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Abstract: Nowadays, driven by green and low-carbon development, accelerating the innovation of
joint prevention and control system of air pollution and collaborating to reduce greenhouse gases has
become the focus of China’s air pollution prevention and control during the “Fourteenth Five-Year
Plan” period (2021–2025). In this paper, the air quality index (AQI) data of 48 cities in three major
urban agglomerations of Beijing-Tianjin-Hebei, Pearl River Delta and Yangtze River Delta, were
selected as samples. Firstly, the air pollution spatial correlation weighted networks of three urban
agglomerations are constructed and the overall characteristics of the networks are analyzed. Secondly,
an influential nodes identification method, local-and-global-influence for weighted network (W_LGI),
is proposed to identify the influential cities in relatively central positions in the networks. Then,
the study area is further focused to include influential cities. This paper builds the air pollution
spatial correlation weighted network within an influential city to excavate influential nodes in the city
network. It is found that these influential nodes are most closely associated with the other nodes in
terms of spatial pollution, and have a certain ability to transmit pollutants to the surrounding nodes.
Finally, this paper puts forward policy suggestions for the prevention and control of air pollution
from the perspective of the spatial linkage of air pollution. These will improve the efficiency and
effectiveness of air pollution prevention and control, jointly achieve green development and help
achieve the “carbon peak and carbon neutrality” goals.

Keywords: influential nodes identification; air pollution; complex network; China’s three major
urban agglomerations; carbon peak and carbon neutrality; collaborative governance

1. Introduction

During the “Fourteenth Five-Year Plan” period (2021–2025), in order to continuously
improve China’s air quality and reduce greenhouse gases, ecological environmental pro-
tection will move from pollutant management to collaborative governance of pollution
reduction and carbon reduction, which is an important turning point for China’s air pollu-
tion prevention and control and a milestone for the deep integration of pollution prevention
and control with “carbon peak and carbon neutrality” [1]. At present, air quality monitoring
stations are built in each city, which continuously monitor the following pollutants in the
air for 24 h: PM2.5, PM10, SO2, CO, NO2, O3, etc. These pollutants have different degrees
of impact on the air quality of the cities. Analysis of air pollution characteristics has been
a very hot topic at home and abroad. Scholars have studied the causes [2,3], influencing
factors [4], monitoring and analysis of pollutants [5,6], spatial and temporal characteris-
tics [7,8], and transmission paths [9–11] of air pollution. The results of the above studies all
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show that air pollution is characterized by an obvious spatial correlation. However, due
to the limitations of sample data and research methods, these existing studies lack further
exploration of the spatial correlation of air pollution.

Urban agglomerations are an important engine for raising the level of urbanization
and maintaining sustainable high-quality economic development in China. With the rapid
development of urban agglomerations, China’s economic aggregate has grown rapidly.
However, it has also brought a series of ecological and environmental problems [12].
Currently, the level of air pollution in the Beijing-Tianjin-Hebei, the Pearl River Delta, the
Yangtze River Delta and other urban agglomerations with relatively high levels of economic
development is significantly higher than the national level [13]. Due to the cross-influence
of air pollution in adjacent cities, air pollution in a certain area is not only related to local
social production and people’s lives but is also affected by the ecological environment
of surrounding areas [14] and the dynamic spatial correlation between multiple areas
constitutes a complex network. At present, research applying complex network theory
to air pollution has been increasing. Some scholars at home and abroad have studied the
spatial correlation characteristics of air pollution from the perspectives of network topology
characteristics analysis [15] and pollutant dynamic behavior analysis [16]. However, due
to geographical location, wind direction, and other factors, the degree of interconnection
and interaction of air pollution between regions is not consistent and the nodes in the
network belong to the core and edge positions [17,18]. Therefore, applying the influential
nodes identification method to the study of the spatial correlation of air pollution can help
identify the real influential nodes and dig out small areas with serious pollution and strong
transmission ability so that more targeted measures can be taken to control and protect.

This paper takes 48 cities in the three major urban agglomerations of Beijing-Tianjin-
Hebei, Pearl River Delta and Yangtze River Delta as the study areas. We use the AQI
daily average data of each city and air quality monitoring station during a cascade year
from 1 November 2020 to 31 October 2021 to construct the air pollution spatial correlation
weighted networks of the three major urban agglomerations and analyze the network
density, network efficiency, and network rank degree of each network. Since the weighted
network can describe the closeness of the air pollution correlation between the node cities
and express the structure of the complex network more realistically and in detail, this paper
proposes a method for the identification of influential nodes, local-and-global-influence
for weighted network (W_LGI), to evaluate the influence of each node in the air pollution
spatial correlation weighted networks and to identify the influential node cities that are
relatively core in the urban agglomeration networks. The study area is then refined to the
influential city. We build the air pollution spatial correlation weighted network within
influential cities and uncover the influential nodes in the city network—the air quality mon-
itoring stations. Finally, based on the above analysis results, we propose countermeasures
for air pollution prevention and control, providing new ideas for prevention and control
from the perspective of spatial correlation of air pollution.

The structure of this paper is as follows. The second part introduces the related works
of the study. The third part introduces the research methods, including the construction
method of air pollution spatial correlation weighted network, the analysis method of
network topology characteristics, and the influential nodes identification method based
on weighted network. The fourth part is the experimental analysis, constructing the air
pollution spatial correlation weighted networks of three major urban agglomerations and
one influential city, and evaluating the influences of the nodes in the air pollution spatial
correlation weighted networks. Finally, the conclusions and suggestions are presented in
the fifth part.

