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Abstract: Indoor air quality in hospital operating rooms is of great concern for the prevention of 

surgical site infections (SSI). A wide range of relevant medical and engineering literature has 

shown that the reduction in air contamination can be achieved by introducing a more efficient set 

of controls of HVAC systems and exploiting alarms and monitoring systems that allow having a 

clear report of the internal air status level. In this paper, an operating room air quality monitoring 

system based on a fuzzy decision support system has been proposed in order to help hospital staff 

responsible to guarantee a safe environment. The goal of the work is to reduce the airborne 

contamination in order to optimize the surgical environment, thus preventing the occurrence of SSI 

and reducing the related mortality rate. The advantage of FIS is that the evaluation of the air 

quality is based on easy-to-find input data established on the best combination of parameters and 

level of alert. Compared to other literature works, the proposed approach based on the FIS has 

been designed to take into account also the movement of clinicians in the operating room in order 

to monitor unauthorized paths. The test of the proposed strategy has been executed by exploiting 

data collected by ad-hoc sensors placed inside a real operating block during the experimental 

activities of the “Bacterial Infections Post Surgery” Project (BIPS). Results show that the system is 

capable to return risk values with extreme precision. 
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1. Introduction 

In hospitals, airborne particles can be a serious threat to patients, as, it is known that 

most opportunistic pathogens that cause hospital-acquired infections (HAIs) are at least 

partly dispersed in the air [1], especially in the operating department (OD) [2]. Their 

presence, in fact, could be a source of infections such as those of the surgical site. To limit 

the onset of contamination, an OD is typically divided into progressively less 

contaminated areas, from the entrance to the operating theatres. The operating room 

(OR) is a special unit requiring a clean environment, with the fewest number of particles 

in the air. For this reason, OR contemplate internal paths, differentiated into “dirty” and 

“clean”, for the safe collection and transport of materials and the correct personnel’s 

dressing. In addition, during surgical procedures, the team and the surrounding 
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environment release dust particles, textile fibers, and respiratory aerosols loaded with 

vital microorganisms [3–5], that can settle on surgical instruments or enter directly into 

the surgical site causing surgical site infections (SSI) [6]. Indeed, different methodologies 

have been used to define, measure, analyze, improve, and control the onset of 

healthcare-associated infections that compromise patient safety [7]. Nowadays, the 

monitoring and prevention of healthcare-associated infections (HAIs) are a priority for 

the healthcare sector [8,9]. The SSI are the most common type of HAI, contributing to 

significant morbidity, costs, and deaths [10]. Badia et al. confirmed that patients with SSI 

required prolonged hospitalization, reoperation, readmission, and increased mortality 

rates, compared to uninfected patients. Therefore, SSI were consistently associated with 

high costs [11]. 

Therefore, to reduce the SSI-related mortality rate, airborne particles need to be 

monitored. A fundamental role is played by the heating, ventilation, air conditioning 

(HVAC) system, those systems provide ventilation capable of maintaining temperature 

and humidity at optimal levels, but also of keeping the concentrations of airborne 

gaseous pollutants, particles, and microbes below predetermined levels [12]. 

In this paper, we propose an operating room air quality monitoring system based on 

fuzzy logic (FL). Due to the unclear (fuzzy) nature of medical data and models, as well as 

the relationships that exist in the models, the FL technique is particularly used in the 

healthcare context. Indeed, Owoseni et al. developed a fuzzy system that diagnoses 

malaria uncertainties as expected from a human expert in the field of medicine [13]. 

Furthermore, Leite et al. presented a fuzzy model capable of monitoring and classifying 

the vital sign’s condition of hospitalized patients, sending alerts based on the 

pre-diagnosis made helping the medical diagnosis [14]. Fuzzy expert systems (FES) can 

help support doctors’ decision making, based on complex and uncertain parameters that 

play a crucial role and require scrupulous evaluations [15–17]. For example, these 

systems could help doctors prevent, diagnose, and treat disease [18,19]. Air quality 

control was also included in the scope of FL, in the interior of buildings and hospitals, as 

shown in the literature [20]. Kumar et al. [21] designed a fuzzy logic controller (FLC) to 

ensure optimal conditions for the OR. In this work, we propose to exploit temperature, 

humidity, particles, and oxygen as input parameters of an FLC to regulate the level of 

fresh air and fan circulation as output parameters in order to restore air quality to 

optimal levels. Instead, Aggarwal et al. [22] proposed a fuzzy interface system to 

calculate the air quality index using two pollutants (PM2.5 and PM10) considering six 

linguistic variables for each in order to monitor pollution in real time, obtaining 

satisfactory results. Dionova et al. [23] proposed an air quality index (EIAQI) based on 

the environmental indoor air pollutants (IAP) and on four thermal comfort pollutants 

