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Abstract: Global climate change results in an increased risk of high urban temperatures, making it crucial
to conduct a comprehensive assessment of the high-temperature risk of urban areas. Based on the data of
194 meteorological stations in China from 1986 to 2015 and statistical yearbooks and statistical bulletins
from 2015, we used GIS technology and mathematical statistics to evaluate high-temperature spatial
and temporal characteristics, high-temperature risk, and high-temperature vulnerability of 31 cities
across China. Over the past 30 years, most Chinese cities experienced 5–8 significant oscillation cycles
of high-temperature days. A 15-year interval analysis of high-temperature characteristics found that
87% of the cities had an average of 5.44 more high-temperature days in the 15-year period from 2001
to 2015 compared to the period from 1986 to 2000. We developed five high-temperature risk levels
and six vulnerability levels. Against the background of a warming climate, we discuss risk mitigation
strategies and the importance of early warning systems.

Keywords: GIS; high-temperature disaster risk; high-temperature disaster vulnerability; risk assessment

1. Introduction

High-temperature disaster refers to a meteorological disaster that causes discomfort
to living and non-living things such as people, animals, plants, and inorganic environment
due to extreme high-temperature weather and has adverse effects. Global climate change
has resulted in more frequent extreme weather events, which have significant adverse
effects on human health and the social economy [1]. One type of extreme climate event,
extreme summer heat, is a global phenomenon: In 1993, the Southeastern United States
was hit by heat waves, with most areas reaching their highest temperatures in history [2].
In 1994, continuous high summer temperatures in Northeast China, Japan, and other
countries resulted in large-scale droughts [3]. In 1995, the heat wave across Europe seriously
impacted ecological, socio-economic, and other aspects of society [4]. In the summer
of 2003, temperatures in Europe hit a record high [5], with more than 10,000 people in
France dying as a consequence of the heat [6]. In 2013, Southeast China suffered from
abnormally high temperatures, and 167 excess deaths occurred in the Pudong New Area in
Shanghai [7]; at the same time, 679 additional heat-related illnesses occurred in Ningbo [8].
Heat waves, which are occurring more frequently, affect not only human health [9,10]
but also human wellbeing and productivity, resulting in urban water and power supply
shortages [11] and, consequently, threatening food security [12]. Over the last few years,
high-temperature events have become more frequent, and their frequency, range, and
duration will continue to increase [13]. Analyzing the spatial and temporal characteristics
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of high-temperature events can facilitate our understanding of the intensity, frequency, and
duration of such events and their causes. In this sense, high-temperature risk assessment is
of great importance for avoiding the risks associated with high-temperature events.

Studies on high-temperature events mainly focused on the impacts and causes of
these events, as well as early warning systems. For example, Rosenzweig et al. [13,14]
pointed out that urban heat waves can have serious impacts on human health. Accord-
ing to Park et al. [15] and Guan et al. [3], the occurrence of high-temperature events is
related to abnormal sea temperatures. While the US Hot-Weather Health Warning System
(HHWS) can already assess the possible number of deaths caused by hot weather [16],
Kalkstein et al. [17] evaluated the ability of HHWS to reduce the number of heat-related
deaths based on the number of heat deaths and heat waves in major cities in the United
States from 1975 to 2004. Yang et al. [18] pointed out that the urban heat island effect
aggravated the scope and intensity of extremely high temperatures in cities, increased
high-temperature health risks for urban residents, and also made an important contribution
to the long-term upward trend of extremely high temperatures in cities.

High-temperature vulnerability research refers to the establishment of a vulnerability
evaluation index system in terms of the sensitivity; exposure; and adaptability of natural
resources, the environment, the population, and the social economy, with the aim of quanti-
tatively expressing the regional high-temperature vulnerability and identifying its spatial
distribution [19,20]. Against the background of global climate change, compared to vulner-
ability assessments of meteorological disasters such as floods, droughts, and typhoons, as
well as geological disasters such as earthquakes and landslides, studies assessing the vul-
nerability of cities to high-temperature events are scarce [21–28]. Urban high-temperature
vulnerability evaluation studies mainly used official statistics, obtained via remote sensing
and GIS. Generally, indicators such as high-temperature stress, sensitivity, adaptability,
and exposure were evaluated [29,30], and factors such as the number of high-temperature
days, socioeconomic level, and education level were involved [19,20]. The determination of
relevant evaluation indicators is highly subjective, requiring rigorous index demonstration,
mostly using statistical data; remote sensing data and GIS data alone are insufficient [31].

