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Abstract: In recent years, machine learning models facilitated notable performance improvement in
landslide displacement prediction. However, most existing prediction models which ignore landslide
data at each time can provide a different value and meaning. To analyze and predict landslide
displacement better, we propose a dynamic landslide displacement prediction model based on time
series analysis and a double-bidirectional long short term memory (Double-BiLSTM) model. First, the
cumulative landslide displacement is decomposed into trend and periodic displacement components
according to time series analysis via the exponentially weighted moving average (EWMA) method.
We consider that trend displacement is mainly influenced by landslide factors, and we apply a
BiLSTM model to predict landslide trend displacement. This paper analyzes the internal relationship
between rainfall, reservoir level and landslide periodic displacement. We adopt the maximum
information coefficient (MIC) method to calculate the correlation between influencing factors and
periodic displacement. We employ the BiLSTM model for periodic displacement prediction. Finally,
the model is validated against data pertaining to the Baishuihe landslide in the Three Gorges, China.
The experimental results and evaluation indicators demonstrate that this method achieves a better
prediction performance than the classical prediction methods, and landslide displacement can be
effectively predicted.

Keywords: landslide displacement prediction; bidirectional long short term memory; time series
analysis; maximum information coefficient

1. Introduction

Landslides are common geological disasters worldwide. Landslides not only damage
the natural environment, cause soil erosion on slopes and alter landforms but also destroy
buildings and infrastructure in villages and towns and result in a large number of casualties
in serious cases. China is one of the countries most seriously affected by landslide disasters
due to its vast territory, complex terrain and changeable climate. In China, many people live
and work on and near the slopes. Although a landslide occurs suddenly, the process of a
slope becoming a landslide can be monitored and predicted to a certain extent. An accurate
landslide displacement prediction model combined with a landslide warning model can
effectively improve people’s judgment of landslides in daily life and help decision makers
make more accurate decisions and protect people’s life and health, so as to achieve the
purpose of improving population wellbeing. According to China’s national geological
disaster report for 2020, 4810 landslides occurred in China in 2020, accounting for 61.3%
of all geological disasters in China, resulting in a large number of property losses and
casualties [1]. Local landslide events were initially recorded when China built the world’s
largest hydropower station, the Three Gorges Dam, in 2003 [2,3]. The environment of the
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Three Gorges Reservoir is highly conducive to the formation of landslides in terms of the
topography, geology and climate [4]. The Three Gorges Project has faced intense pressure in
terms of geological disaster prevention [2]. This paper aims to help the Three Gorges Project
and similar engineering projects with regard to geological disaster prevention. Therefore, it
is particularly important and necessary to predict landslide displacement in this area.

Landslide displacement prediction models generally include physical and data-based
models [3,5,6]. Because of the complexity of landslides, the acquisition of a physical model
of landslide displacement before landslide occurrence is very difficult. [7]. There are many
kinds of physics-based models. Jiang et al. [8] simulated landslide displacement based on
fluid-solid coupling theory. Herrera et al. [9] adopted a physics-based one-dimensional infinite
viscoplastic model to predict Portalet landslide motion. Mufundirwa et al. [10] considered
physical characteristics to evaluate the validity of the inverse velocity (INV) and evaluated
this parameter in the laboratory to predict rock mass destruction attributed to landslides.
Due to the complexity of geological conditions, physics-based models cannot simulate the
actual structure of the geographical environment well, and the prediction performance can
therefore be affected by both known and unknown factors, leading to inevitable errors in
landslide displacement prediction. Moreover, landslides are difficult to predict in a timely
and accurate manner. Even if the same physics-based landslide displacement prediction
model is applied to different landslides, the physical characteristics are inconsistent due to
the varying landslide conditions, which can lead to different prediction accuracies.

In recent years, data-based models have become more popular than physics-based
models. Data-based models usually treat landslides as nonlinear systems [6,11]. Land-
slide occurrence is caused by many reasons. There are many internal reasons determining
landslide displacement, such as the topography, landslide structure, rock and soil prop-
erties and other internal geological factors. External causes usually include the joint
action of reservoir water level change, rainfall, snow melt and other factors. Many data-
based models divide landslide displacement into trend and period displacement terms
by analyzing the composition of landslide displacement, thereby predicting the trend and
period displacement term, respectively. Finally, the predicted trend and period terms are
added to obtain the final predicted landslide displacement [12,13]. Huang et al. [3] and
Huang et al. [6] decomposed landslide displacement according to chaos theory and then
combined this approach with an extreme learning machine (ELM) model to predict land-
slide displacement. Due to the complexity of landslides and model limitations, it is difficult
to describe the deformation and evolution of landslides accurately with a single model [14].
Therefore, based on the principle of the optimal weight, Li et al. [14] combined the GM(1,1)
and Verhulst models, retained the advantages of these two models and obtained a better
combined model to predict landslide displacement. A hybrid model comprising support
vector regression (SVR) and a long short term memory (LSTM) network was employed; the
cost function and penalty mechanism were proposed, and improved gray wolf optimization
was implemented to determine the connection parameters of the hybrid model [15].

