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Abstract: Particulate matter with a diameter of ≤10 µm (PM10) and nitrogen dioxide (NO2) affect the
DNA methylation in the fetus, but epigenetic studies regarding prenatal exposure to air pollution
in Asia are lacking. Therefore, this study aimed to assess whether there is any association between
the ambient concentrations of PM10 and NO2 and CpG methylation in the cord blood DNA by
using a Korean birth cohort. The concentrations of the air pollutants were incorporated into the
final LUR model by using the maternal address data. The methylation level was determined using
HumanMethylationEPIC BeadChip and a linear regression analysis model. A multipollutant model
including both PM10 and NO2 and models with single pollutants were used for each trimester expo-
sure. The number of differentially methylated positions was the largest for midpregnancy exposure
in both the single pollutant models and the multipollutant regression analysis. Additionally, gene-set
analysis regarding midpregnancy exposure revealed four gene ontology terms (cellular response
to staurosporine, positive regulation of cytoskeleton organization, neurotransmitter transport, and
execution phase of apoptosis). In conclusion, these findings show an association between prenatal
PM10 and NO2 exposure and DNA methylation in several CpG sites in cord blood cells, especially
for midpregnancy exposure.
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1. Introduction

Traffic-related air pollution, such as particulate matter (PM) and nitrogen dioxide
(NO2), is one of the major outdoor air pollutions. Exposure to air pollution during preg-
nancy has pre- and postnatal effects, such as on birth weight and childhood health [1,2].

Ambient air pollution has also been reported to affect DNA methylation [3]. The DNA
methylation of cytosine–guanine dinucleotide (CpG) is one of the epigenetic factors that
can affect gene expression and is known to be a likely target of environmental exposure [4].
Although maternal smoking is a well-known factor for the DNA methylation of cord blood,
the effects of prenatal exposure to traffic-related air pollutants on the genome-wide DNA-
methylation statuses of CpG sites have also been reported by birth-cohort studies [5,6].
Furthermore, these effects have been shown to be sex- and trimester-specific [7,8]. In the
case of the Asian population, although the associations between ambient concentrations of
PM with a diameter ≤ 10 µm (PM10) and NO2 and DNA methylation have been studied in
a Korean adult cohort [9], studies using cord blood are lacking. Although the methylation
of several CpGs in this Korean adult cohort was shown to be associated with the PM10
and NO2 concentrations, studies regarding the effects of prenatal exposure to ambient air
pollution on the DNA methylation in infants are lacking.

This study sought to identify epigenomic markers associated with prenatal exposure
to ambient air pollutants, particularly NO2 and PM10, in the cord blood of Korean babies.
We used linear regression models to assess the associations between the concentrations
of the pollutants and the methylation of each CpG site in the genome of cord blood cells.
Additionally, we compared the analyses according to both the trimester during pregnancy
and the child’s sex.

2. Materials and Methods
2.1. Study Population

The Mothers and Children’s Environmental Health (MOCEH) study is a multicenter
prospective hospital- and community-based birth-cohort study designed to examine the
effects of pre- and postnatal environmental exposures on growth, development, and health
from early fetal life to young adulthood in South Korea [10]. From 2006 to 2010, the MOCEH
study recruited pregnant women who met the inclusion criteria of being > 18 years of age,
<20-weeks pregnant, and a resident of the targeted study site (i.e., Seoul, Ulsan, or Cheonan).
The study protocol was approved by the institutional review boards at Ewha Woman’s
University (Seoul), Dankook University Hospital (Cheonan), and Ulsan University Hospital
(Ulsan, Korea). At the initial prenatal visit, written informed consent was obtained from
each participant. Demographic information related to participants’ age, education, income,
and socioeconomic status was collected by a structured questionnaire during prenatal
visits. Information on infant’s gender, birth weight, gestational age, and birth order was
collected using medical records at the time of delivery. Urinary cotinine and creatinine in
the pregnant women was measured during their prenatal visits (early and late pregnancy).
At birth, cord blood and a piece of tissue from the umbilical cord were obtained. DNA was
extracted from the blood samples into tubes containing ethylenediaminetetraacetic acid.
Among the 1751 base participants recruited before week 20 of pregnancy, 383 cord blood
samples corresponding to 195 baby boys and 188 baby girls were selected to undergo DNA
methylation profiling and were finally included in the present study.

