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Abstract: Polycyclic aromatic hydrocarbons (PAHs) are a class of the most common and widespread
contaminants. The accumulation of PAHs has made a certain impact on the environment and is
seriously threatening human health. Numerous general analytical methods suitable for PAHs were
developed. With the development of economy, the environmental problems of PAHs in modern
society are more extensive and prominent, and attract more attention from environmental scientists
and analysts. Deeper understanding of the properties of PAHs depends on the advent of detection
methods, which can also be more conducive to promoting the protection of the environment. Till
now, more sensitive, more high-speed and more high-throughput analytical tools are being invented
and have played important roles in the research of PAHs. In this short review article, we focused
mainly on the contemporary analytical methods about PAHs. We started with a brief review on the
hazards, migration, distribution and traditional analysis methods of PAHs in recent years, including
liquid chromatography, gas chromatography, surface enhanced Raman spectroscopy and so on. We
also presented the applications of the modern ambient mass spectrometry, especially microwave
plasma torch mass spectrometry, in the detection of PAHs, as well as the far out novel results in our
lab by using microwave plasma torch (MPT) mass spectrometry; for example, some new insights
about Birch reduction, regular hydrogen addition and the robustness of molecular structure. These
studies have demonstrated the versatility of MPT MS as a platform in the research of PAHs.

Keywords: polycyclic aromatic hydrocarbons (PAHs); analytical methods; ambient mass spectrometry;
environmental pollution; microwave plasma torch (MPT)

1. Introduction

The prevention and control of environmental pollution is a sustaining hot point of
contemporary society. As a class of the most common and widespread contaminants,
polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in a variety of environmental
contexts, mainly including aqueous, air and solid samples that include sediments, soils and
wastewater sludge [1–4]. PAHs are a general class of hydrocarbon compounds formed by
condensing two or more benzene rings or cyclopentadiene rings, and appear important in
the universe and interstellar medium, in which it is generally believed that about 10–25%
of carbon is in the form of large polycyclic aromatic molecules [5,6]. Due to their relative
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stable structure, generic characteristics of PAHs are a high melting point, a high boiling
point, and a low vapor pressure, and they are very difficult to metabolize and degrade in
natural environment media, which leads to the accumulation of some PAHs for decades or
even longer. Additionally, owing to their essential structure of polyphenyl rings, PAHs are
virulent to the human beings. The most prominent hazards of PAHs are carcinogenicity,
teratogenicity and mutagenicity. At present, thousands of carcinogens have been found
in the world. Among the thousands of carcinogens, PAHs and their derivatives account
for more than 30%, ranking them as the first class [7,8]. Usually, the carcinogenicity and
biodegradability of PAHs increase with the increase in number of benzene rings of PAHs [9].
According to epidemiological studies, workers exposed to PAHs for a long time are prone
to cancer, especially skin cancer, blood cancer, bladder cancer, nasopharyngeal cancer,
gastric cancer as well as lung cancer [10]. Some surveys show that the death rate of lung
cancer increases by 5% when the concentration of benzopyrene increases by 0.1 µg per
100 m3 [9,11]. Because PAHs are difficult to metabolize and degrade, they have a significant
impact on human health and the ecological environment. The pollution of PAHs to the
environment has persistently aroused the interest of researchers from different fields. Since
the 1970s, generations of researchers have made great efforts and carried out a series of
studies on the distribution, sources and risks in environmental pollution of PAHs.

In general, the sources of PAHs can be divided into two primary categories, natural
sources and anthropogenic sources. The natural sources mainly include volcanic eruptions,
grassland and incomplete forest combustion, as well as the synthesis of some organisms,
and the proportion of this category in origin of PAHs is relatively light [12–14]. So, as the
main source of PAHs, anthropogenic sources mainly include the incomplete combustion of
motor vehicle fuel emissions and coal-burning emissions, which are both closely related
to human’s daily life. For example, PAHs in cigarettes play a quite fundamental role in
lung cancer of human beings. Perera et al. [15] showed that the level of B(a) p-DNA of
benzopyrene adducts in the fetus was significantly higher than that in the mother, and the
degree of DNA damage induction in the mother and the fetus showed a certain difference,
10 times as much as that in the mother. Jedrychowski et al. [16] made massive efforts and
found that the offspring of mothers exposed to PAHs through diet in the third trimester
had significantly lower birth weight and shorter birth length. Refer to some reviews and
the articles cited in them for more toxicology of PAHs [17–21].

Clearly, understanding the mechanism of toxicity of PAHs and the far-reaching dam-
age to the environment depends strongly on the advent of detection methods and analytical
technologies, which are undoubtedly still challenging and contain new potential break-
throughs, whether in the analytical chemistry field or in environmental science, because
PAHs usually exist in the environment as mixtures and in trace amounts [1]. Since the
beginning of the new century, analytical techniques have been revolutionized, especially
mass spectrometry, which was thought of as the best one for PAHs [1]. Ambient mass spec-
trometry will provide promisingly in situ on-line and high-sensitivity detection techniques
for environmental scientists. We hope to summarize these advances in this aspect in this
short review. After starting with a brief review on the hazards, migration, distribution and
traditional analysis methods of PAHs which are widely used in recent years, including
liquid chromatography, gas chromatography and surface enhanced Raman spectroscopy
and so on, we mainly want to present the applications of the modern ambient mass spec-
trometry in the detection of PAHs; in addition, we present the far out novel results in
our lab by using microwave plasma torch (MPT) mass spectrometry, which exhibited the
versatility of MPT MS as a platform in the research of PAHs. MPT ion source is a novel
ambient ion generator and has multiple advantages, for example, simple construction of
the device and easy operation, low power dissipation, relative high sensitivity, and suitable
for many types of samples including metal elements and organic samples [22–26].
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2. The Spatial Distribution and Migration of PAHs

The presence of PAHs in almost all environmental media (atmosphere, water, soil)
is due to the fact that PAHs can migrate and transport in all parts of the environmental
ecophene [1,2]. PAHs are strongly lipophilic, when PAHs remain in the soil and accumulate
in organisms through the food chain, they eventually cause certain harm to human body.
The paths, through which PAHs can enter into the human body, comprise the following
three channels: diet, skin contact, and respiratory tract [27]. For example, PAHs in the air
can also interfere with children’s respiratory and nervous systems. Some researchers have
revealed that increased respiratory susceptibility in non-allergic children in the early stages
of exposure to pyrene [28]. Prolonged exposure to PAHs is an important cause of lung
cancer in humans. Thus, PAHs pose a great threat and restriction to human development.

The understanding of the spatial distributions and migration mechanisms of PAHs
will be beneficial for the detection and controlling of PAHs. On one hand, the more slowly
PAHs migrate and transport, the more easily they can accumulate for a long time. As a
result, they pose more threat to the environment, which makes the treatment of PAHs much
more difficult. On the other hand, if the migration rate of PAHs is fast, the pollution range
would be more extensive, and the effect of PAHs produced on the environment would be
still important, and cause a burden to the analysis and control of PAHs. In short, it is of
great importance to explore and understand the distribution and migration of PAHs, which
also presents a consequential challenge to the analysis techniques for PAHs.

2.1. The Distribution, Migration and Harm of PAHs in Atmosphere

As PAHs are a semi-volatile pollutant, the atmosphere is the main receptor and
transmission and diffusion channel for the emissions of PAHs, as well as an important
reservoir of PAHs. The atmosphere is the most important environmental medium in the
migration and transformation of PAHs, and is also the most important medium of human
exposure to PAHs pollution [29–31]. PAHs in the atmosphere mainly come from pollutant
emissions of industrial areas such as coking plants and incomplete combustion of civil
coal-fired boilers [32,33]. Yuan-ju Li et al. [34] recently discovered that a large amount of
PAHs is also produced during catering processing. Clarifying the emission characteristics
of PAHs and the distribution characteristics of particles can provide an important basis
for analyzing the generation mechanism and source of atmospheric secondary organic
aerosols (SOA).

PAHs in soil and water also enter the atmosphere through evaporation. Some PAHs
in the atmosphere will degrade under ultraviolet light, and also easily generate phenolic
compounds, which will further react with NOx to generate nitrifies. Both Phenols and
nitrifiers are the two main components of atmospheric SOA, and they will destroy the
normal reaction cycle of NOx and O3, leading to a further increase in atmospheric O3
concentration. Therefore, PAHs is one of the reasons leading to serious atmospheric
secondary pollution and high ozone concentration [34]. Atmospheric PAHs can also enter
soil and water through descending migration. These processes are affected by their particle
sizes, physical and chemical shapes, meteorological conditions and soil composition. The
distribution of PAHs is different in different regions. Levels of PAHs pollution are generally
higher in inland areas than in coastal areas because daily human production and living
activities are closer to inland areas. With the change of different seasons, the concentration
level of PAHs in the environment also varies to a certain extent [7], showing a general
trend of high concentration in winter and low concentration in summer. In floating dust,
inhalable particles adhere to most PAHs, thus they cause hidden dangers to the health
development of humans and animals [8].