(TCP). The proposed fuzzy inference system identifies, classify, and evaluates the index 

based on the value assumed by IAP and TCP. The calculated value of EIAQUI was then 

exploited to control directly the inlet and outlet exhaust air fan, buzzer, and LED. To 

solve the problem of indoor air quality in rooms with natural ventilation, Kulis and 

Müller [24] presented an electronic device equipped with an FLC, based on the air 

parameters measured with sensors, that recommended opening the windows showing it 

on the display. This system ensured adequate indoor air quality. Definitely, FL is a 

methodology that is exploited to monitor the air quality inside buildings in a wide range 

of the literature. Grychowski group designed a system to monitor indoor environmental 

conditions, with a special consideration regarding the comfort of occupants, while Talaz 

group evaluated the indoor air quality in classrooms and offices, using a fuzzy system 

[25,26]. 

In this work, we propose a fuzzy inference system (FIS) allowing evaluation of the 

air quality in the operating room that takes into account several parameters. Compared to 

other literature works, the proposed approach was designed to take into account also the 

movement of personnel, the particle count in the operating room (ISO 5, ISO 7), 

differential pressure, air changes per hour, temperature, and relative humidity. All the 
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presented features have been collected in real time through hi-tech sampling devices and 

developed directly on the field, through different phases (data collection and adjustment, 

development of the FIS and its validation on real scenario) by an interdisciplinary 

research team comprising doctors, clinicians, IT engineers, and an economist. The FIS, 

obtained by combining the potential of FL and Expert Systems, gives the possibility to 

monitor OR conditions by appropriately modeling input data and by reproducing the 

cognitive process of experts through inferential techniques [27]. 

The goal of the proposed monitoring strategy is to better manage contamination in a 

surgical environment to prevent SSI—thereby reducing the related mortality rate—and 

help hospital staff responsible to restore HVAC efficiency. This analysis finds important 

application results if it considers the impact of the COVID-19 pandemic on healthcare 

structures. In order to better manage SARS-CoV2 and protect both healthcare personnel 

and public health, the analysis of contamination risk in operating rooms can have a very 

concrete aspect in daily hospital practice [28]. 

Despite the availability of a number of studies examining the issue of aerobiology, 

there are no studies in the literature applying an FIS to prevent SSI; for this reason, our 

study presents an innovative key to understanding risk management in hospitals 

through the support of expert systems. 

2. Materials and Methods 

2.1. Context 

In order to design and test the proposed FIS, the “Umberto I” Hospital situated in 

Nocera Inferiore, Salerno (Italy) was chosen. The multi-specialized Operating 

Department (OD) of the “Umberto I” Hospital is structurally equipped with apposite 

dirty—clean paths for healthcare personnel, patients, surgical instruments, and waste. 

The block has a filter zone for patients and healthcare professionals and it is provided 

with an internal sterilization local. 

2.2. Experimental Section 

Different sensors were placed inside the operating block during the experimental 

activities of the BIPS Project in order to collect clinical data (Figure 1). 

 

Figure 1. Location of sensors in the OD (Rhombus indicate the EchoBeacon position). 

BLE devices have been installed for monitoring the paths taken by patients and 

health professionals during ordinary work. In addition, to assess the number of particle 
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charge during the day, a particle counter and a multi-parameter unit allowed monitoring 

of the microclimatic parameters that have been positioned in OR. 

The family of BLE devices that has been chosen for the experimental phase is 

BluEpyc, consisting of three components: 

 Gateway: it is a small device, with a web server, CPU, and I/O card; with a reading 

range of up to 100 m, able to receive and manage data from the EchoBeacons via 

Ethernet, Wi-Fi, or GPRS. 

 EchoBeacon: also called Reader, it is a signal repeater that allows building BLE 

configurations in rather large internal areas, within which detailed data acquisition 

and easy installation are required. The goal of EchoBeacon is to receive data from the 

Beacons and forward them to the Gateway, through wireless communication. The 

coverage range for sending and receiving signals is about 100 m. 

 Beacon: they are low-cost connectionless devices to fix on objects or wear, used to 

implement the micro localization and to reveal a change of position of people and 

objects. 

The gateway is the only BLE device connected to the LAN network of the hospital 

that is able to communicate and exchange information with the main computer in the 

technical office, on which the BluEpyc software is installed.  

