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Abstract: (1) Background: The coronavirus 2019 (COVID-19) pandemic has caused multiple waves
of cases and deaths in the United States (US). The wild strain, the Alpha variant (B.1.1.7) and the
Delta variant (B.1.617.2) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were
the principal culprits behind these waves. To mitigate the pandemic, the vaccination campaign
was started in January 2021. While the vaccine efficacy is less than 1, breakthrough infections were
reported. This work aims to examine the effects of the vaccination across 50 US states and the District
of Columbia. (2) Methods: Based on the classic Susceptible—Exposed—Infectious–Recovered (SEIR)
model, we add a delay class between infectious and death, a death class and a vaccinated class. We
compare two special cases of our new model to simulate the effects of the vaccination. The first case
expounds the vaccinated individuals with full protection or not, compared to the second case where
all vaccinated individuals have the same level of protection. (3) Results: Through fitting the two
approaches to reported COVID-19 deaths in all 50 US states and the District of Columbia, we found
that these two approaches are equivalent. We calculate that the death toll could be 1.67–3.33 fold
in most states if the vaccine was not available. The median and mean infection fatality ratio are
estimated to be approximately 0.6 and 0.7%. (4) Conclusions: The two approaches we compared were
equivalent in evaluating the effectiveness of the vaccination campaign in the US. In addition, the
effect of the vaccination campaign was significant, with a large number of deaths averted.

Keywords: COVID-19; reinfection; breakthrough infection; vaccination effectiveness

1. Introduction

The devastating COVID-19 pandemic, which caused by SARS-CoV-2, has provoked
substantial infections and deaths in the US since its first case was confirmed on 21 January
2020 [1]. As of 24 December 2021, there have been 51,092,599 confirmed cases of COVID-19
with 803,744 deaths in the US reported to the WHO [2].

Overall, there were several waves of COVID-19 in the US, as shown in Figure 1. The
initial stage was caused by the rapid spread of the wild strain, followed by the co-circulation
of the wild strain and the Epsilon variant. The Epsilon variant was detected for the first
time in California, USA, in July 2020 [3]. The Alpha variant, which was estimated to be
40–80% and more transmissible than the wild strain [4,5], replaced both the wild strain and
the Epsilon variant and was finally replaced by the Delta variant. The Delta variant was
first identified in India in December 2020 [6]. According to the Centers for Disease Control
(CDC) tracking, the proportion of Delta variant infections among all samples sequenced in
the US rose from nearly zero to nearly 100% during May 2020 and August 2021 due to the
high infectivity of the variant. It was necessary and effective to take some interventions to
mitigate the pandemic.

Iwasaki [14] detailed a case of SARS-CoV-2 reinfection in the US. However, the risk
of reinfection in the US has been reported relatively rarely. The CDC COVID-19 Vaccine
Breakthrough Case Investigations Team [15] counted 10,262 breakthrough infections re-
ported to the CDC in the US, which accounted for 1% of the fully vaccinated population,

Int. J. Environ. Res. Public Health 2022, 19, 2282. https://doi.org/10.3390/ijerph19042282 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph19042282
https://doi.org/10.3390/ijerph19042282
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0001-8339-5965
https://orcid.org/0000-0003-3253-654X
https://doi.org/10.3390/ijerph19042282
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph19042282?type=check_update&version=1


Int. J. Environ. Res. Public Health 2022, 19, 2282 2 of 12

from 1 January to 30 April 2021. Similarly, the degree of risk reduction for breakthrough
infection versus initial COVID-19 infection is still controversial. To make conclusions
about the risk of reinfection and breakthrough infection clearer, we conducted a systematic
review of all relevant literatures published in PubMed through December 2021. As shown
in Tables 1 and 2, we concluded that the weighted average risk of reinfection and break-
through infection decreased by 90.39 and 81.59%, respectively, compared with the risk of
first-time infection.
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Figure 1. COVID-19 deaths [7,8], stringency index, vaccine coverage [9], and variant proportions 
[10–13] in the US. (a) Red empty circles (and black squares) represent the weekly excess deaths (and 
reported COVID-19 deaths) in the US. Excess deaths well match reported deaths, showing the high 
quality of death data. The red bold curve represents the percentage of fully vaccinated individuals, 
and the blue thin curve represents the stringency index which is a measure of control measure and 
population compliance. (b) Biweekly reported proportions of samples sequenced in the US. Overall, 
the Alpha variant replaced the wild strain, and subsequently, the Delta variant replaced the Alpha 
variant. 
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To date, vaccine findings in reducing SARS-CoV-2 infection and mortality have not 
been uniform. Tartof et al. [16] investigated more than 3 million electronic health records 
between December 2020 and August 2021, and concluded that for fully vaccinated indi-
viduals, effectiveness against SARS-CoV-2 infection was 73% (95% confidence interval 
(CI): 72–74) and decreased from 88% (95% CI: 86–89) to 47% (95% CI: 43–51) from the first 
to the fifth month after full vaccination. Thompson et al. [17] highlighted that under real-