2.2. The Distribution, Migration and Harm of PAHs in Water

It was reported that about 89% of lakes in China are moderately polluted by PAHs, and
49% are severely polluted by PAHs [35]. PAHs have not only caused changes in sediment
chemical nature and species structure, but also produced a series of negative effects on the
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development and utilization of water resources. Atmosphere deposition, sewage discharge
and rainwater scouring are almost all of the pathways for PAHs to migrate into the natural
lake water, and PAHs tend to end up in water in the form of sediments, since PAHs are
less soluble in water. However, these sediments can also affect the surrounding ecosystem
through the food chain, inevitably causing damage to human health.

2.3. The Distribution, Migration and Harm of PAHs in Soil

Soil is another important carrier of PAHs. Among the sources of PAHs in soil, besides
natural sources, many human activities and industrial production take up most, including
incomplete combustion of industrial fuels, atmospheric sedimentation and industrial
sewage. Earlier studies [36] have shown that the atmospheric deposition of PAHs is the
most important in this part, probably accounting for more than 90%. The content of PAHs
in soil has noteworthy regional and seasonal differences, similar to that in air and water,
which deeply indicates that PAHs migrates and converts among air, water and soil, forming
an ecological closed loop. Multi-media migration is one of the important characteristics of
semi-volatile organic pollutants such as PAHs, which also brings some difficulties to the
research of PAHs. It is necessary to develop a holistic study and comprehensive analysis
of various data, as well as simulating their migration and transformation behavior in all
environmental media at the same time. The development of these new compatible methods
and technologies relies more on modern analysis techniques and statistical processing
methods from big data analysis.

PAHs enter soil, causing damage to the soil environment and normal working perfor-
mance. PAHs in soil also have much more complicated environmental behaviors in soil,
including adsorption, degradation and migration. Each process involves the influence of
physical, chemical or biological environmental processes and is extremely complicated. For
example, the adsorption of PAHs in soil affected by the soil surface chemical force on PAHs,
as well as electrostatic force and van der Waals attraction from relatively long distance.
Therefore, PAHs adsorption in soil has two different stages [37–39], namely fast process
and slow process. The fast process leads to the adsorption of PAHs on the soil hydrophobic
surface, while the slow process involves the migration of PAHs to the deep and inaccessible
part of the soil matrix, which is easily absorbed and enriched by some vegetation [40,41],
thus affecting the agricultural safety production to a certain extent. Different adsorption
extent depends strongly on the physical and chemical properties of PAHs and soil [42], such
as polycyclic aromatic hydrocarbons, water solubility, soil particle size, soil organic carbon
content, pH and temperature. Adsorption of PAHs in soil in turn affectstheir further actions
in the environment, such asvolatility, photolysis, hydrolysis, and the important factors in
the process of biological degradation and so on. PAHs in soil are then transmitted through
the food chain, eventually causing irreversible damage to humans and animals [43].

3. Traditional Analytical Methods for PAHs

Because of the strong carcinogenicity of PAHs, they had attracted attention from across
the world. Researchers have been working on the efficient detection and degradation
approach for PAHs for several decades. The rapid and sensitive analytical methods for
PAHs keep persistent interest of analysts. However, the current studies in environment
toxicology and physiological toxicology research just rest mainly in the preliminary stage,
most of which had focused on the invention of some technology to degrade PAHs, especially
on the efficiency of degradation. As for how to degrade, how to regulate the degradation
process and so on, the research is still lacking. It is doubtless that these will promote the
development of analytical methods for PAHs.

At present, in the environmental science and analytical testing field of the instrumental
analytical methods for PAHs mainly incorporates high performance liquid chromatography
(HPLC), gas chromatography (GC), capillary electrophoresis (CE), surface enhanced Raman
spectroscopy (SERS), and optical spectroscopy as well as other analytical methods, for
example, nuclear magnetic resonance spectroscopy (1HNMR), electrochemical method,
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nanopore technology, molecularly imprinted technique and so on. More detection tech-
niques and related works can refer to a review article [44] and references therein. Among all
the mature analytical methods, HPLC and GC are the most common ones and are generally
chosen as the standard methods.

In this section, we reviewed briefly some applications in the detection of PAHs by
using these methods. Noting the word “traditional” in the caption of this section, the
authors want to clarify that these methods are not unique mass spectrometry, especially
ambient mass spectrometry, which we will review in the next section.

3.1. High Performance Liquid Chromatography (HPLC)

The samples containing PAHs are usually of complex matrixes and some pretreatment
procedures for separating samples are required in normal analytical methods. HPLC is one
of the most common methods for the qualitativeandquantitative determination of PAHs.
Within this method, one selectable liquid is employed as the high-speed mobile phase
to achieve the purpose of separation based on their differential affinity between a solid
stationary phase and a liquid mobile phase. The kinetics of distribution of solutes between
the stationary and the mobile phase is largely diffusion-controlled [45].

There are a lot of applications of HPLC in PAHs detection. In this method, as Junlin
Wang et al. [46] established, samples were filtered and enriched by glass fiber filter paper,
and then performed via HPLC coupled with ultraviolet detector (UV) and sequent tandem
fluorescence detector (FLR) to determine PAHs membranes in natural and tap water
samples. The linear ranges of 16 kinds of PAHs were 0.5 to 500 ng·mL−1 and the correlation
coefficients were greater than 0.999, determining the limit of detection (LOD) and limits of
quantification (LOQ) as 0.3 to 5.0 ng·L−1 and 1.2 to 20.0 ng·L−1, respectively. The recoveries
of water samples ranged from 67.2% to 114.1% with the relative standard deviations ranging
from 1.5–14.0% (n = 6). The method has a sample operation system and good selectivity. It
has achieved good results in the detection of PAHs in tap water and source water. Then, the
established method was used for the determination of 17 water samples, 8 kinds, 6 kinds
and 7 kinds of PAHs were detected in source water, tap water and pipe net tap water,
respectively. These results exhibit this established method is of utility for the determination
of 16 PAHs in source water and tap water.

Wen-Wu Yang et al. [47] developed a method which can determinate simultaneously
15 kinds of PAHs in barbecued meat in whichthe toast meat samples were purchased from
different stalls in Chongqing city by using HPLC equipped with a fluorescence detection
(HPLC-FLD). Samples were ultrasonically extracted, and the extract was purified by molec-
ularly imprinted solid-phase extraction (MISPE), separated by HPLC and quantified by
external standard method. Their results showed that the concentration of 15 PAHs in
the range from 1 to 50 ng·mL−1 was linear with the chromatographic peak area with the
correlation coefficients R more than 0.9995. Average recoveries at spiking levels of 5.0, 10.0
and 25.0 µg·kg−1 ranged from 71.1% to 98.8% with relative standard deviations (RSDs)
from 1.0% to 5.8%. The LOD (S/N = 3) varied from 0.33 to 3.30 µg·kg−1 and the LOQ
(S/N = 10) from 1.0 to 10.0 µg·kg−1.

After the water sample was extracted, Xiu-Qin Wang et al. [48] built an online system
with HPLC for PAHs, then analyzed the tested substances by HPLC. Under optimum
conditions, the online analysis method provided good linearity (0.03–30 µg·L−1), low
detection limits (0.01–0.10 µg·L−1) and high enrichment factors (77.6–678). This method
was applied to determine target analytes in river water and water sample of coal ash, and
the recoveries are in the range of 80.6–106.6 and 80.9–103.5%, respectively. The recoveries
of target analytes in river water and coal ash water samples were obtained.

Although HPLC is widely used in detecting PAHs, it has still some deficiency to be
improved and perfected. First, the application of HPLC strongly depends on the detectors.
The detector with high sensitivity, low detection limit and universality plays an important
role in the detection and analysis of PAHs. Therefore, developing a suitable high-efficiency
detector may be of certain significance. Second, high-powered separation device requires
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to be further developed. Currently, HPLC combined with solid phase membrane extraction
has still some disadvantages to ameliorate, such as complicated pretreatment and expensive
instruments and reagents. More importantly, the current hybrid HPLC methods can only
show the information about the ingredients and content of various samples. However, the
relevance and tangle of different ingredients are yet hidden in raw data. Exploiting deeply
the information about the conversion, transition and synergy between different components
of PAHs will be interesting and potential for the in-depth study involving PAHs.

3.2. Gas Chromatography (GC)

Gas chromatography (GC) is one of the most versatile and ubiquitous separating
techniques in the laboratory. This instrumental method has the advantages of high se-
lectivity, high sensitivity and simple operating system, and has a good resolving effect
on the measured substances. In fact, it is widely used for the determination of organic
compounds. Although the complex mixtures of PAHs are difficult to resolve because of the
high degree of overlap in compound vapor pressures and boiling points, in recent years,
GC has still been used more and more widely to detect efficiently PAHs. For example, the
separation of benzene (boiling point 80.1 ◦C) is extremely simple by gas chromatography,
but it is virtually impossible by conventional distillation. GC has indeed performed an
indispensable role in agricultural monitoring, environmental monitoring, medical research
and food identification.