Because landslide displacement entails a kind of typical time series data, time series
analysis methods are often applied to analyze landslide displacement and construct land-
slide prediction models [12,16,17]. Landslide prediction models generally do not predict a
single value, but these models predict a landslide displacement range, which determines
the prediction accuracy [18,19]. Xie et al. [20] considered conditions such as landslide
profiles, rock properties of landslides, slopes and land use properties and applied the
LSTM model to predict landslide displacement directly. Zhang et al. [21] adopted the gated
recurrent unit (GRU) model to predict landslide displacement. There are also many studies
that decompose landslide displacement according to different frequencies. Xing et al. [22]
applied variational mode decomposition (VMD) to decompose landslide displacement into
multidimensional signals, while Lian et al. [23] and Lian et al. [24] conducted ensemble
empirical mode decomposition (EEMD) to decompose original landslide sequence data into
several subsequences with distinct frequencies. Xu et al. [25] implemented empirical mode
decomposition (EMD) to decompose landslide data. The original data were interpolated to
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increase the scale of the model training set to improve the prediction accuracy. Because
there are many factors influencing landslides, many studies adopt the correlation method
to calculate these factors, while factors with a high correlation are selected, and factors with
a low correlation are eliminated to improve the model prediction performance. Pearson’s
cross-correlation coefficients (PCCs) and mutual information (MI) correlation coefficients
are considered to calculate the correlation between landslide variables and landslides [26].
The maximum information coefficient (MIC) method was adopted to select model input
variables [27]. The gray relational degree (GRD) method was applied to explain which data
could be employed as input variables [28]. The Gini coefficient was determined to quantify
the importance of influencing factors [29]. Yang et al. [16] and Zhou et al. [30] not only
applied the monthly precipitation and reservoir water level as input variables in periodic
displacement prediction but also applied the trend displacement component and previous
precipitation and reservoir water levels to improve the prediction accuracy of landslide
periodic displacement effectively.

Time series data are data collected at different times; they can describe phenomenon
changes over time. This kind of data can reflect the state or extent to which something has
changed over time [31]. Landslide displacement data are such a kind of data which can
reflect the stability and changing state of the landslide itself with time change. However,
previous research results did not comprehensively treat landslide displacement data as time
series data but as ordinary data, or only conducted time series analysis of the period term
in displacement data. Previous studies further ignored that landslide displacement data,
as a data series that changes over time, provide varying meanings at different time points.
If the time series data are treated as ordinary numbers, the time relationship between the
data will be ignored [31].

This paper considers that landslide displacement data are typical time series data, and
a hybrid dynamic landslide displacement prediction model based on data is constructed
by combining a time series analysis method and deep learning model. Then, we use the
established hybrid dynamic model to simulate the Baishuihe landslide in the Three Gorges
and successfully predict the feasibility and effectiveness of the model.

The main contributions of this paper are as follows:

1. Attaching importance to landslide data is also the time series data. The exponentially
weighted moving average (EWMA) method is applied to decompose actual landslide
displacement data, which endows recent data with a higher significance and increases
the weight in the data decomposition process.

2. Considering that the trend displacement component of landslide displacement also
comprises typical time series data, the BiLSTM model is adopted to predict landslide
trend displacement.

3. This paper analyzes the internal relationship between rainfall, reservoir water level
and landslide periodic displacement. The MIC method is adopted to calculate the
correlation between each influencing factor and periodic displacement, and 11 influ-
encing factors are obtained that are highly correlated with periodic displacement. Due
to the periodicity and repeatability of rainfall and reservoir water level changes in the
Baishuihe landslide area, the bidirectional long short term memory (BiLSTM) model is
trained with the identified highly correlated factors, and the periodic term of landslide
displacement is predicted. The final predicted landslide displacement constitutes
the sum of the trend term predicted with the BiLSTM model and the period term
predicted with the BiLSTM model.

The remainder of this paper is organized as follows: the second part presents the basic
principle of the prediction model based on time series analysis and the dynamic hybrid
Double-BiLSTM model. In Section 3, we introduce a practical application case to verify the
proposed hybrid dynamic prediction model. The validity and accuracy of the prediction
model are verified via experiments. In Section 4, we evaluate the model based on specific
evaluation metrics and discuss the model limitations and future improvement plans. The
last section provides the conclusion of this paper.
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2. Materials and Methods
2.1. Time Series Analysis of Landslide Displacement

Landslide displacement refers to the distance that the soil or rock mass on the slope
slides down the slope as a whole or separately under the action of gravity under the
influence of river erosion, groundwater activity, rainwater immersion, earthquake and
artificial slope cutting. The generation of landslide displacement is influenced by both the
internal geological conditions (geological structure, landform, lithology, etc.) and external
influencing factors (rainfall, reservoir water level, etc.) of a given landslide location [2,6,32].
Under the influence of internal geological conditions, landslide displacement exhibits an
approximate increasing function over time. External factors influence landslide displace-
ment via seasonal changes and generate periodic changes. Based on the above information,
this paper considers time series analysis theory to decompose the actual landslide displace-
ment into three parts: linear trend displacement, nonlinear periodic displacement and
random displacement [12,33]. Trend displacement is influenced by internal factors such as
topography and soil properties. Periodic displacement is affected by rainfall, groundwater
and reservoir level changes. Random displacement is determined by random loads such
as wind load or random rainfall processes such as nonseasonal rainfall and temporary
changes in reservoir water level. Therefore, the landslide cumulative displacement can be
expressed as Equation (1).

