564 0.9468 0.8980 0.9046
Hausman 31.77 *** 36.87 *** 9.26 * 23.18 *** 16.68 *** 18.76 ***
D-M test 2.06 1.22 1.36 1.74 0.06 2.37
LR_SLM 14.26 *** 21.74 *** 2.69 11.59 *** 3.68 * 1.95

n 240 150 120 88 64 88
Note: ***, **, and * are significant at the 1%, 5%, and 10% levels, respectively; robust standard errors are in
parentheses for parameters.

4.3. Test of Convergence Mechanism

If carbon productivity can be decomposed into several significant economic drivers, the
convergence factor effect can be further explored by combining the estimation equation [53].
So, according to the definition of carbon productivity, we perform the multiplicative
decomposition of the following two factors:

yt =
Yt

Ct
=

Et

Ct
× Yt

Et
= est × yet (18)

where es represents the energy structure effect, that is, the increase in energy consumption
per unit of carbon equivalent emissions, it means the use of more low-carbon energy. ye
is called energy efficiency, the reciprocal of which is the energy intensity effect index [54].
They are commonly used in the driving factor decomposition literature. The construction
of these two indicators does not require additional data. The total energy consumption
as a bridge can be easily achieved by decomposition. Due to ln yt = ln est + ln yet, the
two indicators on the right side are brought into Equation (16) for spatial dynamic panel
data regression. The factor effect of the convergence mechanism of carbon productivity
can be further analyzed. To facilitate the comparison of convergence coefficients, we use
a dynamic spatial panel model consistent with the corresponding equation in Table 6.
Table 7 reports the estimation results of the whole country and the Eastern, Central, and
Western regions.

The results in Table 7 show that these equations results are a good fit, and the spatial
lag terms all passed the statistical test. Each province’s and city’s energy structure and
energy efficiency have a significantly positive spatial correlation. This evidence shows that
each province and city has maintained a relatively consistent policy on short-term energy
structure adjustment and improvement of energy efficiency. The spatial–temporal lag
parameters of energy structure lack statistical significance in the Central and Western region,
which means that the provinces and cities in the region lack unity in the medium-term
energy structure adjustment policies. On the contrary, the provinces and cities in the Eastern
region maintain good medium-term policy consistency. Unlike the internal spatial spillover
observed in a single area, the interaction and imitation between neighboring provinces and
cities across the country are more adequate, so the time–space lag of the energy structure
estimated by the overall sample is very significant. The spatial and temporal lag parameters



Int. J. Environ. Res. Public Health 2022, 19, 4606 14 of 19

of energy efficiency have obtained high statistical significance in the national, Eastern,
and Western samples. The lack of statistical significance in the Central region shows
that the medium-term policies of provinces and cities in the region in improving energy
efficiency are not uniform, consistent with the estimation results of the corresponding
carbon productivity convergence equation in Table 6. The β convergence coefficients of
different estimation equations are highly significant at the 1% level, indicating that energy
structure and energy efficiency affect the convergence of carbon productivity. From the
national sample, the convergence rates of energy structure and energy efficiency are 1.6%
and 5.4%, respectively, accelerating the convergence of carbon productivity. Regionally,
energy structure and energy efficiency convergence rates were 11.3 percent and 9.4 percent
in the East, −11.6 percent, and 19.9 percent in the Central, and −4.9 percent and 2.5 percent
in the West, respectively. That is to say, the convergence of carbon productivity in the
Eastern region comes from the convergence effect of two factors. The Central and Western
regions mainly show the convergence effect of energy efficiency, and the energy structure
shows the divergence effect. It can be seen that energy efficiency has become the main
driving force for the convergence of carbon productivity in the whole country and even in
various regions. The convergence of energy structure has only obtained evidence in the
East, and the Central and West regions show indigenous divergence due to their internal
energy endowment differences.

Table 7. Test of Convergence Mechanism for Spatial Dynamic Panel Data.