Currently, many works on PAHs are employed by using GC coupled with different
detectors. A typical kind of detector is mass spectrometer. As a highly sensitive analytical
technology, gas chromatography-mass spectrometry (GC-MS) is often used to detect volatile
and semi-volatile organic pollutants. This method combines gas chromatography and
mass spectrometry; therefore, qualitative and quantitative analysis can be carried out
simultaneously, but it is a bit hard to separate the isomers in PAHs. In the next section, we
will show that some ambient mass spectrometry combined with some a plasma technique
may be promising in directly analyzing the part isomers of PAHs.

Ming-Shan Zhang et al. [49] tested a way using a new 10 m short column of GC
combined with the gas chromatograph-mass spectrometer (GC/MS) to determine 16 PAHs,
with 5 deuterium internal standard and 2 substitutes in soil. Since the chromatograph
column is short, the whole analysis of these samples was completed within 10 min. The
rapid chromatogram is similar to that of the conventional method, but the response is
faster. The liner relationship of 16 PAHs on the rapid column is good in the range of
5.0–400 µg·L−1 with the correlation coefficient R ≥ 0.997, and the LOD is 0.04–0.38 µg·kg−1.
This method not only improves the detection efficiency, but also saves on cost.

Nam Vu-Duc et al. [50] introduced a capillary gas chromatography coupled with
electron impact ionization tandem mass spectrometry (GC-EI-MS/MS) for the analysis of
16 PAHs in some particulate matter samples with the PAHs concentration between PM
2.5 and PM 10. The samples were extracted by ultrasonic-assisted liquid extraction and
cleaned up by an acidic silica gel solid phase extraction. The linearity range of all analyzed
PAHs was from 5 to 2000 ng·mL−1 with the square correlation coefficients R2 ≥ 0.9990.
Limit of detection (LOD) of PAHs in particulate matter sample was from 0.001 ng·m−3

(2-bromonaphthalene) to 0.276 ng·m−3 (fluorene). The recoveries of PAHs in international
proficiency testing sample ranged from 79.3% (chrysene) to 109.8% (indeno 1, 2, 3-cd
pyrene). Based on the tandem mass spectrometry, they also found the main distribution of
the PAHs in particulate matter samples was two-ring and three-ring compounds.

Anna Maria Sulej-suchomska et al. [51] established a reliable and accurate analyt-
ical method also based on headspace solid-phase micro-extraction coupled with com-
prehensive two-dimensional gas chromatography with time-of-flight mass spectrometry
(GC×GC/TOF-MS) for simultaneous determination of 16 PAHs in 19 kinds of airport
runoff water. The recovery obtained by this method was 63–108%, and mostly fell within
the acceptable range for the analytical procedures. In addition, the developed proce-
dure exhibited satisfactory selectivity, accuracy and low LOD values (0.22 ng·L−1 for
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Benzo[k]fluoranthene—2.20 ng·L−1 for phenanthrene, respectively). This method can be
used to track the environmental fate of PAHs and to assess the environmental impact
of airports.

Carlos Manzano et al. [52] developed a way to improve the separation of complex
PAH mixtures (including 97 different parent, alkyl-, nitro-, oxy-, thio-, chloro-, bromo-, and
high molecular weight PAHs), using a two-dimensional GC-MS, that is GC×GC/TOF-MS,
by maximizing the orthogonality of different GC column combinations and improving the
separation of PAHs from the sample matrix interferences, including unresolved complex
mixtures. They used four different combinations of non-polar, polar, liquid crystal, and
nano-stationary phase columns, andeach column combination can be optimized. They also
evaluated each column for orthogonality using a method based on conditional entropy
that considers the quantitative peak distribution in the entire 2D space (for completed
chromatography data). Based on the approach, they analyzed the atmospheric particulate
sample of matter PM 2.5 from Beijing, China, and a soil sample and a sediment sample
from overseas for complex mixtures of PAHs. The found that the highest chromatographic
resolution, lowest synentropy, highest orthogonality, and lowest interference from UCM
were achieved by using a 10 m × 0.15 mm × 0.10 µm LC-50 liquid crystal column in the
first dimension and a 1.2 m × 0.10 mm × 0.10 µm NSP-35 nano-stationary phase column
in the second dimension. They demonstrated that the use of this column combination in
GC × GC/TOF-MS resulted in significantly shorter analysis times (176 min) for complex
PAH mixtures compared to 1D GC/MS (257 min), as well as potentially reduced sample
preparation time, while their results merely contained the information of ingredients and
contents of PAHs, without further exploring the correlations and synergy between different
components of PAHs, in other words, the 2D-dimensional data is still underexplored.

Rosimeire Resendedos Santos et al. [53] have analyzed PAHs and their nitrification
and oxidation derivatives in coffee by GC-MS. The recovery of this method was 82.1–96.3%,
and the linear relationship was good. The correlation coefficient was R2 > 0.980. This
method is easy to operate and has obvious advantages in the analysis and detection of
coffee samples.

Zhihui Wu et al. [54] collected three different slime samples from three different regions
of Xinjiang. These samples were extracted, eluted, dried and dissolved to determine the
PAHs by GC-MS. A good linear correlation coefficient is obtained by this method with
the square correlation coefficient R2 larger than 0.998. The detection limit was between
0.26 µg·kg−1 and 2.38 µg·kg−1. The study found that the higher the boiling points, the
more PAHs were enriched in the sludge. Therefore, it is hopefully promising in serving as
a useful method for testing PAHs in oil sludge.

W. Jira et al. [55] developed a GC-MS method for the analysis of 15 PAHs, including
accelerated solvent extraction and the highly automated clean-up steps gel permeation
chromatography and solid-phase extraction. In their studies, the six methylchrysene
isomers and the PAH compounds with a molecular weight of 302 Daltons in fat-containing
foods attained a better chromatographic separation with VF-17ms GC column. They also
demonstrated the reliability of the analytical method for edible oils by the results from a
proficiency test.

Except using mass spectrometer as the GC detector, there are still many works employ-
ing other traditional detectors to detect PAHs. Razieh Zakerian and Soleiman Bahar [56]
prepared a graphene coating through electrochemical exfoliation of pencil graphite and
then used it as a fiber coating for headspace solid-phase micro-extraction of PAHs from
water samples; this was performed by the GC analysis technique with a flame ionization
detector, since the flame ionization detector (GC-FID) works according to the principle of
ions released in the combustion of the sample species, if there are any organic compounds.
Under optimum conditions, the LOD range of six PAHs, including naphthalene, ranged
from 0.01 µg·L−1 to 0.09 µg·L−1, and the linear ranges extend from 0.05–50 µg·L−1. The
repeatability of the extraction process and the fiber-to-fiber reproducibility were in the
ranges of 4.3–0.2% and 7.3–9.8%, respectively.
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3.3. Capillary Electrophoresis (CE)

Capillary electrophoresis (CE) [57,58], known as high performance capillary elec-
trophoresis (HPCE), is a new type of liquid-phase separation technology with capillary as
the separation channel and high voltage dc electric field as the driving force. Actually, in
CE, there involves electrophoresis, chromatography and the cross section of the capillary
tube, and allows analytical chemistry to move from the micro-liter level to the nano-liter
level. CE has been applied to the analysis of various samples because of its rapid, higher
plate number and higher separation efficiency, economical and small injection volume,
and convenient operation. It is certain that CE has been also developed in the detection of
PAHs; moreover, CE technique can often provide the helpful supplement of GC for some
high boiling point PAHs [59]. In addition, there are some derived CE techniques, such as
micellar electrokinetic capillary chromatography (MEKC) [60,61] and parking capillary
chromatography (PCC) [62], and they have been both applied in the studies of PAHs.
However, for the sensitivity in this field, there is still plenty of room for improvement,
especially when uniting Uv–Vis spectrometry, mainly owing to the tiny capillary diameter-
making the light path too short. Maybe this can be overcome by optimizing the light path,
such as employing multi-pass and so on. The biggest deficiency for CE may be that the
reproducibility is poor due to the electroosmotic flow changing with the composition of the
sample. From this point of view, it still requires a lot of effort.

Xin Chen et al. [59] used capillary electrophoresis to detect six kinds of PAHs, including
fluoranthene and benzanthracene. After determining the optimal experimental conditions,
such as the concentration of surfactant SDS, the composition of microemulsion and the
time of high conductivity buffer HCB, they can rapidly determine the measured substance
within 27 min. This method was used for the determination of brand cosmetics, and the
recovery rate was between 90.6% and 95.9%, with the relative standard deviation of 3.3%
to 5.1%.