Figure 1. COVID-19 deaths [7,8], stringency index, vaccine coverage [9], and variant proportions [10–13]
in the US. (a) Red empty circles (and black squares) represent the weekly excess deaths (and reported
COVID-19 deaths) in the US. Excess deaths well match reported deaths, showing the high quality
of death data. The red bold curve represents the percentage of fully vaccinated individuals, and the
blue thin curve represents the stringency index which is a measure of control measure and population
compliance. (b) Biweekly reported proportions of samples sequenced in the US. Overall, the Alpha
variant replaced the wild strain, and subsequently, the Delta variant replaced the Alpha variant.

To date, vaccine findings in reducing SARS-CoV-2 infection and mortality have not
been uniform. Tartof et al. [16] investigated more than 3 million electronic health records
between December 2020 and August 2021, and concluded that for fully vaccinated individuals,
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effectiveness against SARS-CoV-2 infection was 73% (95% confidence interval (CI): 72–74) and
decreased from 88% (95% CI: 86–89) to 47% (95% CI: 43–51) from the first to the fifth month
after full vaccination. Thompson et al. [17] highlighted that under real-world conditions, the
mRNA vaccine was 90% effective in preventing SARS-CoV-2 infection in fully vaccinated
individuals and up to 80% effective in partially vaccinated individuals. Through an event-
study analysis, Li et al. [18] found that a phased approach to vaccination contributed to the
reduction of the daily growth rate of COVID-19 cases in US. Blaiszik et al. [19] estimated
from RT-PCR COVID-19 test data that the effect of Delta variant on vaccine efficacy was
almost negligible.

Up to now, many works on the impact of COVID-19 and the efficacy of different
interventions in the US have been published. Zou et al. [20] proposed a new epidemic
model (SuIER) trained by machine learning algorithms to forecast the spread of COVID-19
in the US. They proposed that this model would provide accurate short-term (daily ahead)
predictions of confirmed cases and deaths at the national and state levels, and the model
predicted rapid increases of both in the long term. Reiner et al. [21] applied a deterministic
SEIR compartmental framework to model possible COVID-19 infection trajectories and
the effects of nonpharmaceutical interventions (NPIs) in the US at the state level from
22 September 2020 to 28 February 2021. Their findings indicated that the US may face a
continued public health challenge from the COVID-19, and universal mask use could serve
as a priority life-saving strategy in all states. They also suggested that new epidemics and
resurgences are not inevitable.

As was predicted, there was a sustained resurgence in the transmission of COVID-19
that occurred in mid-2020 in the US. Monod et al. [22] incorporated the mobility data into
a Bayesian contact-and-infection model. The results suggested that adults aged 20 to 49,
especially those aged 35 to 49, contributed the most to resurgent COVID-19 epidemics.
They also stated that additional interventions among adults aged 20 to 49, such as mass vac-
cination with transmission-blocking vaccines, could bring resurgent COVID-19 epidemics
under control and avert deaths.

The US government has implemented many NPIs to reduce the rapid spread of
COVID-19; however, the effectiveness of NPIs remains unclear. Singh et al. [23] used
difference-in-differences methods to evaluate the impacts of implementing and lifting NPIs
in US counties. Liu et al. [24] applied an established network-driven epidemic dynamic
model to forecast the transmission of COVID-19 and the effectiveness of containment
strategies. Courtemanche et al. [25] used an event study method to estimate the impact of
social distance measures on the rate of growth of confirmed cases of COVID-19. The positive
effect of NPIs on preventing the spread of COVID-19 was ascertained by all above papers.