D = T + P + N (1)

where D is the landslide cumulative displacement; T is the landslide trend displacement;
P is the landslide periodic displacement; and N is the landslide random displacement.
However, because random displacement is not regularly generated, it cannot be reason-
ably and accurately predicted. To facilitate analysis, random displacement is usually
ignored, and the landslide cumulative displacement is considered to be produced and
developed under the joint action of geotechnical conditions and external influencing
factors [12,16,33]. Therefore, the cumulative displacement can be decomposed into deter-
ministic trend displacement reflecting the slope rock and soil conditions and nonlinear
periodic displacement under the action of external factors. This paper is therefore based on
the above theory. Then, the cumulative displacement can be defined as Equation (2).

D = T + P (2)

2.2. Exponentially Weighted Moving Average Method

Landslide trend displacement can reflect the long-term development trend of the
rock and soil conditions of landslides. In most previous studies, the ordinary moving
average (MA) method was employed to decompose historical landslide displacement into
trend and periodic displacement components [18,25]. However, the MA method does
not consider the importance of the data pertaining to each period and considers that the
data at each time point are equally important. This paper proposes that the time series
data pertaining to different periods provide varying time values and employs the EWMA
method to compensate for the ordinary MA method due to the lack of observation data.
Moreover, according to the characteristics whereby recent data exert a greater impact on
prediction values, a higher weight is assigned to recent data, and a lower weight is assigned
to remote data. The EWMA method can be expressed as Equation (3).

Tt = αDt−1 + (1− α)Tt−1 (3)

where T denotes trend displacement; D denotes the landslide displacement data; and α
is a constant term between 0 and 1, reflecting the rate of weighted decline. Xiu et al. [34]
reported that when α varies between 0.05 and 0.3, slight changes can be detected more
effectively. After many experiments, this article chooses α = 0.25.
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2.3. Maximum Information Coefficient Method

Reshef et al. [35] proposed a new metric based on information theory, namely, the MIC,
in 2011. The MIC can measure the dependence between different variables and effectively
considers nonfunctional dependence, which cannot be represented by a single function.
The MIC mainly relies on mutual information and grid partitioning methods for calculation.
MI is an index to measure the level of correlation between variables. It is assumed that
variable A = {ai, i = 1, 2, . . . , n} and variable B = {bi, i = 1, 2, . . . , n}, where n is the
number of samples, and MI is defined as Equation (4).

MI(A, B) = ∑
a∈A

∑
b∈B

p(a, b) log
p(a, b)

p(a)p(b)
(4)

where p(a) is the marginal probability density of A; p(b) is the marginal probability density
of B; and p(a, b) is the joint probability density of A and B. Assuming
that D = {(ai, bi), i = 1, 2, . . . , n} comprises a finite set of ordered pairs, G is defined
to divide the range of A into x segments and the range of B into y segments, and G denotes
the x× y grid. MI(A, B) is calculated in each grid partition. There are multiple grids of
the same x × y dimensions, and the MI value of G is obtained based on the maximum
MI(A, B) value among the different grids. The maximum MI equation of D under partition
G is defined as Equation (5).

MI∗(D, x, y) = max MI(D|G) (5)

where D|G denotes that data D are partitioned using G. Although the MIC method
relies on MI to represent the grid quality, it does not simply estimate MI. The maximum
normalized MI values obtained under the different partitions comprise an eigenmatrix,
which is defined as MI(D)x,y, and this eigenmatrix can be defined as Equation (6).

MI(D)x,y =
MI∗(D, x, y)

log(min{x, y}) (6)

The MIC equation is expressed as Equation (7).

MIC(D) = max
xy<B(n)

{
M(D)x,y

}
(7)

where B(n) denotes the upper bounds of grid partition x× y. Xiu et al. (2020) determined
that the effect is optimal for B(n) = n0.6. Therefore, this value is also applied in the
experimental simulations.

2.4. Bidirectional Long Short Term Memory Neural Network Model

The LSTM model is a unique recurrent neural network (RNN) employed to solve the
problems of gradient disappearance and gradient explosion of original RNNs and was
proposed by Hochreiter and Schmidhuber [36] in 1997. Because of its special memory and
gate structures, this model can better learn the correlation features contained in time series
data, so the LSTM model is widely adopted in time series prediction models. Yang et al. [16]
and Xie et al. [20] employed the LSTM model to predict landslide periodic displacement
directly in view of the characteristics whereby the LSTM model suitably processes time
series data. Xing et al. [15] combined the LSTM and SVR models, retained the advantages
of these two models, improved the model generalization ability and predicted landslide
periodic displacement. However, there is no research on landslide trend displacement
prediction with LSTM models. The basic unit of the LSTM model includes the forget, input
and output gates.