Ludivine Ferey et al. [63] optimized cyclodextrin-modified capillary electrophoresis
with laser-induced fluorescence detection. The utilizing of a dual CD system, involving a
mixture of one neutral CD and one anionic CD, enabled them to reach unique selectivity
and achieved the best separation effect of 19 PAHs with efficiencies superior to 1.5 × 105

in 15 min for the first time. Additionally, the detection of PAHs in edible oil and real
vegetable oil can be carried out by using internal standard with low LOQs in mg·L−1.
Importantly, the authors claimed that using umbelliferone as an internal standard with
appropriate electrolyte and sample compositions, rinse sequences and sample vial material,
they significantly improved the repeatability.

Amanda M. Stockton et al. [64] developed the Mars Organic Analyzer (MOA), a
portable microchip CE instrument to analyze laboratory standards and real-world samples
for PAHs. The LOD for the PAH components of the standard ranged from 2000 ppm to
6 ppb. This work established the viability of the MOA for detecting and analyzing PAHs in
in situ planetary exploration.

3.4. Surface Enhanced Raman Spectroscopy (SERS)

Raman spectrum [65] belongs to molecular vibration spectrum reflecting the charac-
teristic structure of molecules. However, the Raman scattering effect is an extremely weak
process, and the scattering light intensity is only about 10−10 of the incident light intensity.
Therefore, the Raman spectroscopy does work well with the surface-adsorbed species
producing some kind of enhancement effect, i.e., surface-enhanced Raman spectroscopy
(SERS) [66,67]. SERS not only has the advantage of Raman spectroscopy, but also signifi-
cantly improves the signal intensity of molecules on the basis of Raman spectroscopy. After
more than 40 years of development, SERS has been widely used in various fields by virtue
of its advantages such as convenience, low detection limit and high sensitivity. Utilizing the
adsorption of PAHs on the surface of rough noble metal substrate can markedly enhance
the Raman signal, thus, SERS is suitable for the detection of PAHs.
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Shan Wang et al. [68] had successfully used gold nanofilms as SERS substrate to
establish a method for the determination of three kinds of PAHs, such as pyrene in water
samples using SERS. The rapid detection and analysis of the sample was completed within
5 min. The LOD values for naphthalene and pyrene are 10 ng·L−1 and for m-triphenyl
is 50 ng·L−1, respectively. This detection method has a good prospect in food safety and
environmental monitoring.

Adopting a hyphenated technique combining SERS with surface micro-extraction
byusing methanol and 1-propanethiol-modified silver nanoparticles, Min Zhang et al. [69]
realized the in situ analysis of PAHs on food contact materials. In the study, the charac-
teristic vibration of the C–C bond of parathyroid hormone at 1030 cm−1 was used as the
internal standard for quantitative determination in this method, giving high uniform 1-
propanethiol-modified silver nanoparticles. In the concentration range of 0.789–158 ng·cm2,
the standardized SERS intensity showed a good linear relationship with fluoranthene con-
centration, the LOD was 0.27 ng·cm2. This detection method can realize the rapid screening
of PAHs mixtures, greatly improving the analysis efficiency.

Yong-Hyok Kronfeldt et al. [70] prepared the sol–gel matrix embedding Ag nanoparti-
cles functionalized with 25, 27-dimercaptoacetic acid-26, 28-dihydroxy-4- tert-butylcalix
(4) arene (DMCX) via thermal reduction method and applied it in the detection of PAHs
in seawater. DMCX forming the monolayer on the silver nanoparticle surface contributes
to the surface-enhanced Raman scattering (SERS) activity due to the aggregation of silver
nanoparticles and the pre-concentration of PAH molecules within the zone of electromag-
netic enhancement. A calibration procedure reveals that this type of SERS substrate has a
limit of detection of 3 × 10−10 mol·L−1 for pyrene and 1.3 × 10−8 mol·L−1 for naphthalene
in artificial seawater. The greatest feature of this method can be in situ and on-line. In 2020,
Zheng-Dong Shen et al. [71] combined an on-chip thin-layer chromatography and SERS to
identify successfully PAHs from cooking oil samples without sample pretreatment. In their
experiments, the SERS LOD can reach at 1 ng per spot.

3.5. Optical Spectrometry

Optical spectrometry is a major category of commonly used instrumental methods
covering almost all analytical and testing fields with the advantages of nondestructive and
operation easily. Optical spectrometry has been used to detect PAHs for a long time, involv-
ing mainly fluorescence spectrometry, phosphorescence spectrometry, and spectrophotome-
ter. Methodologically speaking, the former two pertain to emission spectrometry, similar to
SERS, more sensitive, while the last one belongs to absorption spectrometry.

In general, fluorescence [72] is more likely related to those molecules with specific
structures, such as planar or rigid electron-conjugated systems. PAHs are just the most
representative molecules of these types of structures. Since spectral data provide the
molecular “fingerprint” information, different PAHs have different spectral characteristics,
the detection of PAHs can be realized simultaneously by fluorescence spectroscopy.

Li-Fang He et al. [73] established a fast analytical method for simultaneous identifica-
tion of PAHs in water, in which a novel method of constant wavelength synchronous fluo-
rescence was proposed to the simultaneous determination of different PAHs in a mixture of
14 components. The linear response of this method was in the range of 0.1–1000 ng·mL−1

(R ≥ 0. 9988), and the relative standard deviations (RSD) were in the range of 1.06% –1.67%
(n = 6). The LODs were in the range of 0. 072–3.9 ng·mL−1.

Qi-Hong Cai et al. [74] established a new method for simultaneously determining five
PAHs—fluorene, benzofluorene, pyrene, benzo (a) pyrene and perylene—in dairy products
by constant-wavelength synchronous fluorescence spectrometry (CWSFS), without the
need for previous chromatographic separation of the analyte solution. After ultrasonic
extraction of the five PAHs from the dairy products using acetonitrile as the extraction
solvent, the supernatants were filtered by 0.45 µm micro-porous filter membrane and
concentrated to dry by a nitrogen dryer. They also chose the difference of wavelength (∆λ)
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40 nm in CWSFS scanning to overcome the interference from the background matrix and
between PAHs. The LODs of this method can arrive at 0.016 µg·L−1 for some PAH species.

Guo-Ying Wang et al. [75] pretreated an ultrasonic extraction method to achieve rapid
quantitative analysis of PAHs in atmosphere particles by constant energy synchronous
fluorescence spectroscopy. The fluorescence emission spectrum of PAHs can be simplified
by using constant-energy synchronous excitation, and the Rayleigh scattering interference
of the solution can be effectively solved. Quantitative analysis was performed at the optimal
energy difference for the PAHs with LOD and LOQ of 0.0580–3.18 and 0.232 –12.7 ng·mL−1,
respectively. The recoveries of the 15 PAHs in the blank and at certain concentrations
ranged from 82.8% to 120.0%, and the relative standard deviations ranged from 0.51%
to 5.87%.

However, PAHs are difficult to participate in chemiluminescence reactions, and usually
the application of fluorescence analysis and luminescence analysis in the detection of PAHs
is yet limited. Huan-Bo Wang et al. [76] established an excited-emission matrix fluorescence
array for the detection of anthracene, pyrene, fluoranthene, phenanthrene and fluorene,
but it was inevitably interfered by humic acid and falvic acid in the actual sample analysis.
Jian-Xu Li et al. [77] used silver nanoparticles to modify the titanium dioxide nanotube
electrode, and the established electroluminescence method can sensitively detect PAHs for
more than four benzene rings, but this method is difficult to detect benzene, naphthalene
and anthracene since they are not easily oxidized. Fluorescence analysis is also used by
several research groups to detect PAHs.

In principle, fluorescence and phosphorescence [78–81] can be viewed as mutual duals
because fluorescence originates from the transition of a singlet state to another singlet
state, while phosphorescence comes from the transition of a singlet state to triplet state.
Comparing with fluorescence signal, phosphorescence signal is generally much weaker,
but the lasing time is relatively longer. Based on this characteristic, the phosphorescence
can be applied in the detection of PAHs. A. Segura Carretero et al. [82] studied the
detailed characterization of the microemulsion composition, which is necessary to make
the phosphorimetry suitable as powerful analytical methodology for PHAs. They also
established a method simultaneously determined five PAHs (acenaphthene, fluoranthene,
pyrene, benz (a) anthracene and benzo (a) pyrene) by variable-angle synchronous scanning
(VASS) microemulsion phosphorimetry at room temperature [83]. In order to obtain the
optimum phosphorescence responses, a statistical model of central composite design type,
was applied. Therein, the VASS technique employed enhanced the selectivity permitting
the simultaneous determination after addition to road dust samples giving mean recoveries
of 87.6% with a relative standard deviation of 3.0% at n = 5.

In 2020, Elham Mansouri et al. [84] critically and objectively reviewed ultraviolet-
based methods especially in high-performance liquid chromatography-ultraviolet. They
mainly discussed the high-performance liquid chromatography ultraviolet-diode array
detector and ultraviolet-fluorescent detector and their applications in scientific studies to
measure polycyclic aromatic hydrocarbons concentration. The review also gives useful and
comprehensive information about valuable methods for future research on PAHs.