2.2. Assessment of Air-Pollutant Concentration

The exposure of each participant to the air pollutants was assessed on the basis
of their residential address by using geographical information system (GIS) variables
and estimated NO2 and PM10 concentrations from a land-use regression (LUR) model,
which is a standardized method described previously [11]. We first obtained the monthly
concentrations of PM10 and NO2 measured at all national atmospheric monitoring stations
throughout Korea (https://www.airkorea.or.kr/eng) (accessed on 27 Nov 2019) from 2006
to 2011. The number of national air quality monitoring stations in 2006 was 202 and
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reached 246 by 2011. The residential addresses of the study subjects were converted into
Transverse Mercator (TM) coordinates and mapped. This map was superimposed with
the national road-network and land-use maps (1:25,000 scale). Using GIS, the lengths
of all the roads within a 200 m buffer zone, the traffic intensity at the nearest road, the
total heavy-duty traffic loads on all the roads within a 100 m buffer zone, the green area
within 300 m of the individual’s residence, and the altitude of the residence were then
calculated. Finally, individual exposures were estimated by incorporating these values
into the final LUR model, which included the lengths of all the roads, traffic intensity at
the nearest road, total heavy-duty traffic loads on all the roads, and variables representing
the spatial trends derived from GIS (ArcGIS version 9.3, ESRI, Redlands, CA, USA). We
then calculated the monthly exposure levels at the addresses of the participants in the
three regions (Seoul, Ulsan, and Cheonan) by using a modeling method with a GIS. LUR
analyzes traffic-related air-pollution exposure values through a multiple linear regression
modeling method between predictors that can best explain traffic-related air-pollution
concentration among variables such as total road length and traffic intensity on roads [12].
In the modeling process, we analyzed how the air-pollution concentration value was
predicted through the LOOCV method and RMSE confirmation. Multiple linear regression
models were built using a supervised forward stepwise procedure. Leave-one-out cross-
validation (LOOCV) was used to evaluate the model performance, and the overall fit (R2)
and root mean squared error (RMSE) between the predicted and measured concentrations
per site were calculated. The models used the centrally and locally available geographic
variables as potential predictors. The following five predictor variables were left in the
final LUR model for NO2: the total length of all the roads within 300 m, traffic intensity on
the nearest road, total heavy-duty traffic load of all the roads within 100 m, urban green
area within 300 m, and a variable representing the spatial trend. The R2 of the model
and the LOOCV R2 of the NO2 models were 0.79 and 0.73, respectively, indicating that
the LUR model explained a large fraction of the measured NO2 spatial variability based
on the monitoring data. The predictor variables that best described the spatial variation
in the PM10 concentration (R2 = 0.69 and LOOCV R2 = 0.60) included the total length of
all the roads within 300 m, total heavy-duty traffic load within 100 m, and the spatial
trend variable.

The trimester-specific mean concentrations of PM10 and NO2 were calculated as the
mean pollutant concentration associated with the length of each pregnancy per trimester.
Following this procedure, we estimated the exposure levels during three periods of preg-
nancy (0–12 weeks (first trimester), 12–27 weeks (second trimester), and 27–40 weeks (third
trimester)) and during the period from conception until delivery (entire pregnancy).

2.3. Data Extraction, Cleaning, and Imputation

The missing values of adjusting covariates were imputed with the missForest package
in R [13]. A pair of samples were twins of the same sex and maternal variables, and
thus they were excluded from the imputation. Therefore, 383 nonredundant samples
with detailed information on the corresponding infant sex, smoking history survey, and
maternal blood concentrations of cotinine and creatinine in the early and later pregnancy
were included in the imputation step. Subjects with high concentrations (≥200 µg/gm) of
maternal urinary cotinine in the later pregnancy or with a positive response to the question
on current smoking were grouped as “current smokers”.