Equation Total East Central West
(1) lnes (2) lnye (3) lnes (4) lnye (5) lnes (6) lnye (7) lnes (8) lnye

L.lnes 0.9543 *** 0.7118 ** 1.4173 *** 1.1576 ***
(0.0476) (0.2896) (0.1899) (0.1138)

L.w*lnes 0.4812 *** 0.3638 ** −0.0564 −0.2797
(0.1293) (0.1781) (0.0996) (0.1953)

L.lnye 0.8499 *** 0.7554 *** 0.5510 *** 0.9288 ***
(0.0397) (0.0433) (0.1246) (0.0659)

L.w*lnye −0.5532 *** −0.3429 *** −0.2331 −0.5390 ***
(0.0583) (0.0927) (0.1689) (0.1257)

lns −0.0070 ** −0.0082 −0.0219 0.0086 0.0025 0.0799 0.0019 0.0352
(0.0033) (0.0227) (0.0134) (0.0395) (0.0028) (0.0711) (0.0032) (0.0464)

w*lns 0.0028 0.0991 *** 0.0231 0.1033 *** −0.0020 0.1391 *
(0.0036) (0.0341) (0.0177) (0.0376) (0.0036) (0.0734)

rho 0.1700 * 0.5662 *** 0.1825 ** 0.4504 *** 0.1726 *** 0.3220 *** 0.1508 * 0.5730 ***
(0.0896) (0.0624) (0.0772) (0.1049) (0.0468) (0.0815) (0.0774) (0.0389)

Implied λ 0.0156 0.0542 0.1133 0.0935 −0.1163 0.1987 −0.0488 0.0246
β = e−λt t = 3 t = 3 t = 3 t = 3 t = 3 t = 3 t = 3 t = 3
R-square 0.8559 0.9217 0.7696 0.9332 0.9031 0.894 0.8833 0.9073

n 240 240 88 88 64 64 88 88

Note: ***, **, and * are significant at the 1%, 5%, and 10% levels, respectively; robust standard errors are in
parentheses for parameters.

4.4. Robustness Test

To test whether the regression results are robust, we used 4-year interval data and
4-year average data to implement the spatial dynamic panel model. There is no technical
difference between the four-year interval data structure and the previous three-year interval,
but the two are different in time point selection. The average data are different from the
time-point data, and the panel data are constructed based on the arithmetic average of each
four adjacent years:

ln y1 = (ln y1995 + ln y1996 + ln y1997 + ln y1998)/4
ln y2 = (ln y1999 + ln y2000 + ln y2001 + ln y2002)/4
...
ln y6 = (ln y2015 + ln y2016 + ln y2017 + ln y2018)/4
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The estimation results of the spatial dynamic panel model of carbon productivity,
energy structure, and energy efficiency are shown in Table 8. Using the panel data of
four-year interval and four-year average, the estimated values of β convergence coefficient
are 0.7323 and 0.9567, respectively. They have apparent statistical significance, indicating
that the estimation of carbon productivity convergence with spatial effect is robust. In
addition, the β convergence coefficients of energy structure and energy efficiency also
have significant statistical significance, and both show energy efficiency convergence is
the dominant force of Chinese carbon productivity spatial convergence, which is basically
consistent with the corresponding convergence mechanism estimation results in Table 7.
It is worth noting that the mean panel estimation results reveal the divergence trend of
energy structure, indicating that the positive effect of energy structure adjustment on
carbon productivity convergence is small and lacks stability. Finally, using the three-year
interval panel data, we further give the estimation results that the spatial weight matrix
has more neighborhoods, that is, the reciprocal of the longitude and latitude distance of the
geographical centers of each province and city is used as the weight and the treatment is
standardized, which means that the spatial effect of technology spillover decreases with
the increase in geographical distance. As can be seen from the estimation results of Table 8,
the beta convergence coefficients of carbon productivity, energy structure, and energy
efficiency are very obvious and have similar convergence characteristics and factor effects
with adjacent weight matrix estimation, which further shows that the spatial convergence
trend of carbon productivity in China is robust.