Disaster risk assessment is a process of judging the nature and scope of risk by studying
the disaster-causing factors and the vulnerability of disaster-bearing bodies that have potential
impacts on life, property and environment [32]. Considering the combined effects of risk
and vulnerability, the comprehensive risk of high temperature disaster pays more attention
to the possible losses under high temperature stress; that is, it emphasizes the exposure
of population, property, and ecosystem at high temperatures [20]. In the 1970s, several
countries started to conduct risk assessments of meteorological disasters [33–38]. For example,
Blaikei et al. [39] took each state as the research object and used natural disasters between
1957 and 1994 to conduct a natural disaster risk analysis, using disaster loss, population,
and area data. The relationship between resource development and natural disasters was
illustrated from the perspective of the comprehensive role of the disaster-prone environment,
disaster-causing factors, and disaster-bearing factors, allowing the authors to obtain the
disaster risk zoning of the United States. In 1982, Willam et al. [40] completed the book
Natural Disaster Risk Assessment and Disaster Reduction Policy, in which the authors described
natural disaster risk assessment. China’s high-temperature risk assessment has mainly been
carried out by considering hazards, exposure, vulnerability, disaster prevention, mitigation
ability, etc., and high-temperature risk assessment is performed by considering disaster-
causing factors, disaster-prone environments, disaster-bearing bodies, disaster resistance
ability, etc. To date, although several studies have investigated the influences and causes of
high-temperature events, including potential early warning signs [13–17], systematic studies
on the risk assessment of high-temperature events are scarce.

The above-mentioned studies mainly focused on spatial-temporal characteristics,
causes, impacts on human health, and a comprehensive assessment of high-temperature
events. However, such research was largely carried out on the regional scale. On the
national scale, based on different high-temperature risk assessment models and different
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evaluation index systems, this paper constructs a high-temperature risk assessment model
from the comprehensive perspective of high-temperature spatiotemporal characteristics,
risks, and vulnerability. We used statistical methods to analyze high-temperature spa-
tiotemporal characteristics and risk assessment data from various cities within China based
on provincial units. The identification of areas vulnerable to high temperatures and the
assess of this vulnerability provide a scientific basis for the control of high-temperature
risks in various cities with a high practical significance.

2. Data and Methods
2.1. Data

For this paper, we used meteorological and socioeconomic data. Meteorological
data were obtained from the National Meteorological Science Data Sharing Center (http:
//data.cma.cn/site/index.html, accessed on 10 April 2020); we downloaded the daily
maximum temperature data for 194 weather stations from the “China Ground International
Exchange Station Climate Data Day Dataset” from 1986 to 2015 (Figure 1). Social and
economic data were obtained from the statistical yearbooks of various provinces and cities,
supplemented by departmental statistical yearbooks and statistical bulletins (Table 1).
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Table 1. Description of the data used for this paper.

Data Types Data Description Data Sources Time Period

Meteorological data Daily maximum temperatures from
194 meteorological stations

National Meteorological Science Data Sharing
Center (http://data.cma.cn/site/index.html,

accessed on 15 Apirl 2020)
1986–2015

Socio-economic data

Statistical data, including
population, employment, income,

finance, industry, education,
healthcare, and other data from

various administrative areas

Provincial statistical yearbooks from Anhui,
Gansu, Guangdong, Guangxi, Hebei, Henan,

Heilongjiang, Hubei, Hunan, Jilin, Jiangxi,
Liaoning, Inner Mongolia, Shandong, Shanxi,

Sichuan, Tianjin, Tibet, Xinjiang, Yunnan,
Chongqing, Shanghai, Hainan, Beijing,

Zhejiang, Guizhou, Qinghai, and Ningxia.
Municipal statistical yearbooks from Nanjing,

Nanping, Wuhan, Chaoyang, Shijiazhuang,
Xi’an, Yuncheng, Kunming, and Zunyi.