Each gate exhibits a unique function. In the forget gate, the input xt, state memory
unit Ct−1 and intermediate output ht−1 jointly determine the forgetting part of the state
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memory unit. In the input gate, the result of xt, which is calculated with the sigmoid and
tanh functions, determines the reserved information in the state memory unit. In the output
gate, the intermediate output ht is determined jointly by the updated Ct and output ot. The
equations for the unit are expressed as Equations (8)–(13).

ft = σ
(

w f ·[ht−1, xt] + b f

)
(8)

it = σ(wi·[ht−1, xt] + bi) (9)

ot = σ(wo·[ht−1, xt] + bo) (10)

Ct = ft·Ct−1 + it·C̃t (11)

ht = ot·tan h(Ct) (12)

C̃t = tan h(Wc·[ht−1, xt] + bc) (13)

where xt denotes the input data; ft denotes the forget gate; it denotes the input gate;
ot denotes the output gate; ht denotes the output data; Ct denotes the state of the cell;
C̃t denotes the temporary state of the cell; w f denotes the weight of the forget gate; wo
denotes the weight of the output gate; wi denotes the weight of the input gate; wc denotes
the weight of the temporary state; b f denotes the bias of the forget gate; bi denotes the
bias of the input gate; bo denotes the bias of the output gate; bc denotes the bias of the
temporary state; σ denotes the sigmoid function; tanh denotes the tanh function; [] denotes
the connection between two vectors; and · denotes the matrix product. Figure 1 shows the
LSTM architecture.
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Although the LSTM model solves the gradient disappearance or gradient explosion
problem of RNNs, the LSTM model can only learn previous information and cannot con-
sider future information. Because the factors influencing landslide periodic displacement
are repeatable and periodic, with regard to the training model, landslide periodic displace-
ment is related not only to historical periodic displacement information but also to future
information, which can play an auxiliary role in model training. Therefore, the BiLSTM
model was applied in this paper instead of the LSTM model to predict landslide trend
displacement and periodic displacement, which not only solved the gradient disappearance
or gradient explosion problem encountered in the model but also made it easier to learn the
dependence between the historical and future displacement data at the different time points.
In addition, the displacement characteristics obtained were global. The BiLSTM model
fully considers the data information before and after the current displacement data during
model training. At present, the BiLSTM model has been successfully applied in many
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prediction fields, including solar radiation hourly prediction [37], well log prediction [38]
and tourism demand prediction [39]. Figure 2 shows the BiLSTM model structure adopted
in this paper.
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The BiLSTM model is a combination of forward and reverse LSTM models. The for-
ward LSTM model obtains historical information from the current time point displacement
data from left to right (forward), while the reverse LSTM model extracts future information
from the current time point displacement data along the opposite direction. Hence, this
can be expressed as Equation (14):

Ht =

[→
h t,

←
h t

]
(14)

where
←
h t is the state of the reverse LSTM output;

→
h t is the state of the forward LSTM

output; Ht is the state of the BiLSTM output; and [] denotes the connection between
two vectors. Splicing the hidden layer vectors obtained along the forward and reverse
directions and mapping through the fully connected layer, a one-dimensional vector is
obtained as the output of the BiLSTM layer, namely, the landslide trend displacement and
periodic displacement to be predicted.

2.5. Double-BiLSTM Model

Because the trend displacement and periodic displacement of the landslide are typical
time series data, the trend displacement reflects the process of the slope’s own properties
changing with time, and the periodic displacement reflects the process of the slope’s
external influence factors changing with time. Therefore, the BiLSTM model is used in this
paper to predict trend displacement and periodic displacement, respectively. According to
Formula 2, the final predicted displacement of the landslide is the synthesis of landslide
trend displacement and periodic displacement; it is shown as

D = TBiLSTM + PBiLSTM (15)

where D is the final predicted displacement of the landslide; TBiLSTM is the predicted trend
displacement of the landslide; and PBiLSTM is the predicted cycle displacement of the landslide.
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2.6. Performance Indices

To evaluate the prediction performance of the proposed landslide displacement pre-
diction model reasonably, specific performance indices were considered to evaluate the
model prediction performance [32,40–43]. This paper introduces four evaluation indices,
namely, the mean absolute error (MAE), root mean square error (RMSE), mean absolute
percentage error (MAPE) and coefficient of determination R2 (R-square). In this paper,
MAE is the average value of the absolute error between the predicted and real values,
which describes the overall prediction performance. RMSE can measure the situation of
mutation points in the predicted values. The effect of mutation points on RMSE is notable.
MAPE considers not only the relationship between the predicted and actual values but
also the error between the predicted and actual values. R2 can measure the capacity of the
regression model and evaluate its fitting degree. The four evaluation indices are expressed
as Equations (15)–(18).