2. Related Works

Since the publication of the seminal work of the WS small-world model [19] and the
BA scale-free model [20], complex network theory has been widely used in many fields,
such as sociology, natural science, management science, and ecology, etc. It is a notable
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trend in recent years to introduce complex system and complex network theory into the
study of social governance. Many scholars use the tool of complex networks to describe
complex systems. A typical network consists of nodes and the edges connecting them,
where the nodes represent the different individuals in a complex system and the edges
represent the relationships between individuals. Scholars currently use complex networks
to describe complex systems in different fields, such as social networks [21], transportation
networks [22], biological networks [23], stock networks [24], etc. There are relatively
few studies that apply complex networks to environmental science and in particular
to air pollution. Relevant studies have been conducted mainly at the national, urban
agglomeration, and single city levels. Studies at the national and urban agglomeration
levels take cities as nodes of the network, while at the single city level, air quality monitoring
stations are used as nodes of the network. At the national level, Jin et al. [25] analyzed
the spatial correlation characteristics of PM2.5 emissions in China and applied a network
partitioning algorithm to find that PM2.5 emissions between provinces have significant
mutual effects; Broomandi et al. [26] analyzed PM2.5 concentrations in 14 cities in the
UK and roughly divided the UK into two connected regions, the south and the north, by
constructing a Granger causal network. At the urban agglomeration level, Li et al. [27]
proposed a joint regional air pollution prevention and control method for the Beijing-
Tianjin-Hebei region and they believed that it is most cost-effective to carry out the same
cluster control for the entire city; Ma et al. [28] used node importance mining to identify the
closest sub-networks with the most frequent pollution relationships in the Beijing-Tianjin-
Hebei region by constructing a weighted network. At the single city level, Zhang et al. [29]
conducted a network topology analysis of the dynamic patterns of NO2 and O3 over time
series in Lanzhou City to explore the correlation between the two pollutants. It can be seen
that the advantage of applying complex network theory to the study of air pollution is that
it can effectively describe the relationships and strength of the interactions of regional air
pollution networks.

At present, scholars’ researches on air pollution using complex network theory mainly
focus on the network topology, network structure, and statistical analysis of edges, and there
are few studies on the identification of influential nodes. Due to geographical location, wind
direction, and other factors, the degree of interconnection and interaction of air pollution
between regions is not consistent. Current studies on the diffusion and transmission of air
pollutants in the region mostly adopt the NAQPMS model [30], WRF-CHEM model [31],
CAMx model [32], CMAQ model [33], etc. These models have very strict requirements on
the quality of basic data, so it is difficult to accurately estimate air quality in local areas.
The identification of influential nodes in complex networks can identify nodes that play
an important role in the network structure and information transmission process [34], so
applying the influential nodes identification method to the study of spatial correlation of air
pollution can help find out the real influential nodes so that more targeted measures can be
taken for governance and protection. A large number of metrics and algorithms have been
proposed to identify influential nodes in the network: algorithms based on information
about neighbor nodes (such as Degree Centrality [35], Semi-local Centrality [36], etc.)
evaluate the importance of nodes through its local information; algorithms based on
network information dissemination paths (such as Closeness Centrality [37], Betweenness
Centrality [38], etc.) consider the position of nodes on the information dissemination
path; algorithms based on the rank of nodes position (such as k-shell algorithm [39], etc.)
consider the position of nodes in the global structure of the network; algorithms based
on eigenvector (such as PageRank [40], LeaderRank [41], Eigenvector Centrality [42], etc.)
not only consider the number of neighbor nodes but also the importance of them. Each of
these methods has its own advantages and disadvantages, and it is important to choose an
appropriate algorithm for a specific application scenario.

In summary, the application of complex network theory to the field of air pollution has
attracted extensive research by scholars at home and abroad. However, these studies mainly
focus on network topology, network structure, and statistical analysis of edges, and there are
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still fewer studies on the identification of influential nodes. In addition, there are limitations
to current methods for influential nodes identification: the local discovery methods lack the
consideration of the overall information of the network, and the global discovery methods
have a relatively large time complexity. Therefore, this paper proposes an influential nodes
identification method, local-and-global-influence for weighted network (W_LGI), which
utilizes not only local information of nodes but also global structural information, and
applies it to the study of spatial correlation of air pollution, providing new ideas for the
collaborative governance of air pollution and the realization of the “carbon peak and carbon
neutrality” goals.

3. Method

This paper takes the Beijing-Tianjin-Hebei, Pearl River Delta, and Yangtze River Delta
urban agglomerations as the study areas, and uses the Pearson correlation coefficient of
the daily average AQI data among cities as the criteria for whether the cities are connected
to each other. If they are connected to each other, the ratio of the correlation coefficient to
the distance coefficient is used as the weight of the edge to construct air pollution spatial
correlation weighted networks of each urban agglomeration. By calculating the network
density, network efficiency, and network rank degree of each network, the overall network
characteristics of the spatial correlation of air pollution are reflected. On this basis, an
improved influential nodes identification method combining local and global information
is proposed to identify influential node cities in the networks. The study area is then
refined, the air pollution spatial correlation weighted network within the influential city
is constructed, and the influential nodes in the city network, the air quality monitoring
stations, are identified. The overall method flow of this paper is shown in Figure 1.
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3.1. Construction Method of the Air Pollution Spatial Correlation Weighted Network

