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Abstract: This study aimed to investigate the association between complex brain functional net-
works and the metabolites in urine in subclinical depression. Electroencephalography (EEG) signals
were recorded from 78 female college students, including 40 with subclinical depression (ScD) and
38 healthy controls (HC). The phase delay index was utilized to construct functional connectivity
networks and quantify the topological properties of brain networks using graph theory. Meanwhile,
the urine of all participants was collected for non-targeted LC-MS metabolic analysis to screen differ-
ential metabolites. The global efficiency was significantly increased in the α-2, β-1, and β-2 bands,
while the characteristic path length of β-1 and β-2 and the clustering coefficient of β-2 were decreased
in the ScD group. The severity of depression was negatively correlated with the level of cortisone
(p = 0.016, r = −0.40). The metabolic pathways, including phenylalanine metabolism, phenylalanine
tyrosine tryptophan biosynthesis, and nitrogen metabolism, were disturbed in the ScD group. The
three metabolic pathways were negatively correlated (p = 0.014, r = −0.493) with the global efficiency
of the brain network of the β-2 band, whereas they were positively correlated (p = 0.014, r = 0.493)
with the characteristic path length of the β-2 band. They were mainly associated with low levels of
L-phenylalanine, and the highest correlation sparsity was 0.11. The disturbance of phenylalanine
metabolism and the phenylalanine, tryptophan, tyrosine biosynthesis pathways cause depressive
symptoms and changes in functional brain networks. The decrease in the L-phenylalanine level may
be related to the randomization trend of the β-1 frequency brain functional network.

Keywords: subclinical depression; phase lag index; complex brain network; brain–gut axis

1. Introduction

There are about 100 trillion microorganisms with different forms and functions in the
human intestinal flora, which is an essential part of the organism [1]. The intestinal flora
involved not only in regulating the complex processes of organism physiology, but also
affects the function of the central nervous system by mediating the vagus, immune system,
and endocrine system [2]. Studies have shown that the intestinal flora of patients with
depression is significantly different from that of the normal population and can affect brain
function through the gut–brain axis, indicating that the intestinal flora is closely related to
the occurrence and development of depression [3].

The brain–gut axis is a regulatory system for bidirectional signal transmission be-
tween the brain and the gastrointestinal tract. Studies have shown that depression and
gastrointestinal disorders have a higher co-morbidity [4]. Depression may cause intestinal
disorders that could result in neuroendocrine and enteric nerve disorders through the brain–
gut axis, resulting in an imbalance of related metabolites in the body. Previous studies have
shown that imbalance in metabolites such as glutamate–glutamine [5], phenylalanine [6],
tyrosine [7], and alanine [8] are related to persons with depression. Some of the metabolites

Int. J. Environ. Res. Public Health 2022, 19, 3321. https://doi.org/10.3390/ijerph19063321 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph19063321
https://doi.org/10.3390/ijerph19063321
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-3090-9309
https://orcid.org/0000-0001-5133-0462
https://orcid.org/0000-0001-6804-2731
https://doi.org/10.3390/ijerph19063321
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph19063321?type=check_update&version=1


Int. J. Environ. Res. Public Health 2022, 19, 3321 2 of 15

from the gut are absorbed into the circulation and eventually chemically modified (that
is, co-metabolized) by the host, and finally excreted with the urine [9]. Metabolomics is a
powerful technique that simultaneously detects hundreds of small molecules present in a
given biological system, such as fecal, urine, or saliva samples [10]. Brain networks, such as
sensorimotor, emotion regulation, dominance, and executive control networks, have been
identified to be associated with the pathophysiology of major depressive disorder (MDD)
and hypervigilance associated with intestinal disease symptoms [11]. Although many
studies have shown that amino acid metabolism is disturbed in persons with depression, the
relationship between amino acid metabolism and brain functional network in depression
remains unclear.

Complex brain network analysis based on graph theory suggests that the topological
disorder of large-scale functional and structural brain networks in depression may be
used as biomarkers for the early detection of depression [12]. A recent study has shown
that the functional network of the brain has been altered in subjects with subclinical
depression (ScD) when compared to healthy subjects [13]. Depression is associated with the
abnormal topology of complex brain networks, including global properties and regional
connectivity heterogeneity [14]. Li et al. found that the complex brain network of patients
with depression showed a trend of randomization in emotion processing, and the abnormal
topology of the neural network appeared in the anterior frontal lobe and occipital lobe [15].
Shim et al. found that the brain complex network attributes (including intensity, clustering
coefficient, path, and efficiency) of patients with depression changed compared with the
healthy group, suggesting that a disorder of the brain complex network index based on
EEG may reflect the changes in the emotion processing of patients with MDD [16].