More traditional spectrophotometry also was used to analyze the PAHs. Additionally,
by combining with chemometrics, spectrophotometer can also make a big difference. Li-
Xin Luan et al. [85] used principal component regression analysis as well as ultraviolet
spectrophotometer to analyze the PAHs content in white oil. The total PAHs content can be
determined directly without considering the problem of spectral overlap. The recoveries of
the method fall into 92.41–99.01%.

3.6. Other Analytical Methods

Except those methods mentioned above, there are still other ones applied in the
research of PAHs, too. Here, we only give a simple comment. Electrochemistry is
also a common analytical method [86,87]. Xiao-Fang Shen et al. [88] fabricated a sen-
sor combining pre-concentration and in situ electrochemical determination based on
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electropolymerized poly(3-methylthiophene) (P3MT) to determine the concentration of
1-Hydroxypyrene, which is widely used to assess exposure to PAHs. Eric J. Moore’s
group [89] optimized the detection technology of biosensor and used linear sweep voltam-
metry to analyze phenanthrene in environmental water samples with the LOD of 1.4 ppb.
Yong-Nian Ni et al. [90] constructed a novel layer-by-layer electrochemical biosensor,
DNA/hemin/nafion–grapheme/GCE, for the analysis of the benzo (a) pyrene PAH; the
concentration in aqueous solution was determined by differential pulse voltammetry based
on the linear relationship between metabolites and concentration of benzo (a) pyrene in the
presence of hydrogen peroxide.

Nanopore technology [91] is another used in the detection of PAHs, especially benzo
(a) pyrene. In this technology, macro-molecules flow under outside pressure through the
nanopores made of insulating material to produce the blocking of the ion flow through the
holes and lead simultaneously to the instantaneous change in the conductivity of pores,
reflecting the current value by the size of the particles. The value of the change reflects
the number of biological macromolecules. Rukshan T. Perera et al. [92] constructed an
α-hemolysin (αHL) nanopore platform which can be used to detect the benzo(a) pyrene
diol epoxide adducts to guanine in synthetic oligodeoxynucleotides by producing a unique
multi-level current signature. This study presented opportunities for the monitoring,
quantification, and sequencing of mutagenic compounds from cellular DNA samples.

Molecular imprinting technology (MIT) [93] is another important analytical method,
which is used to entrap analytes of interest for the subsequent detection. Usually, it uses
molecularly imprinted polymers to simulate the interaction between enzyme–substrate
or antibody–antigen to recognize specifically printed molecules. Thus, MIT has also been
used in the analysis of PAHs. Hao Li et al. [94] performed high-selective luminescence
detection of trace PAHs based on the specificity of molecularly imprinted polymers and
magnetic separation. Phenanthrene of double benzene can be determined low limited at
3.64 ng·mL−1 by the preparation of optomagnetic multifunctional molecularly imprinted
polymers using polystyrene-methacrylic acid copolymer, hydrophobic Fe3O4 nanomaterial
and luminescent LaVO4: Eu3+ nanomaterial. Additionally, the recovery obtained by adding
phenanthrene into some milk was 97.1–101.9%.

4. Mass Spectrometry

The detection of PAHs in the environment mostly involves trace levels or ultra-trace
levels and has to face diverse complex matrixes, in which a large number of different sub-
strates interfere and coexist. Therefore, the matrix effect and the detection efficiency except
those routine indexes must be considered in developing new applicative and powerful
analytical tools. Mass spectrometry [95,96] is a measuring tool for directly determining
the molecular weight of the analyte with high sensitivity, high precise and high speed.
Owing to this fundamental nature, modern mass spectrometry is more and more widely
used in various fields related to every aspect of natural science and daily social life. A
typical early work was finished by R. Zenobi’s group [97], who employed an ionization
technique called resonance enhanced multi-photon ionization (REMPI) coupled with a
time-of-flight mass spectrometer to measure quantificationally some PAHs with three-six
benzene rings in water covering the range of 2–125 ng·L−1. The recovery ranged from
75% to 90%. Xiao-Xiang Zhang et al. [98] built a self-regulating TOF combined with the
vacuum ultraviolet photo ionization which can realize the online detection of some small
molecular PAHs.

However, early applications of mass spectrometry in the studies of PAHs may de-
pend on the tedious and fussy pretreatment procedure and the cumbersome equipment
for the ionization of analytes. A real contemporary revolution in the mass spectrometry,
especially in ion sources, was the development of ambient ionization techniques, called
ambient mass spectrometry [99,100], which not only did extend simple sample-content
testing to the in situ analysis even to surface imaging, but also enabled the ionization
of samples in their native environment without sample pretreatment and brought the
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breakthrough in the application of MS to high-through analysis. After the emergence
of the pioneered technique, desorption electrospray ionization (DESI) [101], more than
dozens of direct-ionization techniques have emerged which can meet the requirements of
being real-time, in situ, online, non-destructive, and in accordance with the new concept
of no pollution and low energy consumption. Typical ambient ion source includes direct
analysis in real time (DART) [102,103], surface desorption atmospheric pressure chemical
ionization (DAPCI) [104,105], extractive electrospray ionization (EESI) [106–108], dielec-
tric barrier discharge ionization (DBDI) [109], flowing atmospheric pressure afterglow
(FAPA) [110], etc., all of which have obtained a series of achievements in the analysis of
complex matrix samples and greatly expanded the range of analytical objects of mass
spectrometry, from various fields including metabolomics [111–113], proteomics [114,115],
forensic medicine [116,117], and quality monitoring [118].

Since the main function of ambient ion sources is to produce the analyte ions un-
der atmospheric condition, i.e., translate the neutral analyte molecules into positive and
negative ion forms. that are generating the plasma at ambient air. Among these ambient
ion sources, there are a class of ion sources directly generating the visible plasma [119],
including plasma-assisted desorption ionization (PADI) [120], low-temperature plasma
(LTP) ionization [121], microplasma discharge ionization [122], and desorption corona
beam ionization (DCBI) [123]. Among them, a remarkable high-frequency plasma source,
microwave plasma torch (MPT), was invented initially by Jin’s Group [124], and was sub-
stantially promoted by Gary M. Hieftje’s group [125]. MPT easily generated a stable and
visible flame-like plasma at atmospheric pressure and operated at commercial 2.45 GHz, by
which the plasma operation was significantly improved [126]. MPT offered a much better
analytical performance for the introduction of aqueous aerosols. At the incipient stage,
MPT were mainly used as the emission light source for atomic emission spectrometry (AES),
portable spectrometer [127,128], supercritical fluid chromatography (SFC) [129], or liquid
chromatography (LC) [130]. However, MPT processes relatively high ionization efficiency,
although less than 100%, and it also plays an important role in massspectrometry. In an
early work, Gray M. Hieftje et al. built an MPT-TOF MS for the detection of halogenated
hydrocarbons separated by a capillary gas chromatography [131]. After a long time, Ti-
Qiang Zhang as well as Zhi-Qiang Zhu [22,23,132] studied the direct desorption/ionization
approach of MPT on a linear ion trap (LTQ) mass spectrometer to analyze a series of small
organic molecules, and they showed that MPT is a useful alternative ambient ion source.
Zhi-Qiang Zhu’s group [24–26,133–136] has also completed a lot of work on the detection
of trace metal in aqueous solutions by MPT source, coupled with a mass spectrometer
(MPT-MS), reaching an in-depth understanding of the characteristics of MPT.

After that, Zhiqiang Zhu et al. turned to the studies on PAHs by MPT-MS. In this
section, we mainly presented partially interesting results on benzene and one groupof
isomers of PAHs, and provided new sights on Birch reduction, regular hydrogen addition
and molecular robustness. We also demonstrated that the MPT mass spectrometry is
promising in the quick detection of PAHs, especially in directly distinguishing some
isomers of PAHs.

4.1. MPT Mass Spectra of Benzene

Strictly speaking, benzene does not belong to PAHs, since it is merely of single ring
and is the fundamental unit of PAHs, and the knowledge on its MPT mass spectra will be
beneficial for the deep understanding of PAHs.

As early as in 2009, Na Na and R. Graham Cooks et al. [137] found the Birch reduction
in benzene, even toluene and naphthalene, in low-temperature plasma generated by a
dielectric barrier discharge (DBDI) ion source. Under their experimental conditions, the
product via Birch reduction is the major yields with about 71% productivity. Birch reduction
usually refers to the reduction in aromatic rings to 1,4-cyclohexadiene via a specific hydro-
gen addition reaction in liquid phase in the presence of sodium and alcohol, that is they
observed m/z 80 as the main peak in benzene mass spectra. In the previous studies, this
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particular kind of hydrogen addition was closely related to the aromaticity of the molecule,
a special stability due to the annular conjugated system, in which the aromatic ring firstly
attracts free electrons provided by the alkali metals and is mediated through liquid NH3
to generate energetic radicals [138]. However, the initial trigger of Birch reduction, the
free electron, is quite easily available in surrounding plasma. Therefore, Na Na’s work is
actually the first to find Birch reduction in the gas phase (more strictly, in the plasma phase)
and really provides a new technical approach to study the hydrogen addition reactions
involving PAHs. By the way, in their research, they also spent a great deal of effort verifying
that the source of H for addition in their reaction system was from a silicon wafer, but not
from benzene or ambient surrounding.