The purpose of BLE devices using is to verify the behavior of staff during surgical 

interventions. The main non-conformity that has been found during normal activity has 

been the excessive movement in/out of clinical personnel from the operating room; 

consequent opening of the doors which produces an increased risk of particle 

contamination of the air inside the room. It is known that a person sitting on a chair 

without moving their limbs generates particulate matter around them. Therefore, any 

movement generates a greater quantity of dust than in a closed environment such as that 

of an operating room it spreads rapidly throughout its volume. Therefore, the movement 

of clinical personnel inside the rooms has to be taken into consideration in order to 

reduce any movements that will involve excessive increases in airborne particulate. The 

main means of transport for microorganisms contained in the air is precisely the same 

particulate matter present in the environment. The greater the particulate matter, the 

greater the chances of having a high bacterial load in the air. The UNI EN ISO 14644-1 

standard provides a classification of the operating rooms and the relative required levels 

of sterility according to the type of interventions performed. The rooms are therefore 

classified into different categories: ISO 5 for very complex and high-risk specialist 

interventions, ISO 7 for interventions without material implantation but requiring high 

protection (Anon., 2016). The operating block of the “Umberto I” Hospital is equipped 

with four operating rooms classified as ISO 5. Among the equipment installed in the 

operating block, to better understand the particle concentration in the rooms, a particle 

counter has also been installed. It was the SOLAIR 3100 that can store up to 3000 records 

of particle count data from up to 8 particle channels and the configurable recipe database 

can store up to 50 recipes for sampling and reports. The particle counters have been 

positioned in all operating rooms in order to collect data in different environmental 

conditions and to better understand all events that could alter the particles present in the 

various operating rooms.  

Finally, the last installed measurement device consists of a multi-parameter tool 

whose purpose is to monitor the climatic conditions of the operating room by measuring 

the relative humidity, differential pressure, and speed of the air flow in correspondence 

with the ventilation outlet. 

Data Input 

In the following tables (Tables 1–3), the data model collected by each device is re-

ported. 
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Table 1. Data collected by BLE devices. 

Type of Data Format Measuring Range Unit of Measure 

Data Data dd/mm/yyyy - 

Hour Hour hh:mm:ss - 

Echo Beacon ID Number aa:bb:cc:dd:ee:ff - 

Beacon ID Number aa:bb:cc:dd:ee:ff - 

RSSI value Number −120/0 dBm 

Table 2. Data collected by the particle counter. 

Type of Data Format Measuring Range Unit of Measure 

Data Data dd/mm/yyyy - 

Hour Hour hh:mm:ss - 

Particle Count (0.5 µm) Number 35.300.000 particles/m3 

Table 3. Data collected by the multi-parameter tool. 

Type of Data Format Measuring Range  Unit of Measure 

Data Data dd/mm/yyyy - 

Hour Hour hh:mm:ss - 

Temperature Number −40/+150 Celsius degree 

Relative humidity Number 0%/100% Percentage 

2.3. Fuzzy Inference System 

A fuzzy inference system (FIS) is an intelligent system that allows reproducing the 

ability of the human mind to approximate vague data, extracting from them useful in-

formation, and producing crisp output [29]. Its potential can be applied to numerous 

domains and particularly to the medical field to model the high complexity and uncer-

tainty that characterizes medical processes [30,31]. Starting from the definition of the 

system knowledge base, built through the help of doctors and clinical experts, an FIS 

gives the possibility to transfer human and expert knowledge into intelligent and auto-

matic models using linguistic terms [32]. Fuzzy sets are used to treat uncertainty and to 

represent knowledge through rules. The fuzzy logic allows the interpretation of data 

with predefined linguistic variables according to appropriate IF-THEN rules written as: 

IF situation THEN conclusion 

where the situation represents the antecedent or the premise consisting of fuzzy terms 

connected by fuzzy operators, while the output is called consequent or conclusion [33]. 

Fuzzy logic defines the inferential mechanisms needed for reaching the output value re-

lated to the OR’s air quality status starting from its main parameters and constitutes the 

inferential engine of the FIS. 

2.3.1. Knowledge Representation 

A linguistic variable is a variable whose values are words or sentences of a language, 

natural or artificial, exploited to ease a gradual transition between the two states of bi-

nary logic and to express in the most natural way the measurements’ vagueness, which is 

not possible by using crisp variables [29]. Hence, it holds: 

Definition 1. Linguistic variable [33]. A linguistic variable can be characterized by a quintuple 

(L, F(L), U, R, M) in which L is the name of the variable; F(L) is the term-set of L, that is the col-

lection of its linguistic values; U is a universe of discourse; R is a syntactic rule that generates the 

terms in F(L); M is a semantic rule which associates to each linguistic value X its meaning, M(X), 

where M(X) denotes a fuzzy subset of U. 
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Definition 2. Fuzzy variable [33]. A fuzzy variable is characterized by a triple (L, U, F(L; u)), in 

which L is the name of the variable; U is a universe of discourse (finite or infinite set); u is a generic 

name for the elements of U; and F(L; u) is a fuzzy subset of U which represents a fuzzy restriction 

on the values of u imposed by L. F(L; u) will be referred to as the restriction on u or the restriction 

imposed by L. The assignment equation for L has the form: 

x = u∶F(L) (1)

and represents an assignment of a value u to x subject to the restriction F(L). 