Besides the NPIs, the mass vaccination with transmission-blocking vaccines is another
effective intervention against the prevalence of COVID-19. Moghadas et al. [26] developed
an agent-based model to analyze the impact of vaccinations on ongoing COVID-19 out-
breaks in the US. This study showed that COVID-19 vaccines with 95% efficacy against
this epidemic could amazingly reduce the attack rates across all age groups, the number
of infections, and deaths. Using an age-structure model, Shim [27] found that vaccination
program prevented more than 40% of deaths in South Korea.

Many models have been proposed to analyze the impact of vaccination against
COVID-19 [28]. However, previous models tend to be complicated and require many
free parameters. While according to classic model selection theory, a useful model must
have as few as possible free parameters [29,30]. Based on our previous work, we propose a
model which incorporates vaccination. In particular, we note that there are two approaches
to model the population level effect of vaccination. Through fitting our model to 51 states
and regions in the US, we showed that the two approaches are equivalent. Furthermore,
we calculate the lives saved due to vaccination across the US.
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2. Methods

The classic SEIR model has been used by Song et al. [31,32] to study the impact
of vaccination campaigns on COVID-19 epidemics in India and other countries in East
Asia and Southeast Asia. In this article, we apply this model and evaluate the effects of
vaccination in the US through two different approaches.

Table 1. Comparison of studies assessing the degree of reduction in risk of reinfection compared to
primary infection (namely, the protective effects of infection-induced immunity).

Setting Percent Reduction
in Reinfection Country Sample Size Follow-Up

Rovida et al. [33] 0.74 Italy 9610 6 months
Lumley et al. [34] 0.89 United Kingdom 12,541 7.3 months

Hall et al. [35] 0.841 England 25,661 9.3 months
Hansen et al. [36] 0.805 Denmark 525,339 10.1 months
Vitale et al. [37] 0.94 Italy 15,075 9.3 months

Hanrath et al. [38] 1 England 11,175 8.3 months
Pilz et al. [39] 0.91 Austria 8,900,480 9.3 months

Gallais et al. [40] 0.96 France 1309 12 months
Leidi et al. [41] 0.94 Switzerland 1496 8.2 months

Kohler et al. [42] 0.78 Switzerland 2712 7.9 months
weighted average 0.9039

Table 2. Comparison of studies assessing the degree of reduction in risk of breakthrough infection
compared to primary infection (namely, the protective effects of vaccine-induced immunity).

Setting
Percent Reduction
in Breakthrough

Infection
Country Sample Size Follow-Up

Rovida et al. [43] 0.86 Italy 4066 3.7 months
Santacatterina et al. [44] 0.91 USA 3975 3.9 months

Fowlkes et al. [45] 0.8 USA 7112 8 months
Naito et al. [46] 0.765 Japan 8749 6 months

weighted average 0.8159

S, E, I, H, D, R, and SV denote the proportion of individuals who are susceptible,
exposed, infectious, severe cases, dead, recovered, and fully vaccinated but weaker suscep-
tible, respectively. η denotes the proportion of fully protected after vaccination (a proxy of
the vaccination efficacy after the second dose). ψ denotes a reduced susceptibility of fully
vaccinated individuals. Parameters σ, γ, κ denote the rate of exposure to infectiousness, loss
of infectiousness, and severe cases leaving the severe stage, respectively. Parameters π and θ
denote the ratios of infectious individuals entering H class, and individuals in H entering D
class. The time-varying β(t) is assumed to be an exponential cubic spline with the number of
nodes nβ. In our model, we follow the valuation of parameters by Song et al. [31,32].

We assume π = θ, nβ = 9, σ = 0.5/day, γ = 0.33/day and κ = 0.125/day.
The model equations are:

.
S = −βSI − ṽS (1)

.
SV = (1 − η)ṽS − ψβSV I (2)

.
E = βI(S + ψSV)− σE (3)

.
I = σE − γI (4)

.
H = πγI − κH (5)

.
D = θκH (6)
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.
R = ηṽS + (1 − π)γI + (1 − θ)κH (7)

The vaccine efficacy is:

1 − (1 − η)ψ = η + (1 − η)(1 − ψ) (8)

Namely, we move η proportion of vaccinated to R class, and the 1 − η proportion to
SV class, with a reduced relative susceptibility ψ as those susceptible in S. We argue that
the effects of ψ and η are exchangeable. To confirm this, we consider two special cases to
model the effect of vaccination: (i) ψ = 1, η = 0.85; (ii) ψ = 0.15, η = 0.