In MPT plasma, does Birch reduction still occur? In other words, is Birch reduction
unique in LTP plasma? Firstly, it is worth emphasizing on that these two kinds of plasma,
MPT and LTP, are not fully identical. The biggest one is the excitation temperature. The
excitation temperature in MPT plasma is relatively high, several hundred Kelvin up to
2000 K [138], while the corresponding one in LTP is merely at room-temperature level [139],
at which a person’s skin can withstand (that is why it was named low-temperature). Such a
huge gap in temperature is responsible for the difference in the mechanisms and products
in plasma.

Herein, Figure 1A shows the first order mass spectrum of benzene obtained by using
MPT as the mass source, coupled with a linear ion trap mass spectrometer (MPT-LTQ MS)
in positive mode. Comparing with Figure 1A, in MPT mass spectrum, there are plenty
more signals related to benzene. The first set of peaks contains m/z 78, 79 and 80, in which
the former two also disappeared in the result of Na Na et al. They are obviously assigned
to benzene cation, [M]+, protonated benzene [M+H]+ and hydrogen addition benzene
[M+2H]+, respectively. Here, M represents benzene. Noting that the intensity of the peak
m/z 80 is very weak, it seems likely that regular hydrogen addition or Birch reduction
is difficult in current conditions, i.e., in MPT plasma. However, there is a second set of
peaks comprising of m/z 81, 82 and 83, wherein the signal of m/z 81 is remarkable while
m/z 80 is very feeble, which is completely different from the result of Na Na et al. One
reasonable explanation is that the peak of m/z 81 is assigned to the protonation of the
product of benzene by hydrogen addition, [M+3H]+, and this protonation rate is so fast that
it is the spilled away from the hydrogen addition, which causes the near disappearance
of the m/z 80 ions. At present, it is not yet clear whether this hydrogen addition is just
a regular reaction or Birch reduction. Just thinking from the viewpoint of the electron
cloud configuration and π electron bonding, the product via the regular hydrogen addition
is more likely to combine easily with the additional proton to form relatively stable p-π
bond, which explains the formation of m/z 81 as well as the disappearance of m/z 80.
These possible underlying mechanisms were all illustrated in the Scheme 1 below. Of
course, there are other alternative mechanisms, such as hydrogen addition occurring in the
protonation of benzene, [M+H]+. More detail process validation and quantum chemistry
simulation are working on it. Regardless of the reaction mechanism, Figure 1 illustrates the
wide difference between the MPT and LTP mass spectra of benzene. Therefore, the former
enriches the detection methods of benzene and paves the way to the research of PAHs by
MPT mass spectrometry.

In Figure 1, the predominant signal is m/z 94 as well as the associated peaks of m/z 95
and 97, which are seemingly the parallel shift of m/z 78, 79 and 81, by pulsing an oxygen
atom. This is another distinct feature in the MPT plasma comparing with that in LTP
plasma. There are still some larger ions, that is m/z 110 and bigger ones. These bigger
ions are unclear till now, meaning some new synthetic reactions are taking place in MPT
plasma. Some possible assignments are shown in the inset. In brief, MPT mass spectrum of
benzene can present more information and insight about the details of these reactions of
PAHs in plasma.
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Figure 1B shows a second-order mass spectrum of benzene (MPT-LTQ-MS2), the
selected precursor m/z 79, [M+H]+. Additionally, the inset shows the deduced dissociative
sequences in CID (collision-induced dissociation). As shown, there are several possible
dissociative paths pointing to the finial main product, m/z 79, C4H3

+.

4.2. MPT Mass Spectra of Fluoranthene and Pyrene

Usually, directly screening the two isomers is difficult and tedious in mass spectrom-
etry. In PAHs, fluoranthene and pyrene are a pair isomer with multiple aromatic rings
with relative molecular weights 202 Da. They are both potent cocarcinogens when ap-
plied together with benzo(a)pyrene on mouse skin [140]. These two isomers are both
nonromantic since the number of π electrons is 16 and does not meet the famous Huckel’s
rule; thus, there should be no Birch reduction occurring for these two PHAs, at least in
MPT plasma. Figure 2 shows these experimental results by a MPT source coupled with a
miniature time-of-flight mass spectrometer (Guangzhou Hexin Instrument Co., Ltd., see
Figure 3 for the experimental device interface). Figure 3A is the MPT mass spectrum of
fluoranthene, in which, the main peak, m/z 202 is the molecular ion of fluoranthene, and
m/z 203 is the protonation of fluoranthene, [M+H]+. The peak possible representing Birch
reduction or hydrogen addition, m/z 204, is almost invisible. While another peak related to
hydrogen addition, m/z 205, maintains a certain intensity, which is likely to originate from
the fast protonation of m/z 204 or the hydrogen addition of the ions of m/z 203, or both.
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This phenomenon is in accord with that of benzene. On the other hand, in Figure 3B, the
MPT mass spectrum of pyreneexhibits a slightly different feature. The characteristic peaks,
including m/z 202, 203, 205, are all similar to those of fluoranthene, but the peak of m/z
205 is dominated in the range of 150–250 Th, and there are some non-negligible ions of m/z
206 and 207. Another distinct feature is that there are more abundant fragmental signals.
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The distinction of the two mass spectra can be easily explained and well consistent
with the discussions above. The signal of m/z 202, 203, 205 accrue naturally, similar
with that in benzene. The difference in abundance of these peaks between fluoranthene
and pyrene may be due to their molecular robustness. From the viewpoint of molecular
structure, though fluoranthene and pyrene are both planar molecules, pyrene’s molecular
plane is more rigid, since its four benzene rings pack closely. There is hardly any bending
vibration mode deviated from the plane (see Video S1 in Supplementary Materials). By
contrast, in fluoranthene, two benzene rings stack in turn and connect with the third
benzene ring through two carbon–carbon single bonds. This structure is flexible, with
several bending vibration modes deviated from the plane (see Video S2). Some vibration
modes and their corresponding frequencies are listed in Table S1. It is visual that rigid
molecules are prone to break and produce fragments or derivatives under collisions as
long as the collision energy is strong enough. The flexible molecules are likely to survive
in collisions at the same conditions. Therefore, it is not difficult to understand that the
fragments in Figure 3A are relatively rare, while the fragments in Figure 3B are relatively
plenty. Additionally, for the same reason, hydrogen addition is more likely to happen with
more rigid molecules; therefore, pyrene can have multiple hydrogen addition to yield m/z
206 and 207. The disappearance of m/z 204 corresponding to the direct hydrogen addition
attributes to the fast protonation to form stable p-π bond. Of course, detailed quantum
chemistry computation is still needed to validate these explanations. Nevertheless, the
MPT mass spectrometer can provide a facility to quickly screen some isomers of PAHs.
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5. Prospects

In this short article, we review the contemporary analytical methods for PAHs. The
detection of PAHs is undoubtedly important in modern social life and scientific research.
There are also many ways to detect PAHs. Unfortunately, some of them are flawed in
traditional analysis methods. For example, high performance liquid chromatography
pretreatment is excessively complicated, and the detection sensitivity of capillary elec-
trophoresis requires still to be further improved. There are some analytical methods which
have not yet played their full role. For example, GC×GC-MS, in which the data is extended
one-dimensional, is more suitable for exploring the implicit complicated relationships
between multiple factors such as synergistic competition or much higher order relations.
However, it does not exert a prominent effect and achieve a breakthrough case, although it
has become an important equipment for field atmospheric monitoring [43,141]. In addition,
it is still worth noting that there are still many novel powerful analytical approaches, such
as micro-fluidics [142,143], chemometrics [144,145], and machine learning [146,147] and
so on. These new approaches have been applied in numerous aspects of contemporary
leading-edge research. These techniques or methods all have huge potential in complex
matrix samples, while they can also be applied in the detection of PHAs. Limited to the
author’s knowledge, these methods and technologies have rarely been used in the studies
of PAHs, thus we do not mention them, regrettably. However, it is certain that they will
shine in the research of PAHs in the near future.

Completely realizing real-time and online detection and analysis at least comprises
direct sample injection and ionization technique under atmospheric pressure, as well as the
miniaturization of mass spectrometers. Ambient mass spectrometry covers the former two,
breaking through the restriction of traditional mass spectrometry in sample pretreatment
and separation as well as the necessity of ionization at high vacuum, and determines trace
substances in the complex matrix samples with high speed and high throughput. MPT
mass spectrometry has been developed with many distinct characteristics in recent years,
and initiated to the studies of PAHs in our laboratory. Based on these preliminary results,
MPT mass spectrometry is uniquely suited to the direct study of PAHs and has the potential
to provide insight to dynamic processes about Birch reduction, regular hydrogen addition
as well as molecule robustness. Meanwhile, it will have a wide application prospect in
PAHs detection, which points out a new development direction for the direct, fast detection
of some isomers of PAHs in the future.