In the universe of discourse U, a fuzzy set F (L; u) is characterized by a membership 

function (MF) µ(F) that assigns a membership value to elements u, within a predefined 

range of U, as follows: F = {(u, µF)|u ∈ U and µF:U → [0,1]}. Therefore, a membership 

function is a distribution that maps every single point of the input space (i.e., the universe 

of speech, which represents the set of linguistic variables) in a membership value be-

tween 0 and 1. For modeling the linguistic variables and the associated membership 

functions, here we follow the approach proposed by Garibaldi et al. [34]. Accordingly, 

the membership functions related to the various linguistic variables are composed in 

order to constitute an appropriate IF-THEN rule. 

2.3.2. Fuzzy Inference Engine 

All the designed clinical linguistic variables, membership functions, and rules have 

been included in a Mamdani FIS [35,36]. The Mamdani approach has been widely and 

successfully applied to different areas, such as data classifications, decision analysis, ex-

pert systems, and it is often exploited for designing decision support systems thanks to 

its ability to imitate human thought processes in complex circumstances and to accu-

rately perform repetitive tasks [37,38]. In the following, the Mamdani framework and the 

basic knowledge implemented into the system are described with reference to mul-

ti-inputs and single-output decision model, and the following definition holds. 

Definition 3. Given m “if antecedent then consequent” fuzzy rules R = {R1; …; Rm}, with n 

continuous input variables ui, i=1, …n, and the output variable y, the formulation of the fuzzy 

rules is defined as follows: 

if(u1,A1,1)AND(u2,A1,2)AND…AND(un,A1,n)THEN(y,B1) 

… 

if(u1,Am,1)AND(u2,Am,2)AND…AND(un,Am,n)THEN(y,Bm) 

(2)

where ui are the input variables, y is the output variable, and Aij and Bi are fuzzy sets of the as-

sociated universes of discourse.  

To perform inference, the first step is to “evaluate the antecedent”, which involves 

fuzzifying the inputs and applying any necessary fuzzy operators to each rule in R as 

follows.  

Definition 4. Given the information input u = {u1, …, un}, the strength level or firing level αi of 

the rule Ri is calculated in terms of the degrees of membership µAij. If the antecedent clauses (the if 

part) are connected with AND then: 

αi = min(µAi,1 (u1), …, µAi,n (un)) (3)

Else if the antecedent clauses are connected with OR then: 

αi = max(µAi,1(u1), …, µAi,n(un)) (4)

Note that each fuzzy rule yields a single number that represents the firing strength of that 

rule [39].  



Int. J. Environ. Res. Public Health 2022, 19, 3533 7 of 21 
 

 

The second step is the so-called “implication,” or, in other words, applying the result 

of the antecedent to the consequent. Indeed, the strength level is then used to shape the 

output fuzzy set that represents the consequent part of the rule. In so doing, we have: 

Definition 5. The operator of implication for the rule Ri is defined as the shaping of the “conse-

quent” (the output fuzzy set), based on the “antecedent”. The input of the implication process is a 

single number given by the “antecedent”, and the output is a fuzzy set: 

µBi(y) = min(αi(u), µBi(y)) (5)

where y is the variable that represents the support value of output the membership function µBi(·). 

Now, in order to unify the outputs of all the rules, we need to aggregate the corre-

sponding output fuzzy set into one single composite set. The inputs of the aggregation 

process are represented by the clipped fuzzy sets obtained by the implication process. 

The aggregation method exploited in our application is the max(·) one.  

Finally, the defuzzification process has been performed starting from the output 

fuzzy set resulting from the aggregation process according to the following definition. 

Definition 6. The operations of defuzzification are computed as the centre of gravity (COG) of the 

strength levels: 

���(�) =
∑ �µ��

(�)�
���

∑ µ��
(�)�

���

 (6)

2.3.3. FIS Implementation 

The goal of the FIS is to predict the different grades of severity related to OR’s air 

quality and, hence, synthesize them on a colored graph for ease of representation. The 

design of the FIS can be summarized into 3 main stages: fuzzification, inference, and 

defuzzification. All the designed clinical linguistic variables, membership functions, and 

rules have been included in a Mamdani FIS [40,41]. The Mamdani linguistic model is 

built on fuzzy IF-THEN rules where both the preceding and consequent sentences con-

tain linguistic variables (Figure 2). Therefore, it is an intuitive model thanks to its ability 

to implement human knowledge and human experience into the system, as carried out in 

this work where the knowledge base is determined from the application of “Guidelines 

on occupational safety and hygiene standards in the operating department” [42,43]. 