Statistical yearbooks are all from provincial
and municipal statistical bureaus.

2016

Statistics (As
supplementary materials)

Heilongjiang Financial Yearbook and the
national, economic, and social development

statistical bulletins from the cities of Ganzhou
and Pu ’er and other provinces and cities,
provided by the Provincial and Municipal

Statistics Bureau

2015

2.2. Methods

The fifth research report of the IPCC (2014) emphasizes the importance of risk assess-
ment in global climate change research, describing a framework of natural disaster risk
assessment based on “disaster stress-social vulnerability-exposure.” Extremely high tem-
peratures in summer can lead to high-temperature disasters, which pose serious threats to
human health, the social economy, and ecosystems. Based on the natural disaster risk eval-
uation framework and “high-temperature risk-social vulnerability-population exposure,”
a high-temperature disaster risk assessment framework is constructed to comprehensively
assess high-temperature risks. According to the above evaluation framework, the quantita-
tive analysis of high-temperature characteristics, risks, and vulnerability is conducted to
provide an assessment of urban high-temperature risks.

2.2.1. Analysis of High-Temperature Characteristics

Based on the daily maximum temperature data of 194 weather stations from the “China
Ground International Exchange Station Climate Data Dataset” from 1986 to 2015, 31 cities
were selected as typical cities with high temperatures, and the frequency characteristics
of high-temperature events in these cities were determined. We used the SPSS software
platform for statistical analysis and counted the days with high-temperature events from
1986 to 2015. In order to observe and compare these events, we used the equidistant
grouping method that is frequently adopted [41]. The obtained dataset was divided into
two groups, namely data from 1986 to 2000 and data from 2001 to 2015. For each group,
which represents a 15-year period, we calculated the mean of the annual number of high-
temperature days. Subsequently, we calculated the difference between the average number
of high-temperature days from 2001 to 2015 and the average number of high-temperature
days from 1986 to 2000 and compared the two 15-year periods.

2.2.2. Risk Analysis of High-Temperature Disasters

Using the temperature data of 31 typical stations, a high-temperature risk assess-
ment model for 31 typical provinces and cities was constructed based on the following
three aspects: the duration of high temperatures, high-temperature severity, and extreme
high-temperature risk. The duration of high-temperature events was expressed by the
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number of high-temperature days (≥35 ◦C). The severity of a high-temperature event is
expressed by the average difference between the daily maximum temperature (when it is
≥35 ◦C) and the temperature of 35 ◦C. The extreme high-temperature risk was expressed
by the extreme high temperature ratio, which refers to the ratio of the number of days
with a maximum daily temperature of ≥38 ◦C (China’s Meteorological Administration
defines weather with a daily maximum temperature ≥38 ◦C as hot summer weather) to the
number of high-temperature days within a certain period of time. The model is constructed
as follows:

R = d × wd + t × wt + p × wp (1)

where R indicates the risk of urban high-temperature disasters; and d, t, and p represent
the cumulative number of high-temperature days, the high-temperature severity, and the
extreme high-temperature ratio of the standardized cities, respectively. wd, wt, and wp
are the standardized weights of the cumulative number of high-temperature days, high-
temperature severity, and extreme high-temperature ratio for each city, respectively. The
cumulative number of high-temperature days is the number of days with high-temperature
weather; the high-temperature severity is the average of the difference between the daily
maximum temperature (when it is ≥35 ◦C) and 35 ◦C; and the extreme high-temperature
ratio refers to the ratio of the number of days with a daily maximum temperature ≥38 ◦C
to the number of high-temperature days in a certain period of time.

In a previous study [19], wd, wt, and wp were set to 0.6, 0.3, and 0.1, respectively. Based
on the calculated risk index values of each typical city, the natural breakpoint method in
ArcGIS was used to grade cities, and the spatial distribution maps of five high-temperature
risk grades were obtained.