The detailed fitting procedure of our model is well documented at https://kingaa.
github.io/sbied/ (accessed on 5 December 2021).

3. Results

We show the fitting and simulation results for the 12 states in the US with the largest
number of people in Figures 2 and 3, where the red circles, green curves, and black
curves represent the number of reported severe acute respiratory infection (SARI) deaths,
simulated deaths under the true scenario, and the counterfactual scenario of that without
vaccination, respectively. The blue dashed line indicates the estimated transmission rate
β(t)/γ. We estimate that the median IFR was about 0.6% and the mean was about 0.7%.
The green curves were highly fitted to the number of reported deaths in each state, which
indicated that our model-fitting results are ideal. The spacing of the green and black curves
is highly significant in each state, suggesting that the vaccination campaign is very helpful
in controlling the epidemic in the US.

As shown in Figure 4, by comparing the ratios of the estimated total number of deaths
in the counterfactual scenario to the true scenario, we found that the results for both
approaches are almost identical, and imply that vaccinated individual has a relative risk
of infection of 1 − η (in the first approach) or ψ (in the second approach) compared to a
non-vaccinated individual.

We show the results for the other 38 US states and the District of Columbia in the
Supplementary Materials. Figures S1 and S2 represent the fits for the second approach, and
Figure S3 shows the ratio of total deaths predicted for the two scenarios corresponding to
the two approaches. The conclusions are consistent with the 12 states we show in the main
text. In addition, we visualize the reported daily number of cases and deaths for each state
in the US in Figures S4 and S5.

Tables 1 and 2 list the studies on the protective effects of infection-induced immunity
and vaccine-induced immunity. By weighting, we derived a 90.39% reduction in the risk
of reinfection and an 81.59% reduction in the risk of breakthrough infection compared
to primary infection, respectively. Tables 1 and 2 justified our model assumption on
reinfection, namely reinfection in the short time interval (i.e., one year) before the invasion of
Omicron variant is insignificant, thus reinfection was ignored. The breakthrough infection
is modeled by allowing a proportion of vaccinated individuals staying the susceptible pool
(in the first approach) or all vaccinated individuals moving to a susceptible pool with a
reduced susceptibility.

https://kingaa.github.io/sbied/
https://kingaa.github.io/sbied/
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timated transmission rate. 
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Figure 2. Fitting results under case 1. Panels (a–l) The model fit for the 12 most populous states
in the US applying the first approach, respectively. Brown curves in the top of the panel show the
vaccination (fully vaccinated) in each state. Red circles and green curves are observed and simulated
(median, based on 1000 stochastic simulation runs) COVID-19 deaths. The black curve shows the
simulated median under the scenario without vaccination. The blue dashed curve indicates the
estimated transmission rate.
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Figure 3. Fitting results under case 2. Panels (a–l) sowed the model fit for the 12 most populous
states in the US applying the second approach, respectively. Others are the same as Figure 2.
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Figure 4. The ratio of estimated total deaths in the two scenarios for the 12 states in US with the
highest population size fitted under the two approaches. Case 1 (ψ = 1, η = 0.85) and Case 2
(ψ = 0.15, η = 0) are the two special cases we listed in the Methods section.

4. Discussion

The US has experienced multiple waves of COVID-19 epidemics since February 2020.
The US government has adopted approaches including NPIs and vaccination campaigns
to mitigate and control the spread of the epidemic. To enable a clear analysis of the
effectiveness of vaccination in the US, we combine the model of Song et al. [31,32] and
propose two different approaches to modeling.