A complex network is composed of a large number of nodes and edges, which can
be represented in the form of a graph: G = (V, E, W), where V denotes the set of nodes,
representing the individuals in the complex network; E denotes the set of edges, represent-
ing the connections between individuals; and W denotes the weight of the edge, which
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represents the strength of the connections between individuals. The adjacency matrix of
a network represents the connection relationship between each node. For an undirected
weighted network, the matrix element wij of the adjacency matrix can be expressed as:

wij =


wij, If node i is connected to j,

wij denotes the weight of the edge
0, If nodes i and j are not connected

(1)

The air quality index (AQI) simplifies the detected air concentration into a single con-
ceptual index value according to the proportion of various components in the air, including
PM2.5, PM10, SO2, CO, NO2, O3 and other pollutants, which is suitable for analyzing air
quality and its changing trend [43]. So, this paper uses AQI as a comprehensive index to
measure air pollution. When constructing the air pollution spatial correlation weighted
network in urban agglomerations, cities are used as nodes, and the Pearson correlation
coefficient of the daily average value of AQI between cities and cities is used as the criterion
for determining whether they are connected, where the Pearson correlation coefficient (as
shown in Equation (2), where X and Y are two variables, respectively, and Xi and Yi are
the observed values of variable X and Y corresponding to i; X and Y are the average of
X and Y samples) is often used to measure the correlation between two time-series vari-
ables with values between −1 and 1 [44]. In order to build a more stable network structure,
this paper selects the mean value of all elements outside the diagonal of the correlation
coefficient matrix as the threshold value. Such a threshold value selection method will
make the change of the number of nodes of the maximum connected subgraph in the
network more stable (that is, the topological nature of the network is stable) [45]. When the
correlation coefficient is greater than the threshold, the two cities are connected. Otherwise
no connection is established.

r =
∑n

i=1
(
Xi − X

)(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi − Y

)2
(2)

The pollutants in the air mainly originate from soil dust and fugitive dust, biomass
combustion, automobile exhaust, etc. At the same time, they can also spread to other
areas with air movement, transportation, industrial transfer and other activities. Since the
transmission of pollutants in the air is also affected by factors such as distance between cities,
terrain, and meteorological conditions, considering only the correlation coefficient cannot
fully reflect the spatial relationship of the network. In order to better reflect the spatial
relationship between different cities, this paper uses the ratio of the correlation coefficient
of the daily average AQI values between cities and the ellipsoid distance between cities as
the weight of the edges in the network structure [46], thus constructing a weighted network
of spatial correlations of air pollution. In the actual calculation, this paper selects the linear
proportional transformation method to eliminate the dimension of the distance between
cities, divides the distance by the maximum distance to obtain a distance coefficient in the
range of (0, 1], and again using the method to obtain the weights between (0, 1].

3.2. Analysis Method of Network Topology Characterization

In this paper, network density, network efficiency, and network rank degree are used
to reflect the overall network characteristics of the spatial correlation of air pollution. The
network density reflects the closeness of the network connection. As shown in Equation (3),
the greater the network density, the closer the spatial connection of air pollution in urban
agglomerations, and the correlation network structure has a stronger influence on air
pollution. The network efficiency reflects the degree of redundant lines in the network. As
shown in Equation (4), the lower the network efficiency, the more edges between node cities,
the closer the connection, and the more stable the network structure. The network rank
degree reflects the degree of asymmetric reachability of nodes. As shown in Equation (5),
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the higher the network rank degree, the stricter the hierarchical structure between node
cities, and the more significant the asymmetric spatial spillover effect, with node cities
belonging to core and edge positions [47].

Gd =
m

n(n − 1)/2
(3)

Ge = 1 − V
max(V)

(4)

Gr = 1 − S
max(S)

(5)

In the equations, Gd, Ge, and Gr represent network density, network efficiency and
network rank degree, respectively, m represents the actual number of edges in the network,
n represents the number of nodes, V. represents the number of redundant lines, and max(V)
represents the maximum possible number of redundant lines, S. represents the number of
symmetrically reachable node pairs in the network, and max(S) represents the maximum
possible number of node pairs in the network.

3.3. Influential Nodes Identification Method—Local-and-Global-Influence for Weighted Network
(W_LGI)

At present, a large number of methods have been proposed to identify influential
nodes in complex networks. Traditional methods of finding influential nodes in complex
networks can be divided into local discovery and global discovery. Local discovery only
considers the node’s own attributes and its neighbor information, such as Degree Centrality,
PageRank, etc.; and global discovery focuses on measuring the global information of
nodes in the network, such as Betweenness Centrality, Closeness Centrality, etc. Although
each of these methods has its own advantages, there are certain limitations. For example,
the local discovery method lacks the overall information of the network, and the time
complexity of the global discovery method is relatively large [48]. Therefore, this paper
proposes an influential nodes identification method for undirected weighted networks
called local-and-global-influence for weighted network (W_LGI), which not only considers
the local structure of nodes in the network but also pays attention to the global structure to
effectively mining influential nodes.