2.2.3. Vulnerability Analysis of High-Temperature Disaster and High-Temperature
Risk Assessment

According to the high-temperature risk assessment framework, the risk can be deter-
mined using the following three indicators: high-temperature stress, social vulnerability,
and population exposure. Social vulnerability refers to how vulnerable a specific group
of people is to high temperatures and their ability to resist high-temperature hazards; it
includes the sensitivity and adaptability of the population [42]. Based on previous studies,
the multiplication and division of these indicators can reflect the synergistic relationships
among the indicators more effectively than addition and subtraction [43–46]. Accordingly,
the high-temperature vulnerability and the high-temperature risk models were obtained
as follows:

DI = R × F, and (2)

RI = R × F × E, (3)

where DI is the high-temperature vulnerability index; RI is the high-temperature risk
index; and R, F, and E are the high-temperature disaster risk, social vulnerability, and
population exposure values, respectively. Parameter R is calculated using Equation (1);
population exposure value E refers to the total population of each city in 2015. Social
vulnerability, F, is determined via principal component analysis, which is used to analyze
and calculate the selected social vulnerability indicators of sensitivity and adaptability; the
specific indicators are shown in Appendix A. Principal component analysis (PCA) [47] is
a multivariate dimensionality reduction technique for clustering and index reduction that
uses the relationships between data points; it simplifies and organizes the relationships
among a set of metrics and, thus, enables objective index confirmation. To calculate social
vulnerability, the principal component score function of each typical site was first calculated
based on the resulting component score coefficient matrix:

Fi = ∑ Zij × X (4)
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where X indicates the value of each index after standardization and Zij is the corresponding
component score of the index.

Subsequently, we used the contribution rates of each principal component and calcu-
lated the social vulnerability value F of each city by applying the following equation:

F =
ei
e

Fi (5)

where ei is the contribution rate of each principal component; e represents the total principal
component contribution rate; and Fi represents each principal component score.

Based on the constructed high-temperature risk assessment framework, the high-
temperature vulnerability and high-temperature risk values of the cities with the highest
temperatures in various provinces were obtained. The natural breakpoint method in ArcGIS
was used to generate the maps of high-temperature vulnerability and high-temperature
risk zoning for each city (Table 2).

Table 2. Indicators used for the social vulnerability index calculation.

Primary Indicator Sub-Indicator

Sensitivity

Proportion of the population that is female (%)
Proportion of the population that works in the primary industry (%)
Registered unemployment rate (%)
Number of students in primary school (people)

Adaptability

Per capita disposable income of urban residents (CNY)
Per capita disposable income of rural residents (CNY)
Basic endowment insurance for urban workers (CNY)
GDP per capita (CNY)
Proportion of industrial output value in GDP (%)
Local fiscal revenue (CNY 10,000)
Number of health technicians (people)
Local financial education expenditure (CNY 10,000)
Social security and employment expenditure (CNY 10,000)

2.2.4. Jenks Natural Breaks

The natural breakpoint method is a standard method used to divide datasets into
a certain number of classes; it is widely used in data analysis and map making [48]. By
identifying the classification interval and dividing the elements into multiple classes, similar
values can be appropriately grouped so that the difference between similar groups are small
and the differences between less similar groups are large. Statistically, the variance can be
used to perform the classification. The magnitude of the sum of the variance of various
classifications can be used to classify the elements, and the lowest magnitude indicates
the best classification result. The natural breaks method is the “best” method for finding
an appropriate segmentation range. Most high-temperature risk studies divide the risk
into five levels [47,49], which are not arbitrary decisions. Therefore, in this paper, five high-
temperature risk levels are determined, and the thresholds of all levels are obtained using
the natural breaks method.