MAE =
1
n

n

∑
i=1
|ŷi − yi| (16)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (17)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (18)

R2 = 1−

n
∑

i=1
(ŷi − yi)

2

n
∑

i=1
(yi − yi)

2
(19)

where n is the number of landslide data; ŷ = {ŷ1, ŷ2, . . . , ŷn} denotes the predicted values
of the model; y = {y1, y2, . . . yn} denotes the measured values of the Baishuihe landslide;
and y = {y1, y2, . . . , yn} denotes the average measured values of the Baishuihe landslide.

2.7. Landslide Displacement Prediction Process

Figure 3 shows the complete implementation process of the model proposed in this
paper. Step 1: considering the characteristics of time series data, the EWMA method
is applied to decompose the historical landslide displacement, and trend and periodic
displacement components are obtained based on the historical displacement data. Step
2: the BiLSTM model is trained according to the historical trend displacement data,
and the subsequent trend displacement is predicted. Step 3: the MIC is considered
to calculate factors that may be intrinsically related to historical periodic displacement,
and factors with a higher correlation are selected as input items of the BiLSTM model.
Step 4: according to historical periodic displacement data and the selected influencing
factors, the BiLSTM mixed prediction model is trained to predict subsequent periodic
displacements. Step 5: the predicted cumulative displacement is obtained by adding the
displacement results obtained in Steps 2 and 4 at the same time point. Step 6: the predicted
cumulative displacement is compared to the actual cumulative displacement obtained via
monitoring, and the predicted results are evaluated with evaluation indices.
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3. Results
3.1. Baishuihe Landslide

This paper analyzes the Baishuihe landslide, which is located near the Three Gorges
Reservoir, to validate the time series analysis method and Double-BiLSTM hybrid dy-
namic landslide displacement prediction model. The specific geographical location of the
Baishuihe landslide is shown in Figure 4.
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The Baishuihe landslide is located on the south bank of the Yangtze River upstream
of the Three Gorges Dam, with a longitude of 110◦32’09” and latitude of 31◦01’34”. The
landslide is approximately 56 km from the Three Gorges Dam. The terrain exhibits a
ladder-shaped topology, belonging to the Baishuihe village, Shazhenxi town, Zigui County.
The top elevation of the slope ranges from 450 to 500 m. At an elevation from 180–500 m,
the terrain slope ranges from 24 to 36◦. From 130–180 m, the terrain is relatively flat with
a slope ranging from 5 to 12◦. At elevations from 80–130 m, the slope ranges from 27 to
31◦. The overall leading and trailing edges of the terrain slope are relatively uneven and
relatively gentle in the middle, resulting in a monocline slope.

There are obvious signs of displacement of the Baishuihe landslide. Since 2005, there
occurred a partial tensile crack collapse at the back of the landslide. To date, the cracks
on the east side and back edge of the landslide are basically transecting cracks; there are a
large number of tensile cracks in the west, and local shallow failure is often produced.

The Baishuihe landslide contains a total of 11 global positioning system (GPS) points,
among which ZG118 is located at the center of the landslide, which better reflects the
process of landslide displacement change than do other GPS points. Xing et al. [15]
and Miao et al. [32] also applied the monitoring data of ZG118 as experimental data in
displacement prediction, so this paper also employs the data at the ZG118 monitoring point
in experiments. The installation position of GPS points is shown in Figure 5.
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In this paper, 108 landslide displacement, rainfall and reservoir water level change
data points pertaining to the Baishuihe landslide from January 2004 to December 2012
are considered. This dataset is provided by the National Cryosphere Desert Data Cen-
ter/National Service Center for Speciality Environmental Crisis Observation. As shown in
Figure 6, the data acquisition frequency is once a month. Through modeling and simulation
of these data, the effectiveness of the EWMA algorithm proposed in this paper based on the
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principle of time series analysis and the feasibility and effectiveness of the Double-BiLSTM
hybrid model are verified.
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According to time series analysis theory, the EWMA method is implemented to decom-
pose the actual landslide displacement to obtain landslide trend and periodic displacement
components. Xiu et al. [34] reported that when α changed between 0.05 and 0.3, small changes
could be detected more effectively. Therefore, we conducted experiments with α values of
0.05, 0.1, 0.15, 0.2, 0.25 and 0.3, respectively. As the periodic displacement is mainly affected
by external factors, the periodic displacement obtained by decomposition is correlated with
rainfall and reservoir water level, and the results are shown in the following table:

As can be seen from the correlation results in Table 1, when α = 0.25, the periodic
displacement is highly correlated with rainfall and reservoir water level, so we choose
α = 0.25 to decompose landslide displacement in this paper. These three displacement
components of the Baishuihe landslide are shown in Figure 7.

Table 1. Factors of model training for periodic displacement prediction.