In an unweighted network, the degree of a node is the number of other nodes directly
connected to the node; in a weighted network, the degree of a node is the sum of the
weights of the edges directly connected to the node [49], as shown in Equation (6). The
degree of a node can reflect the local structural information of the node, so the ratio of the
weighted degree of the node to the total number of nodes in the network can be used to
measure the local influence of a node, as shown in Equation (7).

dw(vi) = ∑
j∈V

wij (6)

W−LI(vi) =
dw(vi)

n
(7)

In the equations, dw(vi) represents the degree of the node vi considering the edge
weights, W_LI(vi) represents the local influence of the node vi, wij represents the edge
weight between the nodes vi and vj, and n represents the total number of nodes in the
network.

The degree can reflect the edge status of the node itself but cannot reflect the edge
status of the neighbor nodes. In fact, the node will also be affected by other nodes in the
network. The shortest distance between a node and other nodes in the network can reflect
the global influence of the node, which is inversely proportional to the influence of the node.
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Therefore, this paper uses the ratio of the weighted degree of nodes to the shortest distance
between nodes to measure the global influence of a node, as shown in Equation (8).

W_GI(vi) = ∑
i 6=j

√
dw
(
vj
)

dij+θ
(8)

In the equation, W_GI(vi) represents the global influence of node vi, dw
(
vj
)

represents
the weighted degree of node vj, dij represents the shortest distance between node vi and vj,
and θ is an adjustment parameter to adjust the influence of the shortest distance between
nodes. In an unweighted network, the shortest distance between two nodes is defined as
the number of edges on the shortest path connecting the two nodes, while in a weighted
network, the shortest distance between two nodes is the sum of the weights of the edges on
the shortest path.

Based on this, the influence W_LGI(vi) of the node vi in the network is the prod-
uct of the node’s local influence W_LI(vi) and global influence W_GI(vi), as shown in
Equation (9). Calculate the influence of each node in the network, and sort according to the
value of the calculated influence from high to low, the order of the importance of the nodes
in the network can be obtained, so the identification of influential nodes in the network can
be realized.

W_LGI(vi)= W_LI(vi)×W_GI(vi) =
dw(vi)

n
×∑

i 6=j

√
dw
(
vj
)

dij+θ
(9)

4. Experiment
4.1. Experimental Data

This paper selects 48 cities in the three major urban agglomerations of Beijing-Tianjin-
Hebei, Pearl River Delta and Yangtze River Delta as the research areas, and selects the air
quality index (AQI) as the measurement indicator. The data is obtained from the China
Air Quality Online Monitoring and Analysis Platform, and we select the hourly data of
each monitoring station in each city from 1 November 2020 to 31 October 2021 during a
postponed year. As a result of processing the data, the daily average AQI value of each
city is obtained. The processed data includes 17,520 city data and 4380 monitoring stations
data for Beijing, making a total of 21,900 pieces of data, of which 18 pieces of missing data
need to be filled. Due to the continuity of air quality, the missing data can be replaced by
averaging the previous day’s value and the next day’s value [50]. At the same time, the
amount of missing data is so small that its impact on the spatial correlation of air pollution
between regions can be ignored [46]. In addition, the latitude and longitude of each city in
this study comes from the search engine.

4.2. Analysis of Network Topology Characterization of the Air Pollution Spatial Correlation
Weighted Networks in Three Major Urban Agglomerations

According to the construction method of the air pollution spatial correlation weighted
network proposed in Section 3.1, the air pollution spatial correlation weighted networks
of the three major urban agglomerations of Beijing-Tianjin-Hebei, Pearl River Delta, and
Yangtze River Delta are constructed, respectively. Taking the Beijing-Tianjin-Hebei urban
agglomeration as an example, the 13 cities in the Beijing-Tianjin-Hebei region are taken
as nodes. By calculating the Pearson correlation coefficient of daily average AQI values
among the 13 cities and averaging them, the mean value of the correlation coefficient of this
network is 0.7538, so 0.7538 is used as the threshold to construct edges between the node
cities. That is, if the correlation coefficient between the two cities is greater than or equal to
0.7538, there is an edge. Otherwise no edge is established. Then, we calculated the distance
between two cities according to the longitude and latitude of the cities, get the distance
coefficient between two cities after normalization and divided the correlation coefficient



Int. J. Environ. Res. Public Health 2022, 19, 4461 8 of 17

by the distance coefficient to obtain the weights of the edges. So, an undirected weighted
network with 13 nodes and 43 edges is constructed. Using the Gephi visualization tool, the
air pollution spatial correlation weighted networks of the three major urban agglomerations
of Beijing-Tianjin-Hebei, Pearl River Delta, and Yangtze River Delta are drawn, as shown
in Figure 2.
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(a) Beijing-Tianjin-Hebei; (b) Pearl River Delta; and (c) Yangtze River Delta.

It can be seen from Figure 2 that there are no isolated city nodes in the networks,
which means that in the face of the spatial correlation network of air pollution, no city
can be alone and all will be affected by other cities. According to the calculation method
of the overall network structural characteristics proposed in Section 3.2, Table 1 reports
the calculation results of the structural characteristics indicators of the three major urban
agglomeration networks. The air pollution spatial correlation networks of three major urban
agglomerations of Beijing-Tianjin-Hebei, Pearl River Delta, and Yangtze River Delta are all
relatively close, and the network density of the networks of the three urban agglomerations
exceeds 0.5, indicating that the spatial correlation of air pollution among cities is relatively
high, among which the network density of the Pearl River Delta is the highest, reaching
0.639 and the Beijing-Tianjin-Hebei and Yangtze River Deltas are slightly lower than the
Pearl River Delta. The three major urban agglomerations all show a multi-city, multi-
threaded, and cross-regional network distribution. The network efficiency of the networks
of the three major urban agglomerations is all around 0.5, and there are many spillover
channels of air pollution between cities, indicating that the spatial correlation structure of
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air pollution in the three major urban agglomerations is relatively stable, but there is still a
lot of room to strengthen the connection between cities. The network rank degree of the
three major urban agglomerations is relatively high, all of them exceeding 0.9, indicating
that the three major urban agglomerations have a relatively high air pollution rank attribute
and have significant asymmetric spatial spillover effects. The cities in the networks belong
to the core and edge positions. Therefore, it is necessary to further mine and identify
influential nodes in the networks.