 

Figure 2. Schema of the fuzzy inference system designed. 
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2.3.4. Identification of the Fuzzy Sets 

Before their design, there is the need for a preliminary phase for the correct defini-

tion of the ranges into which the input variables values must be divided and the choice of 

the fuzzy sets to be used. The preliminary design phase aims to characterize the inputs 

and determine the degree to which each of them belongs to a particular fuzzy set through 

the membership function’s definition. The parameters related to the OR hat will be taken 

into consideration will be: particle count (PC), temperature (T), and relative humidity 

(RH). The other two parameters considered are: correctness of healthcare workers’ path 

(HWP) and time spent by the patient in the prefilter area (TPA). The fuzzification process 

for each of the listed inputs will be presented below. Finally, the Google Colaboratory 

platform has been used to perform the fuzzy inference process. Colab uses Python as a 

programming language and includes most of the standard libraries usually used, in-

cluding the one dedicated to fuzzy logic.  

 Particle count 

For the particle count values, 4 fuzzy sets have been considered, as follows: Nor-

mal0, High1, High2, and High3; the membership functions of the 4 fuzzy sets were con-

sidered to have a trapezoidal shape. To fuzz the particle count (PC), it is first necessary to 

identify which values are commonly and unquestionably considered normal for ISO 7 5 

operating rooms: this range coincides with values below 3.52000 particles/m3 for parti-

cles with a diameter equal to or greater than 0.5 µm (Anon., 2016). Consequently, a fuzzy 

set called Normal0 was created with CP values lower than 3.540 particles/m3 with a 

membership function set to 1 in correspondence with values lower than 3.520 parti-

cles/m3. In fact, to say that the MF is equal to 1 means to affirm that there is a certain be-

longing of those values to the fuzzy set Normal0. To create a trapezoidal membership 

function, however, it is necessary to “blur” the set considered by identifying those values 

outside the range that can be considered normal to a certain degree, as they could also be 

an alarm indication. For this reason, a decreasing ramp was considered between the 

values of 3.520 and 3.540 whose purpose is to gradually smooth the degree of belonging 

to these values to the Normal0 set with degrees of belonging ranging from 0 to 1. Pro-

ceeding in the same way, values above 3.520 particles/m3 were identified as high and 

they were considered as belonging to the fuzzy set called High1 with MF set to 1, iden-

tifying the range between 3.520 and 3.600 particles/m3 as a transition. Similarly, we pro-

ceeded to fuzzify the CP considered even higher up to the fuzzy set High3 for values 

higher than 3.680 particles/m3. Table 4 shows the CP ranges considered with the respec-

tive fuzzy sets. The membership functions are instead shown in Figure 3. 

Table 4. Ranges of the particle count and their respective fuzzy sets. 

Input Range Fuzzy Set 

Particle count 

<3.540 Normal0 

3.520–3.600 High1 

3.580–3.700 High2 

>3.680 High3 
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Figure 3. PC membership functions. 

 Operating room temperature 

For this input parameter, 3 fuzzy sets have been considered: Low2, Normal0 and 

High2. The membership functions of the 3 fuzzy sets will be trapezoidal. 

Following the same procedure for the definition of the ranges for the particle count, 

it is possible to create a similar table (Table 5) in which the temperature values (T) for 

each fuzzy set can be displayed. Figure 4 represents the overall membership function. 

Table 5. Ranges of temperature and their respective fuzzy sets. 

Input Range Fuzzy Set 

Temperature (°C) 

<20 Low2 

18–26 Normal0 

>24 High2 

 

Figure 4. T membership functions. 

 Relative humidity 

This parameter, expressed in percentage terms, indicates the relative humidity value 

of the air. A measurement of this parameter in the standard usually ranges between 40% 
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and 60%. In light of this, 3 linguistic variables have been identified: Low2, Normal0, and 

High2. All values between 30% and 70% are given the Normal0 label with a trapezoidal 

membership function. Table 6 defines the ranges corresponding to each fuzzy set; Figure 

5 shows the corresponding trapezoidal membership functions. 

Table 6. Ranges of relative humidity and their respective fuzzy sets. 

Input Range Fuzzy Set 

Relative humidity 

<40 Low2 

30–70 Normal0 

>60 High2 

 

Figure 5. RH Membership functions. 

 Correctness of healthcare workers’ path 

For this parameter, 4 fuzzy sets (Normal0, High1, High2, and High3) have been 

identified, defined in Table 7. In detail, since these values are an output of an algorithm 

capable of evaluating the correctness of the path taken by healthcare professionals 

(HWP), triangular membership functions were considered. Figure 6 shows the corre-

sponding membership functions. 

Table 7. Ranges of HWP and their respective fuzzy sets. 

Input Range Fuzzy Set 

Correctness of healthcare workers’ path 

−0.5–0.5 Normal0 

0.5–1.5 High1 

1.5–2.5 High2 

2.5–3.5 High3 
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Figure 6. HWP membership functions. 