α Rainfall—MIC α Reservoir Water Level—MIC

0.05 0.324714915 0.05 0.751251529

0.1 0.324715703 0.1 0.751252363

0.15 0.324716778 0.15 0.751252991

0.2 0.324716832 0.2 0.751253684

0.25 0.324716885 0.25 0.751253792

0.3 0.324716872 0.3 0.751252125

3.2. Trend Displacement Prediction

Because landslide trend displacement is less affected by external factors and mainly
influenced by internal factors, landslide displacement can feed back the current landslide
state to a certain extent [16,30]. This paper intends to introduce trend displacement data
one and two months before the landslide occurrence as the BiLSTM model input sequence
into the training model to predict future trend displacements. A total of 108 months of
Baishuihe landslide data was selected for the landslide trend displacement simulation
experiment. The trend displacement data over the first 96 months were selected as the
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training set of the BiLSTM model, and the trend displacement data over the following
12 months were selected as the test set to verify the prediction performance of the BiLSTM
model. Figure 8 shows that at the early stage of model training, the model fitting effect
is not particularly good, and there occurs a certain deviation from the trend of the actual
displacement, but with an increasing amount of data, the model fitting degree gradually
increases. After 96 training data points, the prediction model trained on the test set clearly
indicates that the BiLSTM model can effectively predict the trend displacement component
of the Baishuihe landslide.
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3.3. Periodic Displacement Prediction

Landslide periodic displacement differs from trend displacement, which is mainly
influenced by external factors, while the rainfall and reservoir water levels in the Three
Gorges area periodically fluctuate every year. Figure 6 shows that from April to August each
year, when the rainfall sharply increases and the reservoir water level declines, the slope
body becomes active, and the slope body increases the resultant landslide displacement.
Conversely, landslides deform slowly at a constant rate. Therefore, it can be inferred that
rainfall and the reservoir water level are closely related to landslide displacement [6,19].
During the rainy season, rainfall in the Baishuihe landslide area increases rapidly, and
landslide displacement increases with a slight lag with increasing rainfall. In the rainy
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season, the landslide displacement range is 30–70 mm every month, and in the dry season,
the range is 0–5 mm every month.

The influence of rainfall on landslides is multifaceted. On the one hand, the infiltration
of rainfall into a given slope can lead to an increase in the weight of the slope, thus
increasing the speed of the landslide. On the other hand, the impact of rainwater and
water flow from high to low locations can affect the whole structure of the slope body,
and the greater the impact of precipitation, the more likely a landslide occurs. In addition,
rain infiltration can moisten soil, reduce friction between soil particles, and decrease the
shear performance of sliding soil. Since the rainy season in the Baishuihe landslide area
lasts for several months each year, and the dry season also lasts for several months, the
impact of rainfall entails a persistent process acting on landslide displacement. Therefore,
in addition to adopting the rainfall in the current month as an input variable to predict
periodic displacement, this paper considers the rainfall in the previous month and rainfall
in the previous two months as input variables to predict periodic displacement.

The slope body can occur in an extremely complicated state before landslide occur-
rence. When the slope occurs in a stable state, there are no obvious changes in the slope
due to notable external influences, such as the rainy season with much precipitation and
a long duration, an earthquake or a sharp decline in the reservoir water level. However,
when the slope occurs in an unstable state, slight external factors can disrupt the primary
balance, leading to landslide occurrence. Therefore, this paper intends to analyze the actual
displacement one and two months before landslide occurrence and the displacement in the
first two months to represent the state of the slope body indirectly, and these three variables
are adopted as input variables for landslide periodic displacement.

With the arrival of the rainy season and the increase in precipitation, the dam reservoir
can release water to ensure the safety of the dam due to the limited water capacity of the
Three Gorges Dam, resulting in a sharp decline in the reservoir water level. When the
reservoir water level decreases, the surface resistance of landslides is reduced, and the
difficulty of landslides is reduced. The faster the reservoir water level decreases, the faster
the increase in landslide displacement. Upon water discharge from the reservoir, water
movement is accelerated, and the force generated also directly affects the stability of the
slope. Figure 6 shows that the change in the reservoir water level exerts a certain lag effect
on the Baishuihe landslide. Therefore, the reservoir water level one and two months before
landslide occurrence and the change in reservoir water level in the first two months are
considered in this paper as external factors influencing landslide displacement, and these
factors are considered displacement input variables of the training cycle.

In this paper, the first 96 months of periodic displacement data of the Baishuihe land-
slide are selected as the training set of the model, and the subsequent 12 months of periodic
displacement data are selected as the test set. In addition, the MIC method is applied
to calculate the correlation between the influencing factors and periodic displacement of
the Baishuihe landslide. The factors with a higher correlation are selected as the input
sequence of the BiLSTM model, and the output sequence of the BiLSTM model comprises
the predicted periodic displacement. The predicted results are shown in Figure 9, and it
can be observed that the BiLSTM model can accurately predict the periodic displacement
of the Baishuihe landslide.
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3.4. Total Accumulated Displacement Prediction

After predicting the trend and periodic displacement components of the Baishuihe
landslide over the last 12 months, according to the EWMA-based landslide displacement
decomposition principle (Equation (2)) proposed in this paper, the model prediction process
is completed by adding the trend and periodic displacement values corresponding to these
12 months, and the predicted landslide displacement is thus obtained. As shown in
Figure 10, the predicted results with the Double-BiLSTM model fluctuated with the actual
data at the early training stage. After 96 months of data training, the predicted results
obtained with the Double-BiLSTM model were remarkably close to the actual displacement
values in the following 12 months.
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In addition to having good predictive performance, the BiLSTM model also has good
convergence performance. It reaches convergence after 130 iterations, and the convergence
process is shown in Figure 11.
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conclusion, the time series analysis method (EWMA) and the Double-BiLSTM dynamic landslide
displacement prediction model can predict the displacement of the Baishuihe landslide well.