3. Results
3.1. Analysis of the Spatial and Temporal Characteristics of Urban High-Temperature Events

Generally, 28 of the 31 typical cities showed cyclical fluctuations in the number of high-
temperature days per year (Figures 2 and 3), and most cities experienced 5–8 significant
oscillation cycles. Turpan, Xinjiang, had the largest number of high-temperature days
per year, with a mean of 105.30 days. The number of high-temperature days per year in
Baise, Guangxi; Nanping, Fujian; Ganzhou, Jiangxi; Chongqing; and Hangzhou, Zhejiang,
showed obvious cyclical fluctuations, with a mean of greater than 30 days. Turpan had
an average of 30.03 to 46.73 high-temperature days. Shaoguan, Guangdong; Haikou,
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Hainan; Changsha, Hunan; Yuncheng, Shanxi; Wuhan, Hubei; Lu’an, Anhui; and Xi’an,
Shaanxi, had 22 to 28.8 high-temperature days per year on average. Alxa League in
Inner Mongolia; Nanchong, Sichuan; Jiuquan, Gansu; Zhengzhou, Henan; Shijiazhuang,
Hebei; Nanjing, Jiangsu; Shanghai, Shandong; and Jinan, Shandong, averaged between 10
and 20 high-temperature days per year. Beijing; Tianjin; Chaoyang, Liaoning; Yinchuan,
Ningxia; Zunyi, Guizhou; Pu ’er, Yunnan; Qiqihar, Heilongjiang; and Songyuan, Jilin,
averaged between 1 and 10 high-temperature days per year. In every year, the number of
high-temperature days was below 40 for these cities.

According to the number of high-temperature days, natural breakpoints were used in
ArcGIS to create five intensity levels: very low, low, medium, high, and very high. From
a spatial perspective, Turpan in Northwest China is a very high-intensity area. Most cities
in South China, East China, and the Yangtze River basin are high-intensity areas, whereas
cities in North China and Northeast China are medium- and low-intensity areas.
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The results of the time series analysis of high-temperature events in the 31 typical
cities are shown in Table 3. For Tianjin, Shanghai, Ganzhou, Zhengzhou, Changsha,
Nanchong, Chongqing, Yinchuan, and Turpan, the number of high-temperature days
gradually increased between 1986 and 2015. However, for 87.10% of the cities, we found
an increase in the average number of high-temperature days from 2001 to 2015 compared
to 1986–2000 (Figure 4); in two cities, the number of high-temperature days per year
decreased. In Changsha, Ganzhou, Chongqing, Hangzhou, and Turpan, the number of
high-temperature days increased significantly by more than 10 days; in Shanghai, Wuhan,
Nanchong, Nanping, Lu’an, Haikou, Zhengzhou, Alxa League, and Nanjing, this number
increased by 5.13–9.67 days. In contrast, in Beijing, Tianjin, Shijiazhuang, Yuncheng,
Chaoyang, Songyuan, Qiqihar, Jinan, Shaoxing, Zunyi, Lhasa, Xi’an, Jiuquan, and Yinchuan,
a significant increase of 0–5 days was found. The average number of high-temperature
days in Lhasa and Xining was the same for the two 15-year periods. In Baise and Pu’er, the
number of high-temperature days decreased by 2.80 and 0.33 days, respectively. The cities
with a large increase in the number of high-temperature days were mainly located in East
China, South China, and the Yangtze River basin.

Table 3. Time series analysis of high-temperature days from 1986 to 2015.

Statistical Metric Tianjin Shanghai Ganzhou Zhengzhou Changsha Nanchong Chongqing Yinchuan Turpan

Pearson correlation 0.368 * 0.460 * 0.488 ** 0.443 * 0.526 ** 0.424 * 0.465 ** 0.679 ** 0.614 **
Sig. (2-tailed) 0.045 0.011 0.006 0.014 0.003 0.020 0.010 0.000 0.000

N 30 30 30 30 29 30 30 30 30

* Significant correlation at the 0.05 level (bilateral). ** Significant correlation at the 0.01 level (bilateral).
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3.2. Risk and Vulnerability Analysis

Using ArcGIS combined with the obtained risk index value R, the natural breakpoint
method was applied to divide the risk into five levels from high to low (Figure 5) as follows:
Turpan—Level V (very high); Yuncheng, Hangzhou, Nanping, Ganzhou, Chongqing, and
Baise—Level IV (high); Shijiazhuang, Alxa League, Lu’an, Zhengzhou, Wuhan, Changsha,
Shaoguan, Haikou, Nanchong, Xi’an, and Jiuquan—Level III (medium); Beijing, Tianjin,
Chaoyang, Qiqihar, Shanghai, Nanjing, and Jinan—Level II (low); Songyuan, Zunyi, Pu’er,
Lhasa, Xining, and Yinchuan—Level I (very low).