Specifically, a special algorithm was implemented to study the data derived from 

the detection of the HW equipped with a beacon when they enter into a specific area of 

the operating block. The dataset is therefore composed of the date and time of detection, 

user id, area in which the EchoBeacon—that detected the signal—is located, and the RSSI. 

The algorithm read all the information and was saved on an Excel sheet. Before the real-

ization, starting from the planimetry of the operating block, the possible paths, charac-

terized by minimal movements from one area to another (starting point—final point), 

were studied. For each path, it is possible to define a level of error. Table 8 shows the 

paths analyzed with the evaluation expressed according to the fuzzy set. 

Table 8. Paths and their respective fuzzy sets. 

Start Point End Point Fuzzy Set 

Entrance Operating room High3 

Entrance Sterilization room High3 

Entrance Break room High2 

Entrance Recovery room High3 

Entrance Warehouse High1 

Sterilization room Operating room High1 

Changing room Operating room High3 

Warehouse Operating room High1 

Recovery room Break room High1 

Break room Operating room High1 

All paths not shown in Table 8 are considered adequate ‘Normal0’. The analysis was 

conducted using Python, a high-level interpreted programming language. The openpyxl 

is a Python library that reads Excel sheets. In order to evaluate the correctness of the path, 

since the areas in which a specific HW is located, a matrix has been built that shows the 

starting points on the rows and the arrival points on the columns (see Equation (7)). Each 

path is associated with a score that is the peak of the reference triangular membership 

functions. 
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 (7)

By reporting the name of the areas in numerical form, it is possible for each user to 

access the matrix and assign the score to the path. The output produced is also a matrix 

showing the user id and the score associated with each point-to-point path for each row. 

Below is the section of code assigned to the calculation (Figure 7). A path where the 

temporal distance between the current area and the next is less than 10 min is considered 

continuous. Below (Algorithm 1) the code section written in pseudo-language used for 

the association of the score to the user path is reported. 

Algorithm 1. Algorithm to evaluate the user paths written in pseudo-language. 

Algorithm to evaluate the user paths 

 Input: user, date_time, user_position, score_matrix 

 Output: path_score 

1 foreach i ∈ [0, |user|-1] do 

2  foreach j ∈ [user(i), user(i+1)] do 

3   time_interval=date_time(j+1)-date_time(j) 

4    if time_interval ≤ 10 minutes then 

5    start point = user_position[j] 

6    end point = user_position[j+1] 

7            if star point ≠ end point then 

8                 path_score = score matrix (start point)(end point) 

 Patient stay time in the prefilter area 

In this study, the waiting time of the patient in the prefilter area (TPA) is an ex-

tremely important parameter. In fact, it is important that the patient transported from 

relative departments does not stay longer than the necessary time in the non-sterile area, 

an area in which a patient who has to undergo surgery could run into high risks of in-

fection. Normal waiting time values are less than 10 min. If the wait settles for times ex-

ceeding the limit, the level of risk increases. 

For this parameter, therefore, 4 fuzzy sets have been considered: Normal0, High1, 

High2, and High3. In detail, it is possible to consult Table 9 to observe the ranges con-

sidered. In Figure 7, the trapezoidal membership functions related to the various fuzzy 

sets can be observed. 

Table 9. Ranges of TPA and their respective fuzzy sets. 

Input Range Fuzzy Set 

TPA 

<11 Normal0 

10–13 High1 

12.5–15.5 High2 

>15 High3 
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Figure 7. TPA membership functions. 

 Definition of risk groups 

The output of the inference engine consists of the “Risk Group” variable (RG). This 

variable was found to be the most suitable for the case in question since it represents the 

level of risk associated with the risk of infection for the patient. In fact, this variable can 

assume 14 different values, on a scale from 0 to 13, where 0 is the level associated with a 

zero-risk level, while 13 is a very serious risk level; levels 1 to 12 represent an intermedi-

ate state of severity. Overall, therefore, there will be 14 fuzzy sets, signed with the L (low) 

in the case of a low-risk level, with the H (high) in the case of a high-risk level: NRM0, 

LRG1, LRG2, LRG3, LRG4, HRG5, HRG6, HRG7, HRG8, HRG9, HRG10, HRG11, HRG12, 

and HRG13. For this variable, it was considered appropriate to consider triangular 

membership functions. Table 10 and Figure 8 show the details of the membership func-

tions with their respective ranges. 

Table 10. Ranges of RG and their respective fuzzy sets. 