ScD is considered to be prodromal/premorbid to MDD and has become widespread
among college students worldwide in recent years [17]. Female college students are more
affected by stress and anxiety than males, leading to a higher prevalence of subclinical
depression [18]. However, no studies have reported the relationship between gut flora
metabolism and functional brain networks in subclinical depression. For female individuals
with ScD, do gut microbes influence the production of depressive mood and alterations
in functional brain networks through intermediate metabolites? If present, how are the
altered levels of metabolites related with the brain function network?

Therefore, in this study, we first investigated the differences in functional brain net-
works between female students with and without ScD using graph theory. Then, we
identify the changes of endogenous metabolites and metabolic pathways in the urine of
female students with ScD by using liquid chromatography–mass spectrometry (LC-MS).
Finally, the relationship between depressive, functional brain networks and metabolic
substances were further studied based on the above findings.

2. Materials and Methods
2.1. Participants

Forty first-year female college students with ScD and thirty-eight healthy female
controls (HC) were recruited into the study. They were aged between 18 and 19 years
(mean + SD; 18.51 + 0.42 years). Participants were first-year female students at Shaanxi
Normal University. They were assessed by two psychologists from the University Coun-
seling Center using the Self-Rating Depression Scale (SDS) [19] and the Beck Depression
Scale-II (BDI-II). The Chinese BDI-II is a 21-item self-reporting inventory used to assess
depressive symptoms, and it has good reliability (α = 0.911) [20]. Inclusion criteria for the
ScD group were BDI-II scores between 14 and 27 [21]. The exclusion criteria included: 1. A
history of traumatic brain injury or depression; 2. Have attempted suicide; 3. Have taken
psychiatric medications (including antidepressants, mood stabilizers, antipsychotics, and
benzodiazepines); 4. Have physical comorbidities (e.g., cerebrovascular disease and cancer);
5. Have mental comorbidities (e.g., schizophrenia, bipolar disorder, and post-traumatic
stress disorder). According to the Edinburgh Handedness Inventory, all participants were
right-handed to reduce differences in brain activation. The demographic data of partici-
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pants are shown in Table 1. There were no statistical differences for age, BMI, and education
level between the two groups. The two groups had significantly different mean BDI-II and
SDS scores, at p < 0.001.

Table 1. Demographic information of participants (Mean ± SD).

Variable ScD (n = 40) HC (n = 36)

Age, years 18.72 ± 0.36 18.51 ± 0.42
Height, cm 162.71 ± 6.62 160.70 ± 6.73
Weight, kg 52.37 ± 4.72 50.00 ± 1.92

BMI, kg/m2 20.79 ± 2.73 19.43 ± 1.61
SDS 10.57 ± 5.47 66.71 ± 5.38 ***

BDI-II 3.46 ± 0.73 24.86 ± 2.02 ***
Note: HC, healthy controls; ScD, subclinical depression; BMI, body mass index; SDS, Self-rating Depression Scale;
BDI-II, Beck Depression Inventory II; *** p < 0.001.

The study was conducted following the Declaration of Helsinki, and research ethical
approval was obtained from the Ethics Committee of Shaanxi Normal University. All partic-
ipants gave written informed consent and received financial compensation for participation
in the study.

2.2. Metabolomics Analysis

Urine was collected for untargeted LC-MS metabolic analysis. Before collecting urine
samples, the participants were given a standard diet for three days and asked to avoid
strenuous exercise. Breakfast consisted of eggs, milk, steamed buns, and porridge. Lunch
and dinner consisted of two meat and two vegetables + milk or yogurt. Approximately
50% of the energy comes from carbohydrates, 35% fat, and 15% protein in a standard diet.
After an overnight fast, the 2 mL morning midstream urine samples were (7:00–8:00 a.m.)
collected with a urine collection tube with a lid for all participants and transported in liquid
nitrogen tanks to −80 ◦C cryopreservation.