Spatially, the high-risk areas were mainly located in East and Southwest China,
whereas the areas with a medium-risk level were scattered throughout China (exclud-
ing Northeast China). In Central China, mostly medium-risk areas were found. The seven
low-risk areas were mainly located in North, East, and Northeast China, and the six very-
low-risk areas were distributed throughout high-elevation regions in the west, with a small
number in the northeast.

The highest vulnerability level was found for Turpan, which is consistent with the
high-temperature risk for this city (Figure 6). However, there were significantly fewer
very-high risk-level (Level 5) areas than high-temperature risk areas, and they were located
in Southeast China (Nanping, Ganzhou) and western South China (Baise). Yuncheng,
Chongqing, Hangzhou, and other cities with high-level risk values did not show high
vulnerability levels. Areas with vulnerability levels of 3 and 5 were scattered across various
regions, including Shijiazhuang and Alxa League in North China; Chaoyang and Qiqihar in
Northeast China; Jinan, Nanjing, Hangzhou, and Lu’an in East China; Zhengzhou, Wuhan,
and Changsha in Central China; Shaoguan and Haikou in South China; Nanchong and
Chongqing in Southwest China; and Xi’an and Jiuquan in Northwest China. The Level 2
cities were Tianjin, Shanghai, Yinchuan, and Songyuan, and the Level 1 cities were Beijing,
Zunyi, Lhasa, Xining, and Pu’er.
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3.3. Comprehensive Assessment of High-Temperature Risk

According to the high-temperature risk assessment model, the high-temperature risk
values for the 31 cities were calculated and rated using the natural breakpoint method to
obtain the spatial distribution map of high-temperature risk areas (Figure 7).
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3.4. High-Temperature Risk Prevention Zoning

Risk prevention zoning is based on risk evaluation, which provides guidance for
targeted risk prevention strategies [43]. In this paper, risk prevention and zoning were
carried out for cities with higher high-temperature risk levels (Levels 4–6). First, the natural
breakpoint method was used to divide the high-temperature risk and vulnerability factors
into high and low levels. Subsequently, the cities with high risk and low vulnerability were
called “high-temperature risk areas.” Cities with low risk and high vulnerability were called
“high-temperature vulnerability areas.” Cities with both high risk and high vulnerability
were called “high-temperature risk-vulnerability areas,” and cities with both low risk and
low vulnerability were called “population exposure areas.” Among the 12 hotspot cities,
there were 3, 0, 5, and 4 cities, respectively, in each of these four categories of risk factors
(Figure 8); the highest risk values were found for Hangzhou, Xi’an, and Changsha. The cities
with high risk and vulnerability values are Shijiazhuang, Yuncheng, Nanchong, Chongqing,
and Guangzhou. In the densely populated cities of Tianjin, Zhengzhou, Shanghai, and
Wuhan, there are no areas with high-temperature vulnerability. Based on risk prevention
zoning, the areas subject to high-temperature risks are mainly located in plains, valleys,
and river basins, whereas the areas with high vulnerability in terms of social aspects are
mainly economically underdeveloped areas in densely populated regions.
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The zoning of high-temperature cities based on the leading factors can be helpful in
determining the mechanisms underlying high-temperature risks. Areas with significantly high
summer temperatures can be identified by examining the natural environment, whereas areas
with high vulnerability can be determined based on the distribution of vulnerable groups
and physiological or socioeconomic conditions. Regarding population exposure, vulnerable
groups can be spatially separated. Risk prevention strategies can be formulated according
to different high-temperature risk factors. For areas with a high-temperature risk, increasing
the amount of vegetation and green space can reduce temperatures; potential actions could
be to increase vegetation density along the streets or to create green roofs. Urban planning
departments should also consider methods to reduce high-temperature risks, such as the
ventilation of new buildings, and residents should be made more aware of high-temperature
risks. Regarding vulnerability, risk mitigation can be achieved by relocating vulnerable groups
or by installing air-conditioning equipment. As a reduction in population density is not
realistic, early warning systems should be considered.