Hansen et al. [36] emphasized that the protective effect of prior infection against
reinfection remained undiminished for more than 7 months based on a national dataset.
However, Edridge et al. [47] highlighted that reinfection with the same seasonal coron-
avirus often occurred within 12 months of infection. Wangari et al. [48] proposed a model
with a mechanism of reinfection transmission and emphasized that reinfected individuals
would eventually lead to an increase in cumulative reported deaths. Coutinho et al. [49]
estimated the transmissibility and reinfection of the P.1 (Gamma) variant based on an
extended SEIR model and public health data, and derived a reinfection rate for P.1 variant.
However, neither model [48,49] takes into account the possibility of reducing infectivity
and pathogenicity of reinfected individuals, which may overestimate the severity of re-
infection. Although there are certain cases of reinfection [14], the number is small with
the under-reporting into consideration. In addition, previous works showed that prior
infection provides nearly 90% protection against reinfection (for most variants prior to
the Omicron variant). Therefore, in our model, we assume that the risk of reinfection is
negligible for variants prior to the Omicron variant.
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How to model the effect of vaccination is a difficult task in the COVID-19 modeling.
We aim to show this problem in this aspect by comparing two approaches. To date, results
from both clinical trials [50] and real-world data analysis [51] confirm the effectiveness
of the vaccine (e.g., BNT162b2 vaccine) to be as high as 95% in the short term after the
second dose. However, it is possible that the immunity produced by the vaccine will
diminish over time. Mizrahi et al. [52] conducted a cohort study using data from Israel’s
second-largest health organization and found that people who were vaccinated later had a
significantly lower risk of contracting SARS-CoV-2 than those who were vaccinated earlier.
In addition, the results of our literature review similarly suggest that studies with longer
follow-up found a higher risk of breakthrough infection. In our model, we considered only
individuals who received two doses of vaccine and ignored those who received only one
dose. The population-level effect of the first dose should be taken over by that of the second
dose [53]. Based on these considerations, we assume it is reasonable to take η to be in the
range of 80–90%.

Unwin et al. [54] used a Bayesian hierarchical semi-mechanical framework that incor-
porated an autoregressive term capturing non-mobility-driven behavior to jointly model
state-level epidemics in the US. Their model fitted the daily number of cases and deaths
well for each state from February to June 2020. However, our model is much simpler, and
we fitted 1 year and 8 months covering all waves of epidemics caused by COVID-19 in each
state, compared with only 4 to 5 months in their work.

Moghadas et al. [26] used an agent-based SARS-CoV-2 transmission model parame-
terized by the US demographics and age-specific COVID-19 results, yielding an overall
incidence reduction from 9.0 to 4.6% and a 69.3% reduction in the risk of death at 300 days
post-vaccination. This is comparable to our findings, and we emphasize that the vaccination
campaign has saved a large number of American lives, particularly between August and
November 2021, by reducing the threat of the delta variant to the US. Although there was
some variation across states, the number of deaths in most states could be 1.67–3.33 fold
if the vaccine was not available, namely, most states reduced deaths by 40–70% through
vaccination campaigns.

The strengths of our study are: first, we successfully fit a simple model with time-
varying transmission and vaccination to multiple death waves in the US states from
February 2020 to November 2021 at the state level; second, we consider two approaches
to model vaccination and demonstrate that the two approaches are equivalent, which
leads to the development of a unified model framework in assessing the effectiveness of
vaccination in other places; third, our model is simple and has fewer free parameters than
those of previous works modeling COVID-19 and vaccination. The drawbacks of our study,
including the absence of reinfection, may lead to overestimating IFR. In addition, we only
considered the second dose vaccination and ignored the impact of the first dose vaccination
(which should be overtaken by the second dose quickly) [53]. A similar framework has
been used in short-term forecasting [32] and modeling of the Omicron variant and other
variants [55,56].

5. Conclusions

Based on the classic SEIR model, we proposed an SEIHDRSV model and compared
two different approaches to model the effects of vaccination. We concluded that the
two approaches are equivalent. Either transferring fully vaccinated individuals to the
recovered class in a certain proportion or transferring all of them to the class with reduced
susceptibility to infection is feasible, which is useful for the development of a unified
vaccination modeling framework and be used in other places. In addition, we emphasize
that the vaccination campaign has saved a large number of American lives before the
invasion of the Omicron variant.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijerph19042282/s1, Figure S1: Applying the second approach, the
model fit for the other 19 US states and the District of Columbia. Others are the same as Figure 2;
Figure S2: Applying the second approach, the model fit for the other 19 US states. Others are the
same as Figure 2; Figure S3: Ratios of estimated total deaths in the two scenarios for the other 38 US
states and the District of Columbia fitted under the two approaches; Figure S4: Daily number of cases
from SARS-CoV-2 in all 50 US states and the District of Columbia from March 2020 to November
2021; Figure S5: Daily number of deaths from SARS-CoV-2 in all 50 US states and the District of
Columbia from March 2020 to November 2021.
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