Table 1. Structural characteristics of air pollution spatial correlation weighted networks of three
urban agglomerations of Beijing-Tianjin-Hebei, Pearl River Delta, and Yangtze River Delta.

Number of
Nodes (n)

Number of
Edges (m)

Network
Density

(Gd)

Network
Efficiency (Ge)

Network Rank
Degree (Gr)

Beijing-Tianjin-Hebei 13 43 0.551 0.531 0.911
Pearl River Delta 9 23 0.639 0.476 0.992

Yangtze River Delta 26 165 0.508 0.536 0.934

4.3. Influential Nodes Identification of Air Pollution Spatial Correlation Weighted Networks in
Three Urban Agglomerations

According to the influential nodes identification method proposed in Section 3.3 of this
paper, the attribute values of each node in the three major urban agglomeration networks
of Beijing-Tianjin-Hebei, Pearl River Delta, and Yangtze River Delta can be obtained, as
shown in Table 2.

Based on the above calculations, the influence rankings of the nodes of the air pollution
spatial correlation networks in the three major urban agglomerations of Beijing-Tianjin-
Hebei, Pearl River Delta, and Yangtze River Delta are obtained. The influence ranking
of nodes in the Beijing-Tianjin-Hebei urban agglomeration is: Langfang, Tianjin, Beijing,
Baoding, Shijiazhuang, Cangzhou, Tangshan, Handan, Xingtai, Hengshui, Chengde, Qin-
huangdao, Zhangjiakou; the influence ranking of nodes in the Pearl River Delta urban ag-
glomeration is: Foshan, Jiangmen, Zhongshan, Guangzhou, Dongguan, Huizhou, Zhuhai,
Shenzhen, Zhaoqing; the influence ranking of nodes in the Yangtze River Delta urban
agglomeration is: Zhenjiang, Nanjing, Wuxi, Yangzhou, Maanshan, Changzhou, Suzhou,
Wuhu, Jiaxing, Huzhou, Taizhou, Hangzhou, Chuzhou, Shaoxing, Nantong, Tongling,
Chizhou, Shanghai, Xuancheng, Hefei, Ningbo, Anqing, Yancheng, Zhoushan, Jinhua,
Taizhou. In the Beijing-Tianjin-Hebei urban agglomeration, the W_LGI values of the top
six cities are all over 2, and they are relatively central in the network; while the W_LGI
values of the last seven cities are all below 2, they are relatively edge in the network. In the
Pearl River Delta urban agglomeration, the W_LGI values of the top 5 cities are all over 1.3,
and they are relatively central in the network; while the W_LGI values of the last 4 cities
are all below 1.3, they are relatively edge in the network. In the Yangtze River Delta urban
agglomeration, the W_LGI values of the top 16 cities are all over 3, and they are relatively
central in the network; the W_LGI values of the bottom 10 cities are all lower than 3, and
they are relatively edge in the network. Figure 3 shows the relative positions of the cities
in the three major urban agglomerations with the more influential node cities marked in
red and the less influential node cities marked in green. It can be seen that the cities that
are relatively central in the networks are also relatively centered in terms of geographical
location, and have a greater impact on other nodes cities in the region. Cities in relatively
edge positions in the network are also in “marginal positions” geographically, and their
impact on other cities in the region in terms of air pollution is relatively low, which verifies
the hypothesis proposed in this paper.
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Table 2. The attribute values of each node in the three major urban agglomeration networks:
(a) Beijing-Tianjin-Hebei; (b) Pearl River Delta; and (c) Yangtze River Delta.

d(vi) dw(vi) W_LI(vi) W_GI(vi) W_LGI(vi) Rank

(a)

Beijing 8 2.601 0.200 14.170 2.834 3
Tianjin 9 2.720 0.209 14.392 3.008 2

Shijiazhuang 8 1.778 0.137 15.065 2.064 5
Baoding 9 2.133 0.164 14.488 2.376 4

Tangshan 7 1.720 0.132 14.530 1.918 7
Langfang 8 2.933 0.226 14.171 3.203 1

Qinhuangdao 5 0.891 0.068 14.941 1.016 12
Zhangjiakou 2 0.299 0.023 14.043 0.323 13

Handan 5 1.579 0.121 14.322 1.733 8
Hengshui 6 1.597 0.123 13.886 1.708 10
Cangzhou 8 1.819 0.140 14.728 2.062 6
Chengde 6 1.079 0.083 14.542 1.207 11
Xingtai 5 1.786 0.137 13.781 1.888 9

(b)