Output Range Fuzzy Set 

RG (risk group) 

0 < RG < 0.5 NRM 

0.5 < RG < 1.5 LRG1 

1.5 < RG < 2.5 LRG2 

2.5 < RG < 3.5 LRG3 

3.5 < RG < 4.5 LRG4 

4.5 < RG < 5.5 HRG5 

5.5 < RG < 6.5 HRG6 

6.5 < RG < 7.5 HRG7 

7.5 < RG < 8.5 HRG8 

8.5 < RG < 9.5 HRG9 

9.5 < RG < 10.5 HRG10 

10.5 < RG < 11.5 HRG11 

11.5 < RG < 12.5 HRG12 

12.5 < RG < 13.5 HRG13 
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Figure 8. RG membership functions. 

2.3.5. Fuzzy Rules 

The system developed in this work includes 576 rules covering all possible combi-

nations between the input variables considered. Note that, the number of rules can be 

obtained from the following formula [44]: 

[� = �� � �� � … � ��] 

where N is the total number of possible rules, n is the number of linguistic variables, and 

pn is the number of linguistic terms for each linguistic variable. An extract of the rules 

(Figure 9) is shown below: 

1. If Input1 = ‘Normal0’ & Input2 = ‘Normal0’ & Input3 = ‘Normal0’ & Input4 = ‘Low2’ 

& Input5 = ‘Low2’ then Output1 = ‘LRG4’ 

2. If Input1 = ‘Normal0’ & Input2 = ‘Normal0’ & Input3 = ‘Normal0’ & Input4 = ‘Low2’ 

& Input5 = ‘Normal0’ then Output1 = ‘LRG2’ 

. 

. 

. 

572. If Input1 = ‘High3’ & Input2 = ‘High3’ & Input3 = ‘High3’ & Input4 = ‘High2’ & In-

put5 = ‘Normal0’ then Output1 = ‘HRG11’ 

573. If Input1 = ‘High3’ & Input2 = ‘High3’ & Input3 = ‘High3’ & Input4 = ‘High2’ & In-

put5 = ‘High2’ then Output1 = ‘HRG13’ 

 

Figure 9. Fuzzy rules in Python. 
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2.3.6. Defuzzification 

Through the final defuzzification process, the combined fuzzy set from the aggre-

gation process will output a single scalar quantity. Depending on the numerical value 

assumed by the system output, a warning message will show the need for urgent action 

based on the gravity of monitored parameters. 

3. Results 

The validation of the proposed strategy has been done offline by exploiting data 

collected via the devices installed in the OD of “Umberto I” Hospital situated in Nocera 

Inferiore, Salerno (Italy). In order to disclose the effectiveness of the proposed strategy, 

we have validated the FIS in two distinct scenarios. The aim of the evaluation of the FIS 

has been to verify experimentally whether according to a variation of the input, reflecting 

a contamination risk of the OR’s environmental conditions, the same output variation 

reflecting the input condition may be appreciated. 

In what follow we will describe the results obtained from the validation of the fuzzy 

system for two different contamination levels detected for the OD: 

 Case study 1: low risk of contamination; 

 Case study 2: intermediate contamination risk, which represents a slightly com-

promised environmental picture. 

3.1. Case Study 1 

As the first case, parameters belonging to an OD environment status characterized 

by normal values except for the particle count have been considered. In particular, the 

situation is represented by the following parameters: 

 Particle count: 3.583; 

 OR Temperature: 20 °C; 

 Relative humidity: 40%; 

 Correctness of healthcare workers’ path: 1; 

 Patient stay time in the prefilter area: 10 min. 

These values represent a situation to be kept under control due to the value of the 

particle count, which is higher than the limit allowed by the standard. After implement-

ing fuzzy rules, the analysis ends with the display of a message that correctly predicts the 

severity of the OD contamination status and the risk level obtained from defuzzification. 

Below the result of the code implemented with the indicated values is reported. 

Results in Figure 10 show the membership function of the risk group highlighted 

with a black line corresponding to the calculated risk level. The analysis shows that there 

is low risk detected (in fact the message “Low contamination risk detected” is displayed) 

and the identified risk group is 4.0. After entering our code in a friendly interface, our 

system allows making the output of the system easier to be interpreted by both the pa-

tient and the clinician, since the output membership function graph and the result of the 

defuzzification process are clearly displayed. 
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Figure 10. Results display for case study 1. 

3.2. Case Study 2 

As the second example, the case of a compromised environment condition has been 

considered. In fact, both the particle count and correctness of healthcare workers’ path 

values are altered as follows: 

 Particle count: 3.704; 

 OR Temperature: 20 °C; 

 Relative humidity: 50%; 

 Correctness of healthcare workers’ path: 2; 

 Patient stay time in the prefilter area: 13 min. 

With these parameters, it is possible to highlight that a wrong healthcare workers’ 

path can negatively affect the environmental contamination status. In fact, this aspect can 

only have a negative impact on FIS implementation results by increasing the value of the 

risk group. Results are shown in Figure 11. 
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Figure 11. Results display for case study 2. 