Preprocessing of the information on the cord blood samples, leukocyte-composition
estimation, and quality-control steps were performed with the R packages ewastools [14,15]
and minfi [16], as described previously [17]. Briefly, leukocyte compositions were estimated
with Houseman’s method, with the reference panel by Salas et al. with IDOL-optimized
CpGs [18]. Quality-control steps were performed by (1) BeadArray Controls metrics
by Illumina, (2) sex discordance by the probe intensities, (3) outliers or duplicates by
SNP probes, (4) outliers by principal components (PCs), and (5) outliers by leukocyte
compositions. The quality-control results are shown in the Supplementary Table S1.
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2.4. Genotyping and Assessment of the Methylation Levels

The methylation levels of the cord blood samples were determined using Illumina
HumanMethylationEPIC BeadChip with the manufacturer’s instructions. Genotyping
of the samples was performed as previously described [19]. Briefly, cord blood samples
were genotyped on Asian Precision Medicine Research Array (APMRA; Affymetrix, CA,
USA). Quality control was conducted using plink v1.90b3.44 [20] and WISARD 1.3.3,
with the criteria of X chromosome inbreeding coefficients, missing rates, identity-by-state
(IBS) matrix, multidimensional scaling (MDS) plots, Hardy–Weinberg equilibrium (HWE),
and minor allele frequencies. The rest of the missing values were filled with SHAPEIT
v2.r837 [21], and the data were then imputed to the whole-genome scale by using IMPUTE
2.3.2 with the phase-3 reference data from the 1000 Genome Project [22–24]. The same
quality-control procedures were conducted once again after the imputation step. The
results of the quality-control step are described in the Supplementary Table S2.

2.5. Epigenome-Wide Association Analysis (EWAS)

We used Linear Models for Microarray Data (Limma) to perform the linear regression
analysis, with the beta values as dependent variables. The CpG sites with >3% of the
missing rates in any of the acquisition times were excluded from the analyses. Infant sex,
maternal current smoking status, and the estimated leukocyte composition were used
as adjusting covariates, and the batches were adjusted using the random effect variable.
Because some of the data were positive and right-skewed, the air-pollutant variables were
log10-transformed before the analyses.

As the main analysis, regression models with both of the air pollutants were used,
and these models were defined as “multipollutant models”. As a complement, analyses
with models including one of the pollutants were also performed. The above procedures
were conducted with the air-pollution concentrations during (1) the whole pregnancy, (2)
the first trimester of pregnancy, (3) the second trimester of pregnancy, and (4) the third
trimester of pregnancy.

2.6. Reverse Causation Identification

To identify the false positives of the differentially methylated positions (DMPs), we
ran instrumental-variable regression analyses using the R package AER [25]. The genotype
data were used as instrumental variables (IVs). To avoid the weak-instrument problem,
we first ran linear regression analyses with the pollution as the response variable by using
plink v1.90b3.44 [20], where the infant sex, maternal current smoking statuses, estimated
leukocyte compositions, and 10 genotype principal component (PC) scores were included
as adjusting covariates. We used the results with p-values < 0.05.

In the IV regression, methylation and pollution variables were set as treatment and
outcome variables, respectively. The consistency of the estimators from the regression was
tested with Wu–Hausmann test. The results with Wu–Hausman test p-values < 0.05 were
ignored since the estimators from the IV regressions were not consistent and the test may
not have been informative. The alternative hypothesis of the IV regression was that the
treatment had a causal effect on the outcome. In other words, the significant results with
regression p-values < 0.05 indicated that there were significant causal effects on air pollution
due to the DNA methylation statuses. Since this does not make sense, the corresponding
results were considered as false positives and excluded from the interpretation.

3. Results
3.1. General Characteristics and Exposure to Ambient Air Pollutants

Three hundred and fifty-eight samples with complete profiles of air-pollutant exposure
and methylation statuses were used in the analysis. Among them, 180 were male infants
and 178 were female infants, and 7 mothers (1.96%) were current smokers. The geometric
means of exposure to NO2 and PM10 during the entire pregnancy were 0.0260 ppm (10th
percentile = 0.0186; 90th percentile = 0.0417) and 53.49 µg/m3 (10th percentile = 45.74;
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90th percentile = 61.58), respectively (Table 1). The summary statistics of the air-pollutant
variables, both overall and trimester-specific, and the adjusting covariates are shown in
Table 2.