4. Discussion
4.1. Analysis of High-Temperature Spatiotemporal Characteristics and Comprehensive
Risk Assessment

This paper used meteorological and socioeconomic data to analyze high-temperature
spatiotemporal characteristics and constructed a high-temperature risk assessment model. We
comprehensively evaluated urban high-temperature risks by considering high-temperature
characteristics, high-temperature risk, high-temperature vulnerability, population exposure,
and risk-prevention zoning, expanding urban high-temperature risk assessment research.
The spatiotemporal distribution characteristics and comprehensive risk assessment results
were obtained for 31 typical Chinese cities, yielding different results when compared
to Xie et al. [47] and Dong et al. [49], mainly for the following two reasons: (1) There
are differences in the models; for example, Dong et al. [49] constructed their assessment
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model based on the aspects of disaster-causing risk and the vulnerability (exposure) of the
supporting body, without considering social vulnerability. (2) There are also differences in
the evaluation index systems; according to the different models, the selected evaluation
index factors were different, but all models included factors such as the number of high-
temperature days, population exposure, and economic development status.

The selection of relevant evaluation indicators is highly subjective. In the analysis of
high urban temperatures, due to the limited amount of data, only the hottest cities in each
province were selected for analysis, instead of evaluating all cities in China. The lack of data
concerning the proportion of the population working in the primary industries of Lhasa,
Jiuquan, and Turpan, as well as data concerning the local financial education expenditure,
social security, and the employment expenditure in Pu’er, may have had a certain impact
on evaluation results.

4.2. Spatial and Temporal Distribution Characteristics of High Temperatures in Typical
Chinese Cities

The analysis of the high-temperature characteristics of Chinese cities based on in-
terprovincial units is one of the key contributions of this paper. The spatial distribution
characteristics of 31 typical cities in China were explained according to data from between
1986 and 2015. Over the past 30 years, the number of days with high temperatures gradually
increased in nine cities, and the average number of high-temperature days in most cities
increased by 5.44 days within 15 years. The increasing number of high-temperature days is
the most obvious manifestation of climate warming.

4.3. High-Temperature Risk Assessment and Risk-Prevention Zoning in Typical Chinese Cities

A comprehensive risk assessment of high temperatures in Chinese cities, based on
interprovincial units, is another key part of this paper. On the basis of the natural disaster
risk evaluation framework, a high-temperature risk assessment framework based on “high
temperature risk–social vulnerability–population exposure” was constructed. Quantitative
analysis was carried out based on the spatiotemporal characteristics of high temperatures,
high-temperature risk, and high-temperature vulnerability. Finally, comprehensive evalua-
tions and risk-prevention zoning were carried out for urban areas with high temperatures
according to the following three aspects: the duration of high-temperature events, the
severity of high-temperature events, and the extreme high-temperature risk based on
weather characteristics. Vulnerability was estimated using the high-temperature risk and
social vulnerability. Finally, by combining the high-temperature risk, high-temperature
vulnerability, and population exposure, the high-temperature risk levels of the 31 typical
cities were obtained. Generally, cities with high risk levels also showed high vulnerability
levels; this was true for cities such as Turpan, Nanping, Ganzhou, and Baise.

Generally, areas with high risk levels, social vulnerability, and large populations being
exposed to high temperatures are located in plains, valleys, and river basins; they are largely
economically underdeveloped and densely populated areas. For high-temperature areas,
increasing the vegetation density and creating green rooftops can be effective measures.
Risk mitigation can be achieved by resettling vulnerable people. Regarding population
exposure, early warning systems and evacuation strategies should be taken into consid-
eration. These results can provide a realistic basis for decision making for meteorological
departments and disaster prevention and mitigation departments; they have a certain
guiding significance for understanding the regional high-temperature disaster risk and the
vulnerability of disaster-bearing bodies, and they contribute to regional high-temperature
risk management, high-temperature risk avoidance, and risk control.