4. Discussion

After comparing the results obtained with the mixed dynamic Double-BiLSTM model
to the actual displacement values of the Baishuihe landslide, to verify the model prediction
performance over other algorithms, this paper compared the Double-BiLSTM algorithm to
other algorithms in terms of the trend or periodic displacement prediction. In the process of
comparison, this paper considers the above four evaluation indices to evaluate objectively
the gap between each model and the actual displacement data and then provides a further
discussion and summary. In this paper, landslide displacement is decomposed into trend
and periodic displacement components with the EWMA algorithm according to the time
series analysis theory, so the prediction effects of trend and periodic displacement values
are compared.

Because trend displacement is mainly affected by internal landslide factors, this paper
directly applies the BiLSTM model to simulate and predict trend displacement. Compared
to the traditional polynomial model 16,32], the BiLSTM model suitably processes time
series data, can effectively record input data information and can steadily improve the
model performance with increasing training data. After many experimental model training
iterations, the number of nodes in the hidden layer of the BiLSTM model was set to 100,
and the learning rate was set to 0.01. The parameters of the polynomial model in this paper
are based on previous research [16,32], and the highest power is set to 3. A comparison of
the trend displacement values predicted with the BiLSTM and other four models is shown
in Figure 12.

Figure 12 reveals that the BiLSTM model is obviously superior to the other four models
in landslide trend displacement prediction. Because landslide trend displacement also
comprises typical time series data, the polynomial model simply treats trend displacement
as ordinary data. RNN, LSTM and GRU also cannot process time series data as suitably as
can the BiLSTM model. Figure 13 shows the convergence of these models.
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trend displacement.

It can be seen from Figure 13 that the convergence speed of the polynomial model is
fast, but the model error is large. The BiLSTM model has a slower convergence rate, but the
error of the model is the smallest. This paper suggests that it is more important to sacrifice
some convergence speed for a better prediction effect.

Table 2 records the performance evaluation index data of the BiLSTM and polynomial
models in the trend displacement prediction of the Baishuihe landslide. Table 2 and
Figure 12 indicate that the BiLSTM model yields smaller errors and that the overall model
prediction performance is better than LSTM, RNN, GRU and polynomial models.
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Table 2. Evaluation index of each trend prediction model.

Models MAE MAPE (%) RMSE R2 (%)

BiLSTM 2.39 10.7 2.96 99.5

Polynomial 6.863 30.7 7.523 96.9

LSTM 4.94 20.2 5.942 97.9

GRU 5.843 26.2 6.924 97.2

RNN 6.282 28 7.126 96.9

After trend displacement prediction, we predict and compare periodic displacement
values of the Baishuihe landslide. Periodic displacement is influenced by many factors, and
the occurrence is periodic and repetitive. Most of the landslides in the Three Gorges Reser-
voir area are affected by rainfall and reservoir water levels. To train the model better, we
first employ the MIC, the information coefficient method, and select periodic displacement-
related factors with high correlations. In this article, the MIC of the parameters is set to 0.6,
and the associated factors of data generation introduced into the MIC model to calculate
and select MIC results are greater than 0.3 [35]. Assuming that at time t, the landslide
cumulative displacement is d(t); precipitation is p(t), and the reservoir water level is r(t);
the MIC calculation results are listed in Table 3. Eleven factors are finally selected and
incorporated into five models for training.

Table 3. Factors of model training for periodic displacement prediction.

Factors MIC Factor MIC

r(t-2) 0.551 r(t-1) 0.345

p(t-2) 0.438 p(t-1) 0.316

r(t-1) + r(t-2) 0.429 p(t-3) p(t-3)

d(t-2) 0.417 p(t-1) + p(t-2) + p(t-3) 0.264

d(t-1) + d(t-2) 0.406 r(t-1) + r(t-2) + r(t-3) 0.248

d(t-1) 0.406 d(t-3) 0.228

p(t-1) + p(t-2) 0.362 d(t-1) + d(t-2) + d(t-3) 0.217

p(t) 0.350 r(t-3) 0.214

r(t) 0.349

After selecting 11 factors as the model input, we simulate the performance of each
model in the periodic displacement prediction of the Baishuihe landslide considering these
11 factors. In this paper, after many experimental model training iterations, the parameter
settings of the BiLSTM model are finally determined. We set the learning rate to 0.01 and
the step size of the model to 12 according to the change period of rainfall and the reservoir
water level, while the number of nodes in the hidden layer is set to 100. The BiLSTM model
is compared to seven traditional machine learning models, namely, the LSTM model, ELM,
SVR, RNN, CNN, GRU and back-propagation neural network (BPNN). For LSTM, GRU,
RNN, ELM and BNPP models, we set the learning rate to 0.01; the number of nodes in
the hidden layer is set to 100. For the CNN model, we set the channels of convolutional
layer to be 12; the number of nodes in the fully connected layer is 100, and the activation
function is Relu. For the SVR model, we set the kernel to be rbf, and the gamma is 0.01. The
epoch of all models is 500. The simulated prediction results are shown in Figures 14–16.