Results in Figure 11 show the membership function of the risk group highlighted 

with a black line corresponding to the calculated risk level. As can be seen from the dis-

played alarm, the risk group value is increased to more than 6; this is confirmed by the 

sentence “Intermediate contamination risk” displayed as a result. On a scale of 13 levels, 

this predicted value represents an environment with a concrete risk of contamination that 

could degenerate if timely corrective actions are not applied. 

Despite the appreciable results, the proposed methodology has some shortfalls. The 

apparatus used to reveal the input parameters of the FIS (the number of particles in the 

air, temperature, humidity, number of personnel in a room) were not capable of deter-

mining which and how many of the aerosolized particles were live bacteria. However, as 

discussed in [4], particle concentration correlates with the concentration of viable bacteria 

during the corresponding period. Further, following on from this, we did not correlate 

OR air quality with an eventual increase in infection incidence. Performing a clinical 

study to demonstrate this obviously would not be ethically acceptable for patients. An-

other weakness is the need to reconfigure all rules in case a new parameter would be 

taken into account in order to monitor air quality. Nevertheless, results demonstrate that 

the designed FIS returns a reliable estimate of the actual situation of the OD’s environ-

mental quality. The advantage of the proposed system is that it is configured as a DSS 

(decision support system) helping clinicians and managers to evaluate OD’s air quality 

on the basis of a set of rules using heterogeneous parameters. 

4. Discussion 

This paper proposes a fuzzy inference system for the identification and the deter-

mination of the risk level related to the air quality in the OD in order to prevent surgical 

site infections (SSI). The aim is to provide a means through which early detect contami-

nation risk and prevent critical situations both for clinicians and patients. 

To check the correct behavior of the system, real inputs were considered. Appro-

priate devices—i.e., BLE devices, a particle counter, and a multi-parameter instru-

ment—were installed in the OD of the “Umberto I” Hospital in Nocera Inferiore (Italy), 

seat of the experimental part of the BIPS project. The detection activities carried out have 

made it possible to achieve the objectives set. 
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To include all possible inputs, 573 inference rules have been developed, mathemat-

ically formulated to allow the conversion of the fuzzy system output into a single value, 

attributed to the risk of contamination of the OD environment. Then some tests have 

been carried out, considering parameters for different situations. Two of them have been 

reported in order to show the high capability and precision of the FIS to discern situa-

tions that could be underestimated by a human assessment. The examples shown in the 

Results section are generalizable and applicable to the whole dataset. 

Besides, another benefit for users of our FIS is that our system allows for easy 

presentation of the real conditions of air quality in OD with clear graphics and incisive 

alarm sentences. With the steady development of healthcare systems that take advantage 

of the potential of AI, this type of real-time system should play a key role in minimizing 

errors and enhancing the quality and efficiency of healthcare by making clinicians aware 

of the risk they are taking. 

Future developments could implicate the consideration of more indicators than 

those considered in our paper in order to build an even better and more accurate system 

able to provide an increasingly global spectrum of the state of risk from contamination of 

operating rooms, which also includes the risk of COVID-19 contamination. The progres-

sive deepening of the main indicators may lead to expanding the range of action and 

validating the methodology for studying outdoor air quality as well [45–48]. 

5. Conclusions 

In this work, we propose a DSS based on a fuzzy inference system for monitoring 

the air quality in the OD in order to preserve the surgical environment and to optimize 

the consequent managing decisions, thus preventing SSI. The projected system works by 

processing a series of input data (i.e., OR temperature and relative humidity, the cor-

rectness of healthcare workers’ path, etc.) collected in real time through hi-tech sampling 

devices opportunely located. To validate the designed FIS, real inputs collected at the 

“Umberto I” Hospital situated in Nocera Inferiore, Salerno (Italy), were considered. In 

the case studies presented, our system proves to return a reliable estimate of the situation 

of the OD’s air quality; it returns risk values with extreme precision. The limitation in 

terms of type and number of inputs can represent an extremely interesting starting point 

for future analyses to support risk management in the ODs. 

Abbreviation 

BIPS “Bacterial Infections Post Surgery” Project 

OR Operating room 

OD Operating department 

HAI Healthcare-associated infections 

SSI Surgical site infections 

FL Fuzzy logic 

MF Membership function 

FES Fuzzy expert system 

FIS Fuzzy inference system 

FLC Fuzzy logic controller 

COG Centre of gravity 

HVAC Heating, ventilation, and air conditioning  

EIAQI Environment indoor air quality index  

HWP Healthcare workers path 

IAP Indoor air pollutants  

TCP Thermal comfort pollutants 

PC Particle count 

RG Risk group 

RH Relative humidity 

RSSI Received signal strength indicator 

T Temperature 
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TPA Time in the pre-filter area 

DSS Decision support system 
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