Furthermore, there is another outstanding mass spectrometry technique, mass spec-
trometry imaging [148–152], which can play a significant role in promoting the studies of
PHAs. Compared with those common mass spectrometry techniques, mass spectrometry
imaging can not only get the content information of PAHs throughout the whole sample,
but also obtain the information about the distribution of PAHs on a media surface. These are
exactly two-dimensional data, which will greatly facilitate the studies about the migration,
aggregation and generation as well as evolution of PAHs in various media.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijerph19052790/s1, Video S1 and Video S2, and Table S1.

Author Contributions: Conceptualization, Y.Z. and Z.Z.; methodology, Y.Z., L.Y., S.H., T.J. and Z.Z.;
software, H.T. and L.L.; validation, Y.Z., L.Y. and W.X.; formal analysis, X.Z. and X.R.; investigation,
L.Y. and S.H.; resources, Z.Z.; data curation, Y.Z.; writing—original draft preparation, Y.Z. and Z.Z.;
writing—review and editing, Z.Z.; visualization, Z.Z.; supervision, Z.Z.; project administration, Z.Z.;
funding acquisition, T.J. and Z.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Chinese National Science Foundation (No.21866027), Guang-
dong International Science and Technology Cooperation Project (No.2018A050506020) and the sci-
ence and technology research project foundation of Jiangxi Provincial Department of education.
(No: GJJ190881).

https://www.mdpi.com/article/10.3390/ijerph19052790/s1
https://www.mdpi.com/article/10.3390/ijerph19052790/s1


Int. J. Environ. Res. Public Health 2022, 19, 2790 19 of 24

Acknowledgments: The corresponding authors are also grateful to the kindly discussion and assis-
tance from Guangdong Provincial Engineering Research Center for On-line Source Apportionment
System of AirPollution.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Ncube, S.; Madikizela, L.; Cukrowska, E.; Chimuka, L. Recent advances in the adsorbents for isolation of polycyclic aromatic

hydrocarbons (PAHs) from environmental sample solutions. TrAC Trends Anal. Chem. 2018, 99, 101–116. [CrossRef]
2. Kim, K.H.; Jahan, S.A.; Kabir, E.; Brown, R.J. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human

health effects. Environ. Int. 2013, 60, 71–80. [CrossRef] [PubMed]
3. Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on

human health and remediation. Egypt. J. Pet. 2016, 25, 1–17. [CrossRef]
4. Liu, L.; Liu, Y.; Lin, J.; Tang, N.; Hayakawa, K.; Maeda, T. Development of analytical methods for polycyclic aromatic hydrocarbons

(PAHs) in airborne particulates: A review. J. Environ. Sci. 2007, 19, 1–11. [CrossRef]
5. McGuire, B.A.; Loomis, R.A.; Burkhardt, A.M.; Lee, K.L.K.; Shingledecker, C.N.; Charnley, S.B.; Cooke, I.R.; Cordiner, M.A.;

Herbst, E.; Kalenskii, S.; et al. Detection of two interstellar polycyclic aromatic hydrocarbons via spectral matched filtering.
Science 2021, 371, 1265–1269. [CrossRef] [PubMed]

6. Tielens, A.G. Interstellar Polycyclic Aromatic Hydrocarbon Molecules. Annu. Rev. Astron. Astrophys. 2008, 46, 289–337. [CrossRef]
7. Ballantyne, B.; Marrs, T.; Syversen, T. General and Applied Toxicology; McGraw-Hill: New York, NY, USA, 2009.
8. Klaassen, C.D. Casarett and Doull’s Toxicology: The Basic Science of Poisons; McGraw-Hill: New York, NY, USA, 2001.
9. Mackay, D.; Callcott, D. PAHs and Related Compounds: Chemistry; Springer: Berlin/Heidelberg, Germany, 1998.
10. Gelboin, H.V. Polycyclic Hydrocarbons and Cancer. In A Subsidiary of Harcourt Brace Jovanovich; Academic Press: New York, NY,

USA; San Francisco, CA, USA; London, UK, 1978; Volume 1.
11. Futagaki, S.K. Petroleum Refinery Wokers Exposure To PAHs at Fluid Catalytic Cracker, Coker, and Asphalt Procssing Units; U. S.

Department of Health and Human Services Publica Health Service: Cincinnati, OH, USA, 1983.
12. Zhang, J.Y.; Yu, F.; Yu, Y. Content and source apportionment of polycyclic aromatic hydrocarbons in surface soil in major areas of

China. Ecol. Environ. Sci. 2017, 26, 1059–1067.
13. Jiao, H.; Rui, X.; Wu, S.; Bai, Z.; Zhuang, X.; Huang, Z. Polycyclic Aromatic Hydrocarbons in the Dagang Oilfield (China):

Distribution, Sources, and Risk Assessment. Int. J. Environ. Res. Public Health 2015, 12, 5775–5791. [CrossRef] [PubMed]
14. Liu, Y.; Yan, C.; Ding, X.; Wang, X.; Fu, Q.; Zhao, Q.; Zhang, Y.; Duan, Y.; Qiu, X.; Zheng, M. Sources and spatial distribution of

particulate polycyclic aromatic hydrocarbons in Shanghai, China. Sci. Total Environ. 2017, 584–585, 307–317. [CrossRef]
15. Frederica, P.; Deliang, T.; Robin, W.; Ann, L.S.; Wieslaw, J. DNA damage from polycyclic aromatic hydrocarbons measured by

benzo[a]pyrene-DNA adducts in mothers and newborns from Northern Manhattan, the World Trade Center Area, Poland, and
China. Cancer Epidemiol. Biomark. Prev. A Publ. Am. Assoc. Cancer Res. Cosponsored By Am. Soc. Prev. Oncol. 2005, 14, 3.

16. Jedrychowski, W.; Perera, F.P.; Tang, D.; Stigter, L.; Mroz, E.; Flak, E.; Spengler, J.; Budzyn-Mrozek, D.; Kaim, I.; Jacek, R. Impact of
barbecued meat consumed in pregnancy on birth outcomes accounting for personal prenatal exposure to airborne polycyclic
aromatic hydrocarbons: Birth cohort study in Poland. Nutrition 2012, 28, 372–377. [CrossRef] [PubMed]

17. Drwal, E.; Rak, A.; Gregoraszczuk, E.L. Review: Polycyclic aromatic hydrocarbons (PAHs)—action on placental function and
health risks in future life of newborns. Toxicology 2019, 411, 133–142. [CrossRef] [PubMed]

18. Zedeck, M.S. Polycyclic aromatic hydrocarbons: A review. J. Env. Pathol. Toxicol. 1980, 3, 537–567.
19. Ramesh, A.; Harris, K.J.; Archibong, A.E. Chapter 40, Reproductive toxicity of polycyclic aromatic hydrocarbons. In Reproductive

and Developmental Toxicology, 2nd ed.; Gupta, R.C., Ed.; Elsevier, Academic Press: Cambridge, MA, USA, 2017.
20. Nie, S.W.; Xu, C.T. The research actualities of aryl hydrocarbon receptor and harm to human body. Med. Recapitul. 2011, 17, 24–26.
21. Ghosal, D.; Ghosh, S.; Dutta, T.K.; Ahn, Y. Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic

Hydrocarbons (PAHs): A Review. Front. Microbiol. 2016, 7, 1369. [CrossRef]
22. Zhang, T.; Zhou, W.; Jin, W.; Zhou, J.; Handberg, E.; Zhu, Z.; Chen, H.; Jin, Q. Direct desorption/ionization of analytes by

microwave plasma torch for ambient mass spectrometric analysis. J. Mass Spectrom. 2013, 48, 669–676. [CrossRef] [PubMed]
23. Jiang, T.; Peng, Z.; Xie, M.; Fang, X.; Hong, Y.; Huang, Z.; Gao, W.; Zhou, Z.; Li, L.; Zhu, Z. Rapid analysis of tetracycline in honey

by microwave plasma torch mass spectrometry with ablation samples. Anal. Methods 2020, 12, 535–543. [CrossRef]
24. Yang, J.; Zheng, M.; Liu, Q.; Zhu, M.; Yang, C.; Zhang, Y.; Zhu, Z. The Study of Titanium and Zirconium Ions in Water by

MPT-LTQ Mass Spectrometry in Negative Mode. Int. J. Environ. Res. Public Health 2017, 14, 1129. [CrossRef]
25. Jiang, T.; Jiang, F.; Liu, H.; Yuan, L.; Mo, T.; Huang, Z.; Li, X.; Li, L.; Zhu, Z.; Zhou, Z. An easy and simple kilowatt-MPT-MS-based

metal elements analysis method for rapid environmental water monitoring: An example from Poyang Lake of China. Arab. J.
Chem. 2020, 13, 7939–7952. [CrossRef]