Guangzhou 5 2.036 0.226 8.743 1.978 4
Shenzhen 4 0.899 0.100 9.006 0.899 8

Zhuhai 4 1.172 0.131 9.207 1.199 7
Dongguan 5 1.402 0.156 8.646 1.347 5

Foshan 6 2.384 0.265 8.774 2.324 1
Zhongshan 6 2.026 0.225 8.825 1.986 3
Huizhou 7 1.125 0.125 10.104 1.263 6
Jiangmen 7 2.132 0.237 9.038 2.141 2
Zhaoqing 2 0.488 0.054 8.395 0.456 9

(c)

Shanghai 13 1.767 0.068 38.689 2.629 18
Nanjing 20 3.465 0.133 38.834 5.176 2

Wuxi 17 3.487 0.134 37.861 5.078 3
Changzhou 17 3.297 0.127 37.952 4.813 6

Suzhou 16 3.206 0.123 37.799 4.661 7
Nantong 13 2.134 0.082 37.856 3.108 15
Yancheng 6 0.749 0.029 37.706 1.086 23
Yangzhou 15 3.469 0.133 37.517 5.006 4
Zhenjiang 17 3.771 0.145 38.164 5.535 1
Taizhou 13 2.669 0.103 36.753 3.773 11

Hangzhou 17 2.409 0.093 38.963 3.610 12
Ningbo 12 1.628 0.063 38.115 2.386 21
Jiaxing 16 2.723 0.105 38.117 3.993 9

Huzhou 15 2.634 0.101 37.543 3.808 10
Shaoxing 15 2.092 0.080 39.143 3.150 14

Jinhua 4 0.473 0.018 36.987 0.673 25
Zhoushan 3 0.551 0.021 35.639 0.756 24
Taizhou 3 0.353 0.014 36.554 0.496 26

Hefei 13 1.642 0.063 38.709 2.444 20
Wuhu 17 3.093 0.119 38.365 4.564 8

Maanshan 18 3.361 0.129 38.218 4.941 5
Tongling 10 2.123 0.082 37.646 3.073 16
Anqing 8 1.430 0.055 38.178 2.099 22

Chuzhou 14 2.306 0.089 37.740 3.348 13
Chizhou 8 1.843 0.071 37.474 2.657 17

Xuancheng 10 1.817 0.070 37.169 2.597 19
Note: In the tables,d(vi) represents the degree of node vi, dw(vi) represents the weighted degree of node vi,
W_LI(vi) represents the local influence of node vi, W_GI(vi) represents the global influence of node vi, W_LGI(vi)
represents the comprehensive influence of the node vi, that is, the influence score, and Rank is the influence
ranking of the node.



Int. J. Environ. Res. Public Health 2022, 19, 4461 11 of 17

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 12 of 18 
 

 

in the region in terms of air pollution is relatively low, which verifies the hypothesis 

proposed in this paper. 

Chengde

Qinhuangdao

Zhangjiakou

Beijing

Tianjin

Langfang

Tangshan

Baoding

Cangzhou

Shijiazhuang

Hengshui

Handan

Xingtai

 

Huizhou
Dongguan

Shenzhen

Zhuhai

Zhongshan
Jiangmen

Foshan

GuangzhouZhaoqing

 

Yancheng

Taizhou
Yangzhou

Zhenjiang

Nantong

Changzhou
Wuxi

Suzhou

Shanghai

Jiaxing
Huzhou

Hangzhou

Shaoxing Ningbo

Zhoushan

Taizhou

Jinhua

Anqing
Chizhou

Tongling
Xuancheng

Wuhu

Maanshan

NanjingChuzhou

Hefei

 

(a) (b) (c) 

Figure 3. The location of each node in the networks of the three major urban agglomerations: (a) 

Beijing-Tianjin-Hebei; (b) Pearl River Delta; and (c) Yangtze River Delta. 

4.4. Analysis of Air Pollution Spatial Correlation Weighted Network within Influential City 

After identifying the influential cities that are at the core of the spatial correlation 

networks based on the urban agglomerations, in order to provide assistance to environ-

mental managers to obtain targeted measures it is necessary to further refine the study 

area of the spatial correlation of air pollution. Further analysis can be carried out within 

influential cities. According to the construction method of the air pollution spatial corre-

lation weighted network proposed in Section 3.1, the air pollution spatial correlation 

weighted network of a certain influential city is constructed with the air quality moni-

toring stations of the city as nodes. Then, according to the influential nodes identification 

method proposed in Section 3.3 mining and identifying the monitoring stations at the 

core of the network in the influential city can help to quickly locate small areas with high 

pollution levels and high transmission capacity, thus improving the accuracy and effi-

ciency of environmental management efforts. 

Taking Beijing, the influential city with the higher rank of influential nodes in the 

air pollution spatial correlation weighted network of the Beijing-Tianjin-Hebei urban 

agglomeration, as an example, there are a total of 12 monitoring stations, as shown in 

Table 3. During the network construction process, the monitoring station “1005A” is not 

connected to any other node, so this monitoring station is excluded. From this, an air 

pollution spatial correlation weighted network with 11 nodes and 48 edges is construct-

ed, as shown in Figure 4. After calculation, the network density of this network is 0.727, 

indicating that there is a very close spatial correlation between the areas where the mon-

itoring stations are located within the city; the network efficiency is 0.156, indicating that 

the dynamic correlation between air pollution has strong network stability; the network 

rank degree is 0.981, indicating that the air quality monitoring stations in the city belong 

to the core and edge positions. 

Table 3. Information on air quality monitoring stations in Beijing. 