Table 1. The geometric means of air-pollution-exposure variables in the 358 subjects.

Air Pollutants (Unit)

Pregnancy

Whole Period Mean
(min–max)

1st Trimester Mean
(min–max)

2nd Trimester Mean
(min–max)

3rd Trimester Mean
(min–max)

NO2 (ppm) 0.0260
(0.0113–0.0559)

0.0249
(0.0098–0.0628)

0.0261
(0.0098–0.0609)

0.0264
(0.0091–0.0557)

PM10 (ug/m3)
53.49

(24.96–71.93)
52.30

(21.47–86.38)
52.02

(23.09–81.23)
53.71

(26.03–83.06)

The geometric means of air-pollution-exposure variables in the 358 subjects. The minimum/maximum values
are also listed in the parentheses. The concentrations of the pollutants were estimated using the LUR model
incorporated with the residential address of each subject.

Table 2. Summary statistics of the adjusting covariates in the 358 subjects. For clinical covariates, the
number and the proportion are shown. For leukocyte compositions, the average values are shown,
and the values in the parentheses indicate the standard errors.

Variables Summary

Covariates, N (%)
Child Sex

Male 180 (50.28%)
Female 178 (49.72%)

Maternal smoking, current smokers 7 (1.96%)
Estimated leukocyte composition of

the cord blood samples
CD4 T cells (%) 20.70 (0.449)
CD8 T cells (%) 4.46 (0.173)

Natural killer cells (%) 3.31 (0.141)
B cells (%) 5.18 (0.130)

Granulocytes (%) 55.86 (0.651)
Monocytes (%) 9.34 (0.184)

Nucleated red blood cells (%) 3.08 (0.241)

We found that some of the pollutant variables were right-skewed (Figure 1). Since the
performance of linear regression analysis depends on the normality of variables, we tried to
alleviate the skewness and make the variables closer to the normal distribution by applying
log10 transformation. We calculated the skewness and kurtosis of the variables, which
were 0 and 3, respectively, if the variables were normally distributed, before and after the
transformation. For NO2 variables, we found that the skewness became closer to 0 and less
skewed after the transformation (Table 3). Although some of the variables did not show
a meaningful difference or became worse after the transformation, we comprehensively
applied the log10 transformation to all of the variables for the consistency of the analysis.
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Table 3. Skewness and kurtosis of pollution variables before and after log10 transformation.

NO2 PM10

Whole
Pregnancy

1st
Trimester of
Pregnancy

2nd
Trimester of
Pregnancy

3rd
Trimester of
Pregnancy

Whole
Pregnancy

1st
Trimester of
Pregnancy

2nd
Trimester of
Pregnancy

3rd
Trimester of
Pregnancy

Before
transformation

Skewness 0.756 0.944 0.869 0.828 −0.682 0.331 0.221 0.021
Kurtosis 2.386 3.478 2.864 2.640 4.949 2.477 2.660 2.194

After
transformation

Skewness 0.315 0.161 0.280 0.210 −1.585 −0.230 −0.357 −0.420
Kurtosis 2.195 2.624 2.361 2.470 8.461 2.800 3.232 2.498

3.2. Multipollutant Analysis

The correlations between NO2 and PM10 measured by Pearson’s and Spearman’s
correlation coefficients in each period were around 0.5, and the variance inflation factors
for these variables from the multipollutant linear models ranged from 1.40 to 1.51. There-
fore, we judged that the multicollinearity would not interrupt the performance of the
analyses. As many of the analyses showed deflated p-values, we adjusted the p-values via
Bonferroni’s method, which is the most conservative method.