LC-MS/MS analyses were performed using a UHPLC system (1290, Agilent Technolo-
gies, Santa Clara, CA, USA) with a UPLC HSS T3 column (2.1 mm × 100 mm, 1.8 µm)
coupled to Q Exactive (Orbitrap MS, Thermo). The mobile phase A was 0.1% formic acid
in water for positive, 5 mmol/L ammonium acetate in water for negative, and the mobile
phase B was acetonitrile. The elution gradient was set as follows: 0 min, 1% B; 1 min, 1% B;
8 min, 99% B; 10 min, 99% B; 10.1 min, 1% B; 12 min, 1% B. The flow rate was 0.5 mL/min.
The injection volume was 1 µL. The QE mass spectrometer was used to acquire MS spectra
on an information-dependent basis (IDA) during an LC/MS experiment. In this mode,
the acquisition software Xcalibur 4.0.27 (Thermo. Xi’an, Shaanxi, China) continuously
evaluated the full scan survey MS data as it collects and triggers MS spectra acquisition
depending on preselected criteria. ESI source conditions were set as follows: the sheath
gas flow rate was 45 Arb, the aux gas flow rate was 15 Arb, the capillary temperature was
320 ◦C, the full MS resolution was 70,000, the MS resolution was 17,500, the collision energy
was 20/40/60 eV in the NCE model, the spray voltage was 3.8 kV (positive) or −3.1 kV
(negative). The processed data were fed into SIMCA + 14.1 software (V14.1, Umetrics AB,
Umea, Sweden) for multivariate statistical analysis, including principal component analysis
(PCA) and orthogonal projections latent structures–discriminate analysis (OPLS-DA).

2.3. Resting-State EEG Recording and Preprocessing

Brain activity was measured from 32 channels following the 10/20 international elec-
trode placement system (Neuroscan Inc., Charlotte, NC, USA). All EEGs were continuously
sampled at 1024 Hz and 0.01–100 Hz online bandpass filtering, with the electrodes CPz
and AFz used as reference and ground. Vertical electrooculography (EOG) activity was
recorded with electrodes placed above and below the left eye; horizontal EOG activity
was recorded with electrodes placed on the outboard of both eyes. For all electrodes, the
impedance was kept below 10 KΩ during the EEG recording.
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The closed-eye EEG data were analyzed to exclude the cortical processing of visual
input. The raw EEG data were preprocessed using EEGLAB (Version R2013b, San Diego,
CA, USA), and an open-source toolbox running on the MATLAB environment (Version
R2013b, MathWorks, Natick, MA, USA). Resting-state datasets were pre-processed with a
variety of procedures. A 0.5–45 Hz bandpass filter and a 50 Hz notch filter were applied
using a finite impulse response (FIR) filter. Hereafter, the EEG was divided into segments
of 2 s duration and reassembled to the averaged reference electrode. The EEGs were
down-sampled to 512 Hz. These segments were then visually inspected to remove artifacts
(i.e., eye movements, cardiac activity, and scalp muscle contraction) using the independent
component analysis (ICA) procedure to identify and extract visual artifact components.
Finally, any EEG epochs with amplitude values exceeding ±80 µV at the electrodes were
rejected. The Laplacian method was used for the spatial filtering of EEG signals to reduce
the influence of the volume conduction effect [22].

2.4. Resting-State Brain Network Analysis
2.4.1. Phase Lag Index

The 20 canonical electrodes (FP1, FP2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, T5, P3, Pz,
P4, T6, O1, Oz, O2) of the 10–20 system were selected from the 32 electrodes to construct the
brain network. In this study, the PLI was used as a metric for functional connectivity [23].
The 20 channels represent the brain network nodes and the PLI values of the 2-channel
signals were used as the weights of the connected edges to construct an unweighted,
undirected brain network. A functional connection matrix C with seven dimensions of
20 × 20 was obtained.

For any two EEG signals xj (t) and xk (t), if φ1 and φ2 are the phases of two EEG signals,
and ∆φ is the phase difference, the general n to m (with n and m being some integers)
phase synchronization can be expressed as:

|∆φn,m(t)| =
∣∣nφj(t)−mφk(t)

∣∣ < const (1)

If the two time series are changing synchronously, then the phase difference will
approach a constant. The PLI between the two time series is defined as the value of
asymmetry of phase difference distribution:

PLI = |〈sign[sin(∆ϕ(tk))]〉| (2)