4.5. Further Discussion

Based on the background that the current research on the convergence of carbon
emissions and energy consumption lacks theoretical guidance [10,40], this paper constructs
a Solow model containing two kinds of spatial technology spillover effects and proposes
that technology diffusion can promote the convergence of carbon productivity. In contrast,
knowledge spillover will inhibit the confluence, consistent with the different inferences of
the spatial effects of two kinds of technology spillover in the literature [47,50]. Different
from the existing literature on spatial spillover effects can accelerate the convergence of
carbon intensity estimation results [52], this paper uses the estimation results of Chinese
provincial dynamic spatial panel data to obtain different empirical conclusions and better
support the theoretical expectation of spatial technology spillover difference because the
convergence rate of carbon productivity depends on the comparison of the two spatial
technology spillover forces. Nevertheless, we still cautiously give possible explanations for
the differences in results. On the one hand, this paper further controls the space–time lag
term and the adequate investment rate difference in the estimation equation, a significant
control variable in the neoclassical framework containing spatial effects and has an essential
impact on the convergence of carbon productivity. On the other hand, this paper’s spatial
interaction term and spatial–temporal interaction term have better statistical performance
in the dynamic panel model, so the collinearity effect from the spatial lag term and spatial–
temporal lag term may be more negligible. In addition, the Chinese government established
a formal system to constrain energy intensity around 2005, and the short-term energy
intensity mitigation measures adopted by provinces and cities are relatively consistent with
the medium-term sustainable development strategy, which explains the statistical evidence
of the spatial correlation between the spatial lag term and the spatial–temporal lag term in
the same period. It is worth noting that the spatial uniformity of energy intensity policies
has not received statistical evidence of club convergence in the Central region, which may
be because the Central region is adjacent to the East and West regions at the same time and
that emission reduction strategies in provinces and cities of different geographical locations
are also affected by extraterritorial areas.
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Table 8. Robustness Test Results Based on SDM Model.

Equation 4-Year Interval 4-Year Average Distance Weight
(1) lny (2) lnes (3) lnye (4) lny (5) lnes (6) lnye (7) lny (8) lnes (9) lnye

L.lny 0.7323 *** 0.9567 *** 0.9653 ***
(0.1082) (0.0845) (0.0499)

L.w*lny −0.3742 *** −0.5955 *** −0.7548 ***
(0.1265) (0.0778) (0.0845)

L.lnes 0.8597 *** 1.3820 *** 0.9959 ***
(0.2607) (0.2942) (0.2621)

L.w*lnes 0.6861 *** 0.1992 −0.1000
(0.2502) (0.2879) (0.2180)

L.lnye 0.6855 *** 0.8996 *** 0.9125 ***
(0.1007) (0.0760) (0.0468)

L.w*lnye −0.3358 *** −0.5596 *** −0.7063
***

(0.1214) (0.0740) (0.0871)
lns 0.0195 −0.0103 0.0302 0.0183 −0.0035 0.0283 −0.0069 −0.0032 −0.0038

(0.0470) (0.0108) (0.0403) (0.0469) (0.0140) (0.0409) (0.0253) (0.0071) (0.0215)
w*lns 0.1673 ** 0.0072 0.1568 ** −0.0225 −0.0006 −0.0167 0.1852 *** 0.0026 0.1889 ***

(0.0661) (0.0120) (0.0625) (0.0720) (0.0143) (0.0697) (0.0479) (0.0095) (0.0440)
rho 0.3851 *** 0.1557 * 0.3785 *** 0.7253 *** 0.2630 ** 0.7114 *** 0.5432 *** 0.2829 *** 0.5258 ***

(0.0682) (0.0886) (0.0694) (0.043 (0.1119) (0.0456) (0.0957) (0.0851) (0.0968)
Implied λ 0.0779 0.0378 0.0944 0.0111 −0.0809 0.0265 0.0118 0.0014 0.0305
β = e−λt t = 4 t = 4 t = 4 t = 4 t = 4 t = 4 t = 3 t = 3 t = 3
R-square 0.8515 0.7865 0.8381 0.9004 0.8549 0.9078 0.9560 0.8811 0.9521

n 180 180 180 150 150 150 240 240 240

Note: ***, **, and * are significant at the 1%, 5%, and 10% levels, respectively; robust standard errors are in
parentheses for parameters.

In addition, further convergence mechanism tests show that the development of
energy efficiency dominates the spatial transfer of technology, so the overall convergence
of carbon productivity in China mainly comes from the apparent convergence of energy
efficiency in provinces and cities, which is consistent with the view in the literature [55].
The impact of energy structure on carbon emissions is crucial in theory, and the existing
literature also provides empirical evidence for China [56]. This paper proves that the
apparent divergence of energy structure effect among provinces becomes the constraint
factor of carbon productivity convergence, mainly manifested in the inconsistency of
energy structure adjustment in the Central and West provinces and the slow and unstable
adjustment process. On the one hand, most provinces and cities have long been dominated
by coal consumption and low-carbon energy structure adjustment has only accelerated
in recent years. On the other hand, due to the impact of regional energy endowments,
the provinces and cities in energy structure adjustment also failed to maintain the relative
consistency of policy implementation. The low-carbon process of developed provinces is
relatively fast, while the Central and West provinces are relatively slow.