3.2.1. Whole Pregnancy

We found two CpG sites in chromosome 10 showing significant relationships with the
air-pollution exposure during the whole pregnancy (Table 2). One of them, cg14547404
(p-value, 1.78 × 10−11), showed a significant correlation with the concentration of PM10
(p-value, 4.31 × 10−11) but also showed significant results from the IV regression (p-value,
7.52 × 10−3; Wu–Hausman test p-value 0.330), and is thus presumably a false signal. The
other, cg06517429 (p-value, 2.37 × 10−8), was in the 5′ UTR or on the 1st exon of CASP7,
depending on the isoforms, and in the CpG island at position 115,439,007-115,440,196
and showed a significant correlation with NO2 (p-value, 5.05 × 10−8). There was also a
significant association between NO2 and cg08096307 (p-value, 5.81 × 10−8), a site in a CpG
island at position 221,064,889-221,065,600 of chromosome 1, and this association was also
significant (p-value, 1.81 × 10−7) when both of the pollutants were simultaneously tested.
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Further, when we conducted the analyses with only the female infants, cg14547404
and cg00670246 were found to be significantly correlated with the pollutants (p-values,
4.36 × 10−10 and 4.44 × 10−10, respectively). The cg00670246 was in gene GRHL1. Both of
these sites showed significant results with PM10 (p-values, 4.93 × 10−9 and 1.49 × 10−9,
respectively). Additionally, IV regression from cg14547404 to PM10 showed significant
results (p-value, 0.0251; Wu–Hausman test p-value, 0.758). PM10 was also correlated with
cg14561322 and cg02737288 (p-values, 1.47 × 10−7 and 2.75 × 10−7, respectively) and also
showed low p-values when both of the pollutants were tested.

There was no significant correlation between the pollutants and male infants. However,
testing for only the regression coefficient of NO2 revealed one significant site, cg19390934
(p-value, 3.86 × 10−8), which was of genes MTERFD2 and SNED1 (Table 4).

Table 4. Differentially methylated positions (DMPs) in cord blood DNA in association with exposure
to multiple ambient pollutants during whole pregnancy.

CpG ID p-Value
(All Pollutants)

Log-FC
(NO2) p-Value (NO2) Log-FC (PM10) p-Value

(PM10)
Gene

Annotation
CpG Island
Annotation

All infants
(N = 358)

cg14547404 1.78 × 10−11 −0.0177 0.237 0.231 ARHGAP22
TSS1500/body

chr10:
49863620–49864601

N-shore

cg06517429 2.37 × 10−8 0.0664 5.05 × 10−8 −0.0195 0.472
CASP7

5′ UTR/1st
exon

chr10: 115439007–
115440196

island

cg08906307 1.81 × 10−7 0.0641 5.81 × 10−8 −0.0440 0.0959 -
chr1: 221064889–

221065600
island

Male infants
(N = 180)

cg19390934 2.60 × 10−7 −0.0577 3.86 × 10−8 0.0699 0.0124
MTERFD2

body
SNED1 body

-

Female infants
(N = 178)

cg14547404 4.36 × 10−10 −0.0112 0.619 ARHGAP22
TSS1500/body

chr10:
49863620–49864601

N-shore
cg00670246 4.44 × 10−10 −0.0315 0.309 0.405 GRHL1 body -
cg14561322 1.47 × 10−7 −0.0482 1.81 × 10−3 0.184 - -
cg02737288 2.75 × 10−7 −0.0504 3.90 × 10−3 SGPP1 body Unknown

p-values for “all pollutants” indicate the p-values from F-tests for both of the pollutants, and p-values for each
pollutant mean the p-values of the corresponding regression coefficients from the multipollutant model. p-values
that reached the significance cutoff (Bonferroni adjusted p-value < 0.05) are marked in bold font. The significant
results from reverse causation analyses (instrument variable regression p-value < 0.05 and Wu–Hausman test
p-value ≥ 0.05) are considered as false positives and marked with strikethroughs. TSS1500, ~1.5 kb upstream of
the transcription start site (TSS); UTR, untranslated region; N-shore, ~2 kb upstream of the CpG island.