2.4.2. Topological Properties of Brain Network

The Brain Connectivity Toolbox was used for graph theory analysis [24]. The magni-
tudes of the elements Ci,j (0 < Ci,j < 1) in the matrices represent the PLI of the functional
connection between node i and node j. The quantitative analysis of brain functional net-
works using graph theory requires thresholding each matrix C to create a binary matrix
A. That is, if the absolute value of the PLI Ci,j between node i and node j is larger than a
given threshold T (0 < T < 1), the value of the element of the binary matrix corresponding
to the position of ri,j will be set to 1; otherwise, it is set to 0. Each binary matrix defines
an unweighted graph G. Any node in the graph is connected to other nodes through k
undirected edges corresponding to non-zero elements (ai,j 6= 0). This study used a series
of consecutive sparsity thresholds S to transform the PLI matrices into an array of corre-
sponding binary matrices. On the basis of previous studies, we chose the set of sparsity
thresholds with a step size of 0.01 and minimum and maximum values of 0.05 and 0.40,
respectively (0.05 < S < 0.40) [25]. As a result, for each subject, a total of 36 brain functional
network sets with progressively increased sparsity levels were obtained.

The characteristic path length (Lp), clustering coefficient (Cc), global efficiency (Eglobal),
and local efficiency (Elocal) are used in graph theory analysis to quantify the
distribution of networks.
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Lp =
1

N(N − 1) ∑
i,j⊆V,i 6=j

dij (3)

Cc =
1
n ∑

i∈N
Ci =

1
n ∑

i∈N

2ti
ki(ki − 1)

(4)

Eglobal =
1
n ∑

i∈N
Ei =

1
n ∑

i∈N

∑j∈N,j 6=i d−1
ij

n− 1
(5)

Elocal =
1
n ∑

i∈N
Eloc,i =

1
n ∑

i∈N

∑j,h∈N,j 6=i aijaih

[
djh(Ni)

]−1

ki(ki − 1)
(6)

2.5. Statistical Analysis

The Shapiro–Wilk test was used to determine the normality of the data distribution.
Continuous variables are expressed as means with SD. Demographics of the HC and ScD
groups were compared using Wilcoxon non-parameters. The Network-Based Statistics
(NBS) toolbox analyzed differences in brain functional network connectivity between two
groups. An independent samples t-test with false discovery rate (FDR) correction was used
to quantify the topological properties of the brain network. The Cohen’s d was computed
to estimate the effect size of independent sample t-tests. Spearman’s correlation analysis
was used to quantify the potential link of metabolites and topological properties of brain
network. The level of significance was set as a 2-sided p value less than 0.05.

All compounds were screened for potential differential metabolites using the Kyoto
Encyclopedia of Genes and Genomes (KEGG). The variable importance in the projection
(VIP) value of each variable in the PLS-DA model was calculated to indicate its contribution
to the classification. Metabolites with the VIP > 1 were further applied to Student’s t-test at
the univariate level to measure the significance of each metabolite, with results adjusted for
multiple testing using the Benjamini–Hochberg procedure with the critical FDR set to 0.05.
Metabolic pathway analysis and enrichment analysis on these differentiated metabolites
was conducted using MetaboAnalyst 5.0. In this study, “Homo sapiens (KEGG)” was
selected as the background library. The statistical analyses were performed using SPSS (23.0;
SPSS, Inc., Chicago, IL, USA). The GraphPad 8.0 software (Prism. San Diego, CA, USA)
was used for visualizations.

3. Results
3.1. Differential Metabolite Identification

By analyzing the VIP of the first principal component of the OPLS-DA model (VIP > 1)
and the p-value of Student’s t-test (p < 0.05), 23 differential metabolites met the screening
conditions for the discrimination between the HC and ScD group, of which 7 were screened
under the positive ion model and 16 under the negative ion model. The relative change
in the above substances is shown in Figure 1A. The pathway impact distribution maps
(Figure 1B) show that the three perturbed pathways meet the screening criteria in the ScD
for phenylalanine metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis, and
nitrogen metabolism.
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frequency bands at multiple sparsity levels. The results are shown in Figure 3, where the 
broken line graph represents the network topology properties of each sparsity. We 
averaged the thresholds with significant differences. Further analysis showed that the 
Eglobal was significantly higher for the ScD group than for the HC group in the α-2 (t = 2.25, 
df = 61, p = 0.028, Cohen’s d = 0.58), β-1 (t = 3.07, df = 61, p = 0.003, Cohen’s d = 0.79), and β-
2 (t = 3.02, df = 61, p = 0.004, Cohen’s d = 0.77) bands (0.53 ± 0.01 vs. 0.50 ± 0.01; 0.48 ± 0.003 
vs. 0.46 ± 0.005; 0.63 ± 0.003 vs. 0.60 ± 0.006) (Figure 4). The Lp was significantly lower for 
the ScD group than HC in the β-1 (t = −2.84, df = 61, p = 0.006, Cohen’s d = 0.73) and β-2 (t 
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Figure 1. Differential metabolites (A) and metabolic pathways (B) between ScD and HC groups; Note:
FC > 1 means the metabolite is up-regulated in ScD. FC < 1 means the metabolite is down-regulated;
1, nitrogen metabolism; 2, phenylalanine, tyrosine, and tryptophan biosynthesis; 3, phenylalanine
metabolism.