Station Number Station Name Latitude (°N) Longitude (°E) Station Type 

1001A Wanshouxigong 39.867 116.366 Urban 

1002A Dingling 40.286 116.170 Suburban 

Figure 3. The location of each node in the networks of the three major urban agglomerations:
(a) Beijing-Tianjin-Hebei; (b) Pearl River Delta; and (c) Yangtze River Delta.

4.4. Analysis of Air Pollution Spatial Correlation Weighted Network within Influential City

After identifying the influential cities that are at the core of the spatial correlation net-
works based on the urban agglomerations, in order to provide assistance to environmental
managers to obtain targeted measures it is necessary to further refine the study area of
the spatial correlation of air pollution. Further analysis can be carried out within influ-
ential cities. According to the construction method of the air pollution spatial correlation
weighted network proposed in Section 3.1, the air pollution spatial correlation weighted
network of a certain influential city is constructed with the air quality monitoring stations of
the city as nodes. Then, according to the influential nodes identification method proposed
in Section 3.3 mining and identifying the monitoring stations at the core of the network
in the influential city can help to quickly locate small areas with high pollution levels and
high transmission capacity, thus improving the accuracy and efficiency of environmental
management efforts.

Taking Beijing, the influential city with the higher rank of influential nodes in the
air pollution spatial correlation weighted network of the Beijing-Tianjin-Hebei urban
agglomeration, as an example, there are a total of 12 monitoring stations, as shown in
Table 3. During the network construction process, the monitoring station “1005A” is
not connected to any other node, so this monitoring station is excluded. From this, an air
pollution spatial correlation weighted network with 11 nodes and 48 edges is constructed, as
shown in Figure 4. After calculation, the network density of this network is 0.727, indicating
that there is a very close spatial correlation between the areas where the monitoring stations
are located within the city; the network efficiency is 0.156, indicating that the dynamic
correlation between air pollution has strong network stability; the network rank degree is
0.981, indicating that the air quality monitoring stations in the city belong to the core and
edge positions.
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Table 3. Information on air quality monitoring stations in Beijing.

Station Number Station Name Latitude (◦N) Longitude (◦E) Station Type

1001A Wanshouxigong 39.867 116.366 Urban
1002A Dingling 40.286 116.170 Suburban
1003A Dongsi 39.952 116.434 Urban
1004A Tiantan 39.874 116.434 Urban
1005A Nongzhanguan 39.972 116.473 Urban
1006A Guanyuan 39.942 116.361 Urban
1007A Haidianquwanliu 39.993 116.315 Urban
1008A Shunyixincheng 40.144 116.720 Suburban
1009A Huairouzhen 40.394 116.644 Suburban
1010A Changpingzhen 40.195 116.230 Suburban
1011A Aotizhongxin 40.003 116.407 Urban
1012A Gucheng 39.928 116.22 Urban
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According to the influential nodes identification method proposed in Section 3.3, the
influential nodes are identified for the air pollution spatial correlation weighted network
in the influential city of Beijing, and the results are shown in Table 4. According to the re-
sults, the top six monitoring stations—“Guanyuan”, “Dongsi”, “Aotizhongxin”, “Tiantan”,
“Haidianquwanliu”, and “Wanshouxigong” are all of high influence in the network, with
W_LGI(vi) of 4.5 or more, while the bottom six monitoring stations —“Changpingzhen”,
“Dingling”, “Shunyixincheng”, “Huairouzhen”, “Gucheng” and “Nongzhanguan” are less
important in the network, with W_LGI(vi) below 3, which are the less important positions
in the network. Figure 5 shows the location of the 12 monitoring stations on the map of
Beijing with the top six monitoring stations in terms of influence are marked in red and the
last six monitoring stations are marked in green. It can be seen that the top six monitoring
stations are all located in the main urban areas of Beijing. These areas have high pedestrian
flow and frequent traffic jams, resulting in serious pollutant emissions and a high degree
of air quality correlation, and are among the areas in the air pollution network in Beijing
that need to be focused on strengthening prevention and control. While among the bottom
six monitoring stations, all monitoring stations except “Nongzhanguan” and “Gucheng”
are located in the suburbs of Beijing, which are affected by many factors such as distance,
pollutant emissions and terrain, and cause relatively low air pollution to other areas in
the region. In general, the air pollution in Beijing has a complex spatial inter-pollution
phenomenon.
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Table 4. Ranking of influential nodes in the air pollution spatial correlation weighted network of
Beijing.

Station Number Rank W_LGI(vi) Station Type

1001A 6 4.764 Urban
1002A 8 2.298 Suburban
1003A 2 5.582 Urban
1004A 5 4.795 Urban
1005A 12 0 Urban
1006A 1 6.435 Urban
1007A 4 5.314 Urban
1008A 9 2.202 Suburban
1009A 10 1.667 Suburban
1010A 7 2.658 Suburban
1011A 3 5.580 Urban
1012A 11 1.415 Urban
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5. Conclusions and Suggestions
5.1. Conclusions

Based on the complex network theory, this paper studies and analyzes the air pol-
lution spatial correlation weighted networks in the three major urban agglomerations of
Beijing-Tianjin-Hebei, Pearl River Delta, and Yangtze River Delta, and draws the following
conclusions:

1. By constructing three spatial correlation weighted networks of air pollution in the
three major urban agglomerations with cities as nodes and a spatial correlation
weighted network of air pollution within a city with air quality monitoring stations as
nodes, the network density of each network exceeds 0.5. It can be found that there is
a general correlation of air pollution within and between cities and this correlation
has transcended the limitation of geographical distance and is intertwined, showing a
multi-threaded complex network distribution situation with strong links;