3.2.2. The First Trimester of Pregnancy

The exposure to air pollutants in early pregnancy did not show any significant correla-
tion with the methylation statuses. However, testing for only the coefficient of NO2 showed
notable results with cg19190403 (p-value 1.23× 10−8) and cg06517429 (p-value 2.65 × 10−8).
The site cg19190403 did not have any annotation. Analyzing with only the male samples
revealed that cg27535616 was significantly correlated with the NO2 concentration in early
pregnancy (p-value 3.99 × 10−8; Table 5).
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Table 5. Differentially methylated positions (DMPs) in cord blood DNA in association with exposure
to multiple ambient pollutants during the first trimester of pregnancy.

CpG ID p-Value
(All Pollutants) Log-FC (NO2) p-Value

(NO2) Log-FC (PM10) p-Value
(PM10)

Gene An-
notation

CpG Island
Annotation

All infants
(N = 358)

cg19190403 8.38 × 10−8 −0.0478 1.23 × 10−8 0.0354 4.76 × 10−3 - -

cg06517429 9.37 × 10−8 0.0641 2.65 × 10−8 −0.0343 0.0456
CASP7

5′ UTR/1st
exon

chr10: 115439007–
115440196

island
Male infants

(N = 180)
cg27535616 2.59 × 10−7 0.0974 3.99 × 10−8 −0.0660 0.0123 Unknown Unknown

p-values for “all pollutants” indicate the p-values from F-tests for both of the pollutants, and p-values for each
pollutant mean the p-values of the corresponding regression coefficients from the multipollutant model. p-
values that reached the significance cutoff (Bonferroni adjusted p-value < 0.05) are marked in bold font. UTR,
untranslated region.

3.2.3. The Second Trimester of Pregnancy

Air-pollutant exposure in midterm pregnancy showed the largest number of DMPs
(Table 6). We observed more significant correlations with NO2 than PM10 concentrations in
individual analyses. The site cg06517429 (p-value 3.47 × 10−8), one of the main findings
from the analyses of whole pregnancy, was also found to be significantly correlated to air
pollutants in the second trimester. The most significant sites included cg04129282 (p-value
4.37 × 10−9) on chromosome 15, annotated with WDR93 and PEX11A, and cg06772824
(p-value 4.84 × 10−9) on chromosome 2, annotated with FAM176A.

Table 6. Differentially methylated positions (DMPs) in cord blood DNA in association with exposure
to multiple ambient pollutants during the second trimester of pregnancy.

CpG ID p-Value
(All Pollutants)

Log-FC
(NO2) p-Value (NO2) Log-FC (PM10) p-Value

(PM10)
Gene

Annotation
CpG Island
Annotation

All infants
(N = 358)

cg04129282 4.37 × 10−9 0.0217 9.61 × 10−4 0.0334 2.12 × 10−3
WDR93
TSS1500

PEX11A body

chr15:
90233530–90234083

island

cg06772824 4.84 × 10−9 0.0278 4.29 × 10−6 0.0144 0.146 FAM176A
TSS200/5′ UTR

chr2:
75787717–75788312

island

cg03233931 2.85 × 10−8 8.09 × 10−3 0.166
LRRC20

TSS200/5′
UTR/
body

chr10:
72141560–72142637

island

cg06517429 3.47 × 10−8 0.0622 6.83 × 10−8 −0.0119 0.523
CASP7

5′ UTR/1st
exon

chr10: 115439007–
115440196

island

cg16274061 4.50 × 10−8 0.0252 1.30 × 10−3 0.0355 6.14 × 10−3 SAP30L
TSS1500

chr5: 153825417–
153826526
N-shore

cg23560755 5.06 × 10−8 0.0135 0.123 SORBS3 body
chr8:

22422534–22423702
N-shelf

cg00894435 5.60 × 10−8 0.0337 4.76 × 10−4 0.0380 0.0169 SV2B TSS1500
chr15:

91642908–91643702
island

Female infants
(N = 178)

cg14262371 3.54 × 10−8 0.0150 2.97 × 10−4
MOV10

5′ UTR/1st
exon

chr1: 113217475–
113218097
N-shore

p-values for “all pollutants” indicate the p-values from F-tests for both of the pollutants, and p-values for each
pollutant mean the p-values of the corresponding regression coefficients from the multipollutant model. p-values
that reached the significance cutoff (Bonferroni adjusted p-value < 0.05) are marked in bold font. The significant
results from reverse causation analyses (instrument variable regression p-value < 0.05 and Wu–Hausman test
p-value ≥ 0.05) are considered as false positives and marked with strikethroughs. TSS1500, ~1.5 kb upstream of
the transcription start site (TSS); TSS200, ~200 kb upstream of the TSS; UTR, untranslated region; N-shelf, ~4 kb
upstream of the CpG island; N-shore, ~2 kb upstream of the CpG island.