5. Conclusions

Due to global climate change, extremely hot weather conditions are becoming frequent.
Based on the provincial unit, the characteristics of high temperature in Chinese cities are
analyzed. The results show that over the past 30 years, most cities have experienced
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5–8 significant oscillation periods in terms of the number of high-temperature days, and
the number of high-temperature days in nine cities, including Tianjin, Shanghai, and
Chongqing, shows a significant positive time correlation. A comparative analysis of
two 15-year intervals shows that in 87% of cities, from 2001 to 2015, the average number of
high-temperature days per year increased by 5.44 days compared with 1986–2000.

By conducting a comprehensive assessment of the high-temperature risks, it was
observed that the areas with the greatest high-temperature disaster risk in China are mainly
concentrated in the central urban areas of plains, basins, and river basins. These areas
have low social vulnerability due to the development of cities, but, similarly, the urban
high-temperature risk and the exposure of the population to high temperatures are much
higher than they are for cities in the western regions; thus, these cities have a significant
high-temperature disaster risk.

The results of risk-factor zoning show that the areas with the greatest high-temperature
risk are mainly plains, basins, and river basins, and the areas with the highest social
vulnerability mainly include economically underdeveloped areas and areas where socially
vulnerable people gather. The areas where a large proportion of the population is exposed
to high temperatures consist mainly of densely populated areas.
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Appendix A PCA Analysis and SVI Calculation

We used the SPSS software platform to perform a principal component analysis of the
standardized indicators and to calculate the social vulnerability of each city. The original
index must pass the KMO test, which is a prerequisite of using the principal component
analysis method. According to the standard provided by the statistician Kaiser, a KMO
value of less than 0.6 means that the data are not suitable for factor analysis. KMO = 0.706
in this paper, so the data meet the requirements of principal component analysis. The
orthogonal rotation method with maximum variance was used to make the coefficients in
the factor load matrix more significant, and the initial factor load matrix can be rotated so
that the relationships between the factors and the original variables can be redistributed
and the correlation coefficient can be restricted to a range from 0 to 1.

The principal component analysis of the standardized data was carried out using the
SPSS software platform, and four principal components—the characteristic values of each
principal component, the contribution rate of each principal component, and the score
coefficient matrix of each component—were obtained (Tables A1 and A2). Four principal
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components were obtained from the 13 variables in the social vulnerability index system,
and the cumulative contribution rate was 83.66%.

Table A1. Time series analysis of high-temperature days.

Eigenvalue Contribution Rate Cumulative Contribution Rate

4.875 37.500 37.500
3.474 26.724 64.224
1.270 9.769 73.993
1.257 9.671 83.664

Table A2. Component function matrix.

Components of Component Function Matrix

X Z1 Z2 Z3 Z4
X11 0.015 −0.073 0.623 −0.208
X12 −0.140 0.313 −0.146 0.049
X13 −0.083 −0.008 0.017 0.767
X14 0.199 0.010 −0.066 −0.107
X15 0.002 0.240 −0.040 −0.028
X16 −0.045 0.283 0.008 −0.067
X21 −0.109 0.302 0.200 0.043
X22 −0.076 0.068 0.576 0.262
X23 0.198 0.038 −0.056 −0.231
X24 0.188 −0.130 0.109 0.108
X25 0.212 −0.015 −0.014 −0.112
X26 −0.210 0.203 0.037 −0.286
X27 0.229 −0.066 −0.034 −0.045

To calculate social vulnerability, we first calculated the principal component score
function of each typical city according to the obtained component score coefficient matrix:

Fi = ∑ Zij × X (A1)

where X represents the standardized numerical value of each index, and Zij represents
the corresponding component score of the index. Then, the social vulnerability value of
each typical city was calculated using the contribution rate of each principal component
as follows.

F =
37.5

83.664
F1 +

26.724
83.664

F1 +
9.769
83.664

F1 +
9.671

83.664
F1 (A2)

Here, F represents social vulnerability, and F1, F2, F3, and F4 represent the scores of
each principal component, respectively.
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