A potential value of this paper is that it has important implications for global emis-
sion reduction actions and internal policies of a country, because the spatial knowledge
spillover carried by capital cross-border flows is not conducive to the pursuit of carbon
productivity in backward countries or regions, and even delays the overall convergence
rate. The literature evidence of ‘pollution haven’ hypothesis provides a partial expla-
nation [57,58], while the opposite empirical conclusion also shows the threshold effect
evidence of a nonlinear relationship [59]. In other words, the knowledge spillover effect
relying solely on capital flow does not necessarily promote the overall emission reduction
of the world and a country. The current contribution of independent action is not sufficient
to achieve the commitment of the Paris Agreement. On the contrary, the diffusion of
low-carbon technology can significantly reduce carbon equivalent input in the production
process, thereby speeding up the catch-up speed of backward countries or regions, which
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can significantly release the emission reduction potential of these economies. Emission
reduction actions on a global scale and even within a country cannot be at the expense of
the development rights of developing countries or regions. Sustainable emission reduction
actions should focus on disseminating and diffusion of low-carbon technologies. Reducing
technological monopoly and institutional barriers is the key to realizing global emission
reduction goals. On the other hand, low-carbon projects supported by developed countries
or regions should strictly control the ‘pollution haven’ effect and prevent the restrictions of
high-carbon capital flows on the sustainable growth of developing countries or regions.

5. Conclusions

The contribution of this paper is to introduce carbon equivalent elements into the
neoclassical model, propose a carbon productivity convergence model from the perspective
of sustainable growth, and prove the different effects of two spatial technology spillover
forms on convergence. Using Chinese provincial panel data from 1995 to 2019, we tested the
convergence hypothesis of carbon productivity. Our empirical conclusions are consistent
with theoretical expectations and further explore the effect of energy structure and energy
efficiency on convergence. The results show that the spatial dynamic panel data can
effectively control the variable deviation. The spatial spillover effect also shows no simple
correlation between individual factors and low carbon growth. The convergence rate of
dynamic panel regression estimation is significantly higher than that of cross-sectional
regression. Whether the convergence rate of spatial panel regression is greater than that
of non-spatial panel regression depends on the spatial spillover intensity difference of the
two technologies.

Over time, provincial differences in China’ s carbon productivity have narrowed. The
statistically significant spatial lag coefficient and spatial–temporal lag coefficient show
that although provinces and cities are tending to a unique steady-state equilibrium, they
do not do so independently, but tend to show movement similar to that of neighboring
neighbors. Therefore, in most cases, the short-term and medium-term measures taken by
provinces and cities to improve carbon productivity are relatively consistent. In the early
stage, spatial dependence is mainly manifested as knowledge spillover with capital flow as
the carrier, and this spatial technology spillover has a delaying effect on the convergence
rate of a closed economy under the neoclassical framework. In the past decade, the rapid
accumulation of capital in various provinces and cities has been alleviated. The spread and
diffusion of low-carbon technology has become the dominant spatial spillover form of the
sustainable growth strategy. The convergence rate of carbon productivity is significantly
faster than that of the non-spatial dependence economy. Nonetheless, Chinese early carbon
productivity convergence is still much faster than it was in the current period, largely due
to a phased shift in the country’s overall slowdown since 2010.

Of course, this study also has some limitations. Firstly, in choosing a spatial econo-
metric model, we failed to further propose the estimation method of the dynamic panel
SEM model, and the study of extending the static SEM model to a dynamic model will be-
come significant. Second, the carbon emission estimation method in this paper has certain
limitations. The emission factors will change significantly under different technical levels
and production conditions. Although we used the updated provincial total energy data to
adjust, this apparent method may not fully reflect the regional energy technology differ-
ences. Additionally, the emission factor method is a theoretical calculation method, and
there is a significant deviation between the theoretical and actual values. This may cause
some variations in identifying spatial spillover effects of carbon productivity. However,
our findings also provide evidence of spatial spillover differences.
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