Int. J. Environ. Res. Public Health 2022, 19, 3292 9 of 13

When the analyses were conducted separately according to infant sex, one CpG site
(cg14262371) was significantly associated with the air pollutants in the female infants
(p-value 3.54 × 10−8). The site cg14262371 is in the 5′ UTR or the 1st exon of MOV10 and
the N-shore of a CpG island at position 113,217,475-113,218,097 of chromosome 1.

3.2.4. The Third Trimester of Pregnancy

The site cg06517429 was significantly correlated with the concentration of NO2 (p-value
5.46 × 10−8), again in the analysis in the later pregnancy. In the female infants, a new
site named cg20654468 was found to be related to the concentration of PM10 (p-value
4.58 × 10−8). This site was annotated to be in LPXN and the N-shelf of a CpG island at
position 58,345,673-58,347,321 of chromosome 11 (Table 7).

Table 7. Differentially methylated positions (DMPs) in cord blood DNA in association with exposure
to multiple ambient pollutants during the third trimester of pregnancy.

CpG ID p-Value
(All Pollutants) Log-FC (NO2) p-Value

(NO2) Log-FC (PM10) p-Value
(PM10)

Gene
Annotation

CpG Island
Annotation

All infants
(N = 358)

cg06517429 2.92 × 10−7 0.0616 5.46 × 10−8 −0.0399 0.0206
CASP7

5′ UTR/1st
exon

chr10: 115439007–
115440196

island
Female infants

(N = 178)

cg20654468 2.80 × 10−7 −0.0398 6.87 × 10−3 0.123 4.58 × 10−8 LPXN body
chr11:

58345673–58347321
N-shelf

p-values for “all pollutants” indicate the p-values from F-tests for both of the pollutants, and p-values for each
pollutant mean the p-values of the corresponding regression coefficients from the multipollutant model. p-values
that reached the significance cutoff (Bonferroni adjusted p-value < 0.05) are marked in bold font. UTR, untranslated
region; N-shelf, ~4 kb upstream of the CpG island.

3.3. Models with a Single Pollutant

Results of LIMMA analyses with the models including only NO2 or PM10 are tabulated
in Supplementary Tables S3 and S4. We found that cg06517429 from the multipollutant
models was identified in the NO2 whole-pregnancy model, while cg14547404 from the
multipollutant model was identified in the PM10 single-pollutant model. Additionally,
similar to the results from the multipollutant models, air-pollutant exposure in the second
trimester of pregnancy had the largest effect on the methylation statuses of the infants.

3.4. Sensitivity Analysis

We added family income in the EWAS analyses as a covariate to check whether
socioeconomic condition plays major role in the epigenetic alterations by air-pollution expo-
sure. After including family income, while cg14547404 was still significant (1.78 × 10−11),
cg06517429 and cg08906307 became borderline for the whole pregnancy (2.38 × 10−7 and
1.24 × 10−6, respectively, Supplementary Materials S2).

3.5. MRC-IEU EWAS Catalog

Several phenotypes have previously been reported to be related to the methylation
statuses of the DMPs we identified, according to the MRC-IEU EWAS catalog, and the
data are listed in the Supplementary Materials. Most of the data were from the ARIES
consortium, and diverse phenotypes, such as omega 6 fatty acid ratio (cg06517429) and hip
cortical ratio (cg06772824), were reported. Moreover, Gross et al. detected several CpG
sites, such as cg19390934, cg16274061, cg00894435, and cg20654468, to be differentially
methylated by chronic HIV infection. In addition, several studies have reported significant
correlations between our DMPs and some clinical traits, such as cg19390934 and smok-
ing status, cg04129282 and rheumatoid arthritis, and cg20654468 and smoking status or
child age.
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4. Discussion

In this study, we identified several CpG sites that were associated with prenatal
exposure to PM10 and NO2. We found that the largest number of CpGs were associated
with the pollutants exposed to in the midterm pregnancy. We also observed sex-specific
associations with the pollutants.