26. Jiang, T.; Jiang, F.; Zhuo, Z.; Liu, H.; Hu, B.; Li, M.; Li, L.; Huang, Z.; Zhou, Z.; Zhu, Z. Comparative study on a kilowatt-MPT-MS-
based method with two ion polarity modes for the inert palladium metal. Analyst 2021, 146, 1760–1771. [CrossRef]

http://doi.org/10.1016/j.trac.2017.12.007
http://doi.org/10.1016/j.envint.2013.07.019
http://www.ncbi.nlm.nih.gov/pubmed/24013021
http://doi.org/10.1016/j.ejpe.2015.03.011
http://doi.org/10.1016/S1001-0742(07)60001-1
http://doi.org/10.1126/science.abb7535
http://www.ncbi.nlm.nih.gov/pubmed/33737489
http://doi.org/10.1146/annurev.astro.46.060407.145211
http://doi.org/10.3390/ijerph120605775
http://www.ncbi.nlm.nih.gov/pubmed/26016436
http://doi.org/10.1016/j.scitotenv.2016.12.134
http://doi.org/10.1016/j.nut.2011.07.020
http://www.ncbi.nlm.nih.gov/pubmed/22079395
http://doi.org/10.1016/j.tox.2018.10.003
http://www.ncbi.nlm.nih.gov/pubmed/30321648
http://doi.org/10.3389/fmicb.2016.01369
http://doi.org/10.1002/jms.3212
http://www.ncbi.nlm.nih.gov/pubmed/23722957
http://doi.org/10.1039/C9AY01887E
http://doi.org/10.3390/ijerph14101129
http://doi.org/10.1016/j.arabjc.2020.09.024
http://doi.org/10.1039/D0AN02071K


Int. J. Environ. Res. Public Health 2022, 19, 2790 20 of 24

27. Jung, K.H.; Yan, B.; Moors, K.; Chillrud, S.N.; Perzanowski, M.S.; Whyatt, R.M.; Hoepner, L.; Goldstein, I.; Zhang, B.; Camann, D.;
et al. Repeated exposure to polycyclic aromatic hydrocarbons and asthma: Effect of seroatopy. Ann. Allergy Asthma Immunol. Off.
Publ. Am. Coll. Allergy Asthma Immunol. 2012, 109, 249–254. [CrossRef] [PubMed]

28. Bi, X.; Sheng, G.; Tan, J.; Tang, X.; Fu, J. Phase partitioning of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere. Acta
Sci. Circumstantiae 2004, 1, 101–106.

29. Ji, G.; Gu, J.; Guo, M.; Wu, G.; Shi, L. Pollution Characteristics and Health Risk Assessment of Atmospheric PAHs in Typical
Areas in Nanjing City. Environ. Monit. 2021, 13, 87–92.

30. Liu, S.; Lu, Y.; Wang, T.; Xie, S.; Jones, K.C.; Sweetman, A.J. Using gridded multimedia model to simulate spatial fate of
Benzo[α]pyrene on regional scale. Environ. Int. 2014, 63, 53–63. [CrossRef]

31. Wang, K.; Wang, W.; Liu, X.; Li, J.; Chen, Y.; Li, J.; Yang, W.; Ge, M. Research progress of intermediate volatility organic compounds.
Environ. Chem. 2021, 40, 2960–2978.

32. Gardner, B.; Hewitt, N.C.; Jones, C.K. PAHs in Air Adjacent to Two Inland Water Bodies. Environ. Sci. Technol. 1995, 29, 2405–2413.
[CrossRef] [PubMed]

33. Yue, M.; Gu, X.X.; Zou, H.; Zhu, R.H.; Su, W.B. The hazards and prevention of polycyclic aromatic hydrocarbons. J. Cap. Norm.
Univ. Nat. Sci. Ed. 2003, 24, 40–44.

34. Li, Y.; Wu, A.; Tong, M.; Luan, S.; Li, Z. Emission Characteristics of Gas- and Particle- Phase Polycyclic Aromatic Hydrocarbons
from Cooking. Environ. Sci. 2021. [CrossRef]

35. Sun, T.; Ye, B.; Wang, Y.Y.; Chen, Y. Pollution of PAHs in China’s Lakes and Its Source Apportionment: A Review. Environ. Sci.
Technol. 2020, 43, 151–160.

36. Edwards, N.T. Polycyclic Aromatic Hydrocarbons (PAH’s) in the Terrestrial Environment—A Review. J. Environ. Qual. 1983, 12,
427–441. [CrossRef]

37. Ge, C.; Yu, H. The environmental behaviors of polycyclic aromatic hydrocarbons (PAHs) in the soil. Chin. J. Eco-Agric. 2016, 14,
162–165.

38. Tian, Z.; Liu, X. Influence of polycyclic aromatic hydrocarbons (PAHs) from the environment on organisms and their bioremedia-
tion effect. Environ. Sci. Technol. 2018, 41, 79–89.

39. Chiou, C.; McGroddy, S.; Kile, D. artition Characteristics of Polycyclic Aromatic Hydrocarbons on Soils and Sediments. Environ.
Sci. Technol. 1998, 32, 264–269. [CrossRef]

40. Shang, N.; Yu, H.; Li, M.; Qin, Y.; Huang, C.; Wang, Q. PAHs in leaves of camphor trees in cities’ green belts: Accumulation and
source apportionment. Environ. Sci. Technol. 2021, 44, 91–98.

41. Li, Y.T.; Li, F.B.; Chen, J.J.; Yang, G.Y.; Wan, H.F.; Zhang, T.B.; Zeng, X.D.; Liu, J.M. The concentrations, distribution and sources of
PAHs in agricultural soils and vegetables from Shunde, Guangdong, China. Environ. Monit. Assess. 2008, 139, 61–76. [CrossRef]

42. Liao, X.; Liu, Q.; Li, Y.; Gong, X.; Cao, H. Removal of polycyclic aromatic hydrocarbons from different soil fractions by persulfate
oxidation. J. Environ. Sci. 2019, 78, 239–246. [CrossRef]

43. Shen, Y. Study on Remediation of PAHs Pollution in Soil and Water Environment based on Biological Mud Method. Environ. Sci.
Manag. 2019, 44, 111–114.

44. Pandey, S.K.; Kim, K.; Brown, R.J.C. A review of techniques for the determination of polycyclic aromatic hydrocarbons in air.
TrAC Trends Anal. Chem. 2011, 30, 1716–1739. [CrossRef]

45. Christian, G.D.; Dasgupta, P.K.S.; Schug, K.A. Analytical Chemistry, 7th ed.; John Wiley & Sons Inc.: Hoboken: NJ, USA, 2014.
46. Wang, J.L.; Zhang, N.H.; Ying, Y.; Tian, C.X.; Feng, L.; Wu, P.G.; Wang, Z.Y.; Han, J.L. Simultaneous determination of 16 polycyclic

aromatic hydrocarbons insource water and tap water by performance liquid chromatography with ultraviolet detector tandem
fluorescence detector combined with solid phase extraction. J. Hyg. Res. 2020, 49, 480–485.

47. Yang, W.W.; Tan, S.Z.; Guo, Y.; Zhou, N. Determination of 15 Polycyclic Aromatic Hydrocarbons in Barbecued Meat by Molecularly
Imprinted Solid-Phase Extraction Combined with High Performance Liquid Chromatography-Fluorescence Detection. Meat Res.
2018, 32, 47–52.

48. Wang, X.; Feng, J.; Bu, Y.; Tian, Y.; Luo, C.; Sun, M. Mesoporous titanium oxide with high-specific surface area as a coating
for in-tube solid-phase microextraction combined with high-performance liquid chromatography for the analysis of polycyclic
aromatic hydrocarbons. J. Sep. Sci. 2017, 40, 2474–2481. [CrossRef] [PubMed]

49. Zhang, M.; Li, T.; Wang, H.; Ye, Y.; He, S.H.; Cao, X.C. Rapid determination of 16 polycyclic aromatic hydrocarbons in soil by gas
chromatography-mass spectrometry. Environ. Chem. 2020, 39, 2321–2324.

50. Vu-Duc, N.; Thi, L.A.P.; Le-Minh, T.; Nguyen, L.; Nguyen-Thi, H.; Pham-Thi, L.; Doan-Thi, V.; Le-Quang, H.; Nguyen-Xuan, H.;
Nguyen, T.T.; et al. Analysis of Polycyclic Aromatic Hydrocarbon in Airborne Particulate Matter Samples by Gas Chromatography
in Combination with Tandem Mass Spectrometry (GC-MS/MS). J. Anal. Methods Chem. 2021, 2021, 6641326. [CrossRef] [PubMed]
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