3.2. Resting-State Brain Network Analysis

The topological graphs of the brain functional network were plotted based on the
adjacency matrix to reflect the differences in brain functional connections between two
groups, as shown in Figure 2. The results show that there are connection differences
between HC and ScD groups in delta, alpha2, beta-1, and beta-2 bands (p < 0.05, NBS
corrected). We, therefore, quantify the topological properties of the brain network in four
frequency bands at multiple sparsity levels. The results are shown in Figure 3, where the
broken line graph represents the network topology properties of each sparsity. We averaged
the thresholds with significant differences. Further analysis showed that the Eglobal was
significantly higher for the ScD group than for the HC group in the α-2 (t = 2.25, df = 61,
p = 0.028, Cohen’s d = 0.58), β-1 (t = 3.07, df = 61, p = 0.003, Cohen’s d = 0.79), and β-2
(t = 3.02, df = 61, p = 0.004, Cohen’s d = 0.77) bands (0.53± 0.01 vs. 0.50± 0.01; 0.48 ± 0.003
vs. 0.46 ± 0.005; 0.63 ± 0.003 vs. 0.60 ± 0.006) (Figure 4). The Lp was significantly lower
for the ScD group than HC in the β-1 (t = −2.84, df = 61, p = 0.006, Cohen’s d = 0.73) and
β-2 (t = −2.81, df = 61, p = 0.007, Cohen’s d = 0.72) bands (2.17 ± 0.03 vs. 2.3 ± 0.004;
1.67 ± 0.001 vs. 1.75 ± 0.003) (Figure 4). The Cc of the beta-2 band in the ScD group
(M = 0.48, SE = 0.01) was smaller than that in the HC group (M = 0.52, SE = 0.01) with a
network sparsity of 0.34–0.36 (t = −2.26, df = 61, p = 0.027, Cohen ‘s d = 0.59) (Figure 4).
The result is shown in the bar chart in Figure 4.
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Figure 2. Brain network connectivity graphs of ScD and HC groups; on the right is the difference
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is indicated by the color of the line.
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Figure 4. Correlation between Eglobal and Lp of functional brain network and differential metabolites;
× represents a significant correlation. The maximum correlation (red and blue square) was found at
the sparsity of 0.11.

3.3. Correlation of Metabolite and EEG Network Properties

By analyzing the correlation between the changing urinary metabolite levels and the
BDI-II score, the results showed a negative correlation between the severity of depression
and cortisone levels (p = 0.016, r = −0.40). We also analyzed the correlation between the
topological properties of the brain network and differential metabolites. The biosynthesis
of tyrosine, tryptophan, phenylalanine, and phenylalanine metabolism were negatively
correlated (p = 0.014, r = −0.493) with the Eglobal of the β-1 band, whereas they were
positively correlated (p = 0.014, r = 0.493) with the Lp of the β-1 band. It was mainly
associated with increased L-phenylalanine, and the highest correlation sparsity thresholds
were 0.11. The result is shown in Figure 4.

4. Discussion
4.1. Altered Functional Brain Networks

The basic idea of complex brain network analysis was to identify differences in the
topological properties of brain networks between female students with and without ScD
using graph theory. The results showed that Eglobal of functional brain network in the ScD
group was significantly higher in the α-2, β-1, and β-2 bands, while the Lp was lower in the
β-1 and β-2 bands, and Cc was decreased in the β-2 band. Lp represents the connectivity
effect of the global network, which is the effect related to the average of the shortest path
connecting all nodes in the network to other nodes. The larger the Lp value, the higher the
global transmission efficiency. Cp represents the clustering situation of the local network.
The larger the Cp value, the faster the local information is transmitted and the stronger the
ability to process information. In conclusion, these results suggest that the shortest path
lengths between nodes in the functional brain network of female students with ScD become
shorter, that is, the number of edges passed by one node to reach another node becomes
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smaller. The information carried by the nodes is transmitted more efficiently at the global
level, suggesting an increased functional integration within their brains.