The CpG island near the ARHGAP22 gene (cg14547404) was associated with average
PM10 concentration during the whole pregnancy period. This gene was also the most
significant DMP in the female subgroup. ARHGAP22 is known to control cell morphology
by regulating the actin cytoskeleton [26].

The CpG islander CASP7 gene (cg06517429) was significantly associated with average
NO2 concentration during all the trimesters. This gene is related to apoptosis [27]. The
methylation of this CpG site is associated with CASP7 expression in the adipose tissue [28].
CASP7 is a critical mediator of mitochondrium-induced apoptosis [29], and interestingly,
a previous study revealed that NO2 exposure during pregnancy is associated with differ-
ences in the cord blood methylation patterns of several genes involved in mitochondrial
function [5]. Furthermore, these in utero influences seem to persist into early childhood.
The effects of NO2 concentration on the CpGs near the CASP7 gene may also need to be
analyzed after birth.

The vulnerable period may be different between girls and boys [30]. In the present
study, a few sites were significantly detected in association with exposure during whole
and late pregnancy in only female infants.

There is a lack of consensus regarding the most sensitive time during the prenatal
period for air-pollution exposure [31–33]. In the current study, more CpG sites were
associated with pollutant exposure during the second trimester than the other periods.
A recently published study found that PM10 exposure during the second trimester is
associated with decreased head circumference, and low birth weight and small size for
gestational age are associated with PM10 exposure in the third trimester [32]. Therefore,
the correlation between the CpG sites found in the present study and their functional
contribution to a specific period should be analyzed. Compared with the PM10 levels, the
NO2 levels were correlated with more CpG sites in the results of the trimester-specific
analysis. We reported results using multipollutant models as the main results. The single
pollutant model also showed similar results that support the largest effect of the pollutants
during the second trimester on the methylation statuses of the infants.

We found that the proportion of natural killer cells in our samples were relatively low
(3.31%; Table 2). This may be due to the selection of the leukocyte deconvolution methods,
and it may differ by the method or the reference panel. Unfortunately, we could not test
other deconvolution methods and compare the results due to the shortage of time. Further
studies may investigate the effect of the methods on the overall results. Furthermore, pla-
cental DNA methylation is another organ reflecting prenatal environmental exposure and
potentially related to health outcomes, which can be compared to cord blood results [34].

There are a few limitations of this study. The results need to be replicated in other
studies. Several CpGs associated with air pollution in this study have also been reported to
be associated with chronic HIV infection or smoking [35]. When we attempted to search
the PACE data of NO2 and PM exposure [5,6], no replicated result was detected. However,
we identified that similar pathways were enriched with genes near the significantly asso-
ciated CpG sites. Second, we did not quantitate gene expression. Further transcription
information may facilitate finding meaningful pathways relevant to the sites influenced by
air pollutants [36]. Third, air-pollution levels at residential addresses might not represent
personal exposure levels. Some individuals may prefer spending much of their daily time
at other places, such as the workplace, instead of the residential addresses. However, mis-
classification in the degree of personal exposure level can be assumed to be nondifferential
according to the methylation levels, which cannot alter the observed association but can
weaken it. Our results should also be interpreted while keeping in mind the obscured
variances that were unmeasured.
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In conclusion, prenatal exposure to PM10 and NO2 is associated with several CpG
sites on the genomic DNA of cord blood cells. Therefore, exposure to traffic-related air
pollutants, such as PM10 and NO2, during pregnancy, especially in the midtrimester, can
affect biological events by altering the methylation statuses of certain CpG sites.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph19063292/s1, Table S1: Numbers of samples excluded in
each step of the methylation CpG data quality control (QC) procedures. Table S2: Summary of the
genotype data quality control steps. Tables S3 and S4: Differentially methylated positions (DMPs)
detected by limma analyses for single pollutant during each pregnancy period.
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