2. Based on the air pollution spatial correlation weighted networks in the three urban
agglomerations of Beijing-Tianjin-Hebei, Pearl River Delta, and Yangtze River Delta,
the influence of each node city in each network is obtained by using the influential
nodes identification method. In the Beijing-Tianjin-Hebei urban agglomeration, cities
such as Langfang, Tianjin, Beijing and Baoding occupy the important positions in the
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network; in the Pearl River Delta urban agglomeration, cities such as Foshan, Jiangmen
and Zhongshan are relatively central in the network; in the Yangtze River Delta urban
agglomeration, cities such as Zhenjiang, Nanjing, Wuxi, Yangzhou, and Maanshan
occupy the important positions in the network. These cities have a strong ability to
control the spread of air pollution in other cities and are most closely related to air
pollution in other cities, so they need to be the focus of attention in the management
of air pollution;

3. Using the influence rankings of cities based on influential nodes in the air pollution
spatial correlation weighted networks of the urban agglomerations, the influential
cities in the networks are further studied and analyzed. This paper takes Beijing, an
influential city of the Beijing-Tianjin-Hebei urban agglomeration, as an example. We
evaluate the influence of 12 air quality monitoring stations in the network based on
the spatial correlation weighted network of air pollution in Beijing, and conclude that
monitoring stations such as “Guangyuan”, “Dongsi”, “Aotizhongxin”, and “Haidian-
quwanliu” are relatively central in the network. These monitoring stations are also
located in the main urban areas of Beijing in terms of spatial distribution, and have
the relatively strong ability to spread air pollution to the surrounding areas.

5.2. Policy Suggestions

Based on complex network theory, this paper studies and analyzes the network struc-
ture characteristics of air pollution in China’s three major urban agglomerations—Beijing-
Tianjin-Hebei, Pearl River Delta, and Yangtze River Delta. The spatial correlation network
structure of air pollution provides new ideas for the construction of a collaborative air
pollution governance system, and therefore the following suggestions are proposed.

1. Set up regional joint supervision departments, make overall planning according to
regional characteristics, and formulate joint prevention and control mechanisms. In
the face of the correlation network and network structure of air pollution in urban
agglomerations, no city within an urban agglomeration can be left alone in terms of
air quality. Even if a city makes efforts to combat air pollution, which may result
in a slight improvement in local air quality in the short term, the spatial correlation
network of air pollution will quickly offset its efforts. Therefore, taking the lead in
the joint prevention and control of air pollution within the urban agglomeration, and
then constructing a cross-regional joint prevention and control system is an inevitable
choice to solve the problem of air pollution as a whole;

2. For the influential cities in the urban agglomeration networks and the influential
monitoring stations in the city network, these nodes are relatively central in the
network and have a strong spatial spillover effect in terms of air pollution. Therefore,
it is necessary to intensify its monitoring efforts, establish key monitoring mechanisms,
and formulate measures (such as formulating more stringent energy-saving and
emission reduction policies, etc.) to cut off or weaken the transmission channels of
air pollution between these areas and other areas, so as to reduce the connectivity
efficiency of the entire air pollution spatial correlation network, thereby achieving the
effect of reducing air pollution in the whole region;

3. Further improve policies and regulations on air pollution prevention and control,
and introduce more scientific collaborative governance plans. In order to effectively
respond to the spatial correlation of air pollution, attempts can be made to break
through the constraints of the traditional administrative region system and achieve
cross-regional and cross-departmental collaboration, with greater synergy between
regions in controlling population size, urban investment intensity and industrial
emission reduction. In the end, while maximizing the effect of collaborative pollution
control, it will achieve a comprehensive range of regional synergistic development in a
wider spatial context, innovate green production methods and promote the realization
of the “carbon peak and carbon neutrality” goals of each city and region;
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4. Formulate and implement specific measures for the collaborative governance of air
pollution. First of all, according to the main origin of air pollution in different regions,
special attention should be paid to optimize the spatial layout of industrial enterprises
in the region as a whole. By strictly controlling industries with high pollution and
high energy consumption, the transmission and transfer of air pollution in the region
should be strictly prevented. Strengthen the unified control of motor vehicle pollution
emissions by means of improving the regional transportation system and raising
the emission level. Secondly, by flexibly using taxation, subsidies, credit and other
economic means, as well as regulatory and punitive measures for enterprises, activate
the enthusiasm of enterprises in various regions to participate in air pollution control
and explore more reasonable behavioral strategies for emission reduction, so as to
provide an important path to achieve the “carbon peak and carbon neutrality” goals.
In addition, advanced technologies such as big data are used to integrate various city
systems and establish a comprehensive, unified and efficient big data information
platform in the region.

In conclusion, the prevention and control of air pollution in various urban agglomera-
tions and regions in China is a complex systematic project. This paper provides new ideas
for the air pollution prevention and control from the perspective of the spatial correlation
of air pollution. It is important to re-examine and build cross-regional collaborative gover-
nance strategies from a global perspective, pay attention to the spatial linkage effect within
the urban agglomerations, and play the role of central nodes. In this way, we can better
improve the efficiency and effectiveness of air pollution governance, jointly achieve green
development and help achieve the “carbon peak and carbon neutrality” goals.
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