The ScD group had a smaller Cc than the HC group, indicating a reduced degree
of node aggregation in their functional brain networks, that is, a decrease in the density
of connections between nodes. A recent EEG-based study revealed that the subclinical
depression group had a lower Cc and larger Lp than healthy controls [13]. The results of
Cc are consistent with this study, but the results of Lp are the opposite. It may be that the
study required participants to complete an emotion recognition task, whereas we collected
EEG data in the rest state, so the increased Lp of the functional brain network may be used
for information transmission.

The same results were confirmed in Leistedt et al.’s study, which found a significant
increase in the Lp of the brain networks of acutely depressed patients by verifying the
relationship between depression and the information processing capacity of neural net-
works [26]. Several studies also indicate functional brain network disruption in patients
with MDD via functional magnetic resonance imaging (fMRI). Zhang et al. found that the
functional brain network of patients with first-episode and untreated MDD had a lower
Lp and higher Eglobal, but there was no significant difference in Cc [27]. H. Li et al. also
discovered that the Lp of the brain functional network of patients with MDD decreased
and the Eglobal increased, while the Cc was significantly lower [28]. The above results
demonstrate that altered functional brain networks in subclinical and clinical depression
lead to inefficient information dissemination.

One of the core symptoms that MDD manifests is a loss of interest and expressions of
indifference to surrounding emotions [29]. The β-band rhythm mainly occurs in the frontal
lobe, related to cortical excitability, and it reflects emotional and cognitive processes [30].
The frontoparietal network, the executive control network, is mainly involved in the
advanced cognitive regulation of negative emotional conflicts [31,32]. The topography of
brain network connectivity showed that the functional connectivity in the β-band was
weakened in the frontal and parietal lobes of female college students with ScD. Kaiser
et al. showed that functional connectivity within the frontoparietal control network was
significantly reduced in patients with DMM [33]. The reduced Lp and increased Eglobal
of functional brain networks in the β-band of the ScD group imply the functional brain
networks associated with depressive mood regulation have been disrupted, with a tendency
to shift to random networks. Random networks have low modular information processing
or fault tolerance [27]. The randomization process has been observed in the functional brain
networks of patients with other neurological or psychiatric disorders, such as Alzheimer’s
and schizophrenia [34].

4.2. Disorder of Amino Acid Metabolism

This study found that phenylalanine metabolism and phenylalanine, tryptophan,
and tyrosine biosynthetic pathways were disrupted in the ScD group, which was mainly
associated with a decrease in L-phenylalanine. Studies of urine metabolomics in patients
with MDD have also found a trend towards lowering phenylalanine [8,35]. The results of
this study are consistent with these findings, suggesting that phenylalanine metabolism is
abnormal in the subclinical stage of MDD.

Phenylalanine, tyrosine, and tryptophan are all aromatic amino acids [36]. Pheny-
lalanine is a precursor for synthesizing tyrosine and catecholamines, which is primarily
catabolized in the liver and catalyzed by phenylalanine hydroxylase [5,37]. The reduction
of L-phenylalanine levels in female students with ScD may be due to decreased pheny-
lalanine hydroxylase enzyme activity [6]. The catecholamine neurotransmitters such as
5-hydroxytryptamine (5-TH), dopamine, adrenaline, and norepinephrine are synthesized
from phenylalanine and tyrosine through hydroxylation and decarboxylation reactions [38].
Numerous studies have found that the concentration of monoamines (such as 5-TH, nore-
pinephrine and dopamine) in the synaptic gap drops in depressive states [39]. The most
critical metabolism of tyrosine is the production of dopamine catalyzed by tyrosine hy-
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droxylase. Dopamine is produced in the presence of dopa decarboxylase. Dopamine is
the richest catecholamine neurotransmitter in the brain and regulates many physiolog-
ical functions of the central nervous system. Dopamine can also be produced via the
action of dopamine β-hydroxylase to produce norepinephrine, which in turn is produces
adrenaline through the action of methyltransferase. These results revealed that a fall in
L-phenylalanine levels in female college students with ScD might cause disruptions of
tyrosine synthesis and monoamine neurotransmitter levels, such as 5-TH and dopamine,
might tend to decline.

Tryptophan is metabolized mainly in the brain, liver and intestine, among which
the colon is the main site of tryptophan intake in the body. The starting amino donor for
tryptophan biosynthesis is glutamate or ammonia [40]. In this study, a significant reduction
in ammonia levels was found in students with ScD. Tryptophan, the unique raw material
for 5-TH synthesis, has also been highly relevant to the development of depression [41].
More than 90% of human 5-HT is produced in the intestine, and bacteria in the intestine
influence 5-HT production by expressing tryptophan synthase [42]. Since 5-HT does not
cross the blood–brain barrier, the central and peripheral are two separate systems. Here,
5-HT, an important neurotransmitter in the central nervous system, may lead to abnormal
5-HT receptor function and neurotransmission disorders if abnormalities occur in the
central nervous system, and changes in its level are often associated with mood disorders
and depression [43]. Studies have shown that the dysregulation of tryptophan metabolism
is a possible mechanism for depression-related behaviors [44]. Booij and Van der Does
found that acute depletion of tryptophan results in depressive symptoms, which may be
caused by a dramatic decrease in 5-HT production [45]. Maes et al. proposed that the
decrease in 5-HT levels in depressed patients probably comes from the activation of the
tryptophan-metabolizing enzymes TDO and IDO, leading to depletion of tryptophan in
the plasma and consequently to a drop in 5-HT levels in the brain [46]. Peripheral 5-HT is
involved in vasoconstriction and vasodilation, metabolic rate changes, temperature control,
inflammation, and fibrosis [47]. It is shown that altered levels of 5-HT may also cause
the altered levels of inflammatory cytokines involved in depression due to changes in the
microflora [48].

In conclusion, the findings demonstrate that disorders of tryptophan biosynthesis
in the peripheral system of female college students with ScD may be due to insufficient
tryptophan synthesis caused by a decrease in ammonia levels. However, insufficient
tryptophan synthesis triggers a decrease in 5-TH levels in female college students with ScD,
which in turn leads to depressive disorders.

4.3. The Relationship between Amino Acid Metabolism and the Functional Brain Network

The metabolism is a critical pathway through which intestinal flora affects depression
via the brain–gut axis by directly altering the levels of key metabolites or indirectly altering
circulating serum metabolites, which can modulate depressive behavior in the central ner-
vous system [49]. Disturbances in tryptophan metabolism may be partly responsible for the
mood, cognitive, and sleep disturbances typical of depression. The 5-hydroxytryptamine
theory of depression states that decreased 5-hydroxytryptamine release in the central ner-
vous system and its reduced levels in the synaptic gap are key contributors to depression [2].
Animal studies found that the colonization of the intestinal flora of depressed patients in
the germ-free rat intestine caused altered neurobehavior and increased the ratio of plasma
kynurenine to tryptophan [50]. Alterations in tryptophan metabolism may be driven by
intestinal flora, leading to depressive symptoms. The flow chart of the relationship between
the functional brain network and the peripheral metabolic system is shown in Figure 5.
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This study showed that phenylalanine levels were negatively correlated with Eglobal,
whereas they were positively correlated with the Lp of the β-1 band of the functional brain
network in female college students with ScD. Given the above discussion, we found that
the β-1 band of brain functional network associated with negative emotion regulation in
female college students with ScD tends to be randomized, while the disruption of pheny-
lalanine metabolism and phenylalanine, tryptophan, and tyrosine biosynthetic pathways
is mainly associated with a decrease in L-phenylalanine. In conclusion, the disturbance
of phenylalanine metabolism and the phenylalanine, tryptophan, tyrosine biosynthesis
pathways cause depressive symptoms and changes in functional brain networks. The
decrease in the L-phenylalanine level may be related to the randomization trend of the β-1
frequency brain functional network.

5. Conclusions

On the basis of the complex brain network, this study investigated the differences in
the topological properties of the brain network between female college students with and
without ScD. The results showed that the β-1 band functional network tended to be random,
which might reflect emotional processing changes. The decrease in the L-phenylalanine
level may be related to the randomization trend of the β-1 frequency brain functional
network. The disturbance of phenylalanine metabolism and phenylalanine, tryptophan,
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and tyrosine biosynthesis pathways may lead to depressive symptoms and changes in
functional brain networks.
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