Int. J. Environ. Res. Public Health 2022, 19, 2077 18 of 23

Int. J. Environ. Res. Public Health 2022, 19, 2077 18 of 23 
 

 

 
Figure 14. Measured and predicted periodic displacement values obtained with the BiLSTM, LSTM 
and BPNN models. 

 
Figure 15. Measured and predicted periodic displacement values obtained with the BiLSTM, SVR 
and ELM models. 

Figure 14. Measured and predicted periodic displacement values obtained with the BiLSTM, LSTM
and BPNN models.

Int. J. Environ. Res. Public Health 2022, 19, 2077 18 of 23 
 

 

 
Figure 14. Measured and predicted periodic displacement values obtained with the BiLSTM, LSTM 
and BPNN models. 

 
Figure 15. Measured and predicted periodic displacement values obtained with the BiLSTM, SVR 
and ELM models. 

Figure 15. Measured and predicted periodic displacement values obtained with the BiLSTM, SVR
and ELM models.



Int. J. Environ. Res. Public Health 2022, 19, 2077 19 of 23
Int. J. Environ. Res. Public Health 2022, 19, 2077 19 of 23 
 

 

 
Figure 16. Measured and predicted periodic displacement values obtained with the BiLSTM, RNN, 
CNN and GRU models. Figures 14–16 show that the BiLSTM model generates better prediction re-
sults in the periodic displacement prediction of the Baishuihe landslide. Figures 14–16 reveal that 
the prediction performance of the LSTM and BiLSTM models is better than that of the other models 
because these two models suitably process time series data. The BiLSTM model considers the char-
acteristics of the time series of the landslide displacement cycle. On the basis of considering the 
rainfall and landslide environments, the change in the reservoir water level during each cycle is 
cyclical and repeatable. Before training, the model not only considers current data but also considers 
future data to improve the performance of the displacement prediction model throughout the cycle. 
To illustrate the superiority of the BiLSTM model better, the evaluation index data of these machine 
learning algorithms in periodic displacement prediction are summarized in Table 4. The evaluation 
indices in the table indicate that the error between the predicted results obtained with the BiLSTM 
model and the actual periodic displacement data is minimal; the fluctuation in the model is rela-
tively limited, and the model remains more stable. 

Table 4. Evaluation index of each periodic prediction model. 

Models MAE MAPE (%) RMSE R2 (%) 
BiLSTM 0.696 3.256 0.81 99.8 
LSTM 2.285 9.893 2.285 98.1 
BPNN 2.71 18.292 2.71 97.7 
SVR 3.239 16.649 3.239 96.9 
ELM 2.885 17.589 2.885 97.2 
RNN 3.297 15.003 3.748 97.3 
CNN 2.987 26.508 3.9 97.1 
GRU 3.056 12.619 3.826 97.8 

In order to display the model performance better and prevent the over-fitting phe-
nomenon in the model training process, indicators were used to evaluate the training set 
and testing set of Baishuihe landslide data; the results are shown in Tables 5 and 6. 

  

Figure 16. Measured and predicted periodic displacement values obtained with the BiLSTM, RNN,
CNN and GRU models. Figures 14–16 show that the BiLSTM model generates better prediction
results in the periodic displacement prediction of the Baishuihe landslide. Figures 14–16 reveal
that the prediction performance of the LSTM and BiLSTM models is better than that of the other
models because these two models suitably process time series data. The BiLSTM model considers
the characteristics of the time series of the landslide displacement cycle. On the basis of considering
the rainfall and landslide environments, the change in the reservoir water level during each cycle is
cyclical and repeatable. Before training, the model not only considers current data but also considers
future data to improve the performance of the displacement prediction model throughout the cycle.
To illustrate the superiority of the BiLSTM model better, the evaluation index data of these machine
learning algorithms in periodic displacement prediction are summarized in Table 4. The evaluation
indices in the table indicate that the error between the predicted results obtained with the BiLSTM
model and the actual periodic displacement data is minimal; the fluctuation in the model is relatively
limited, and the model remains more stable.

Table 4. Evaluation index of each periodic prediction model.

Models MAE MAPE (%) RMSE R2 (%)

BiLSTM 0.696 3.256 0.81 99.8

LSTM 2.285 9.893 2.285 98.1

BPNN 2.71 18.292 2.71 97.7

SVR 3.239 16.649 3.239 96.9

ELM 2.885 17.589 2.885 97.2

RNN 3.297 15.003 3.748 97.3

CNN 2.987 26.508 3.9 97.1

GRU 3.056 12.619 3.826 97.8

In order to display the model performance better and prevent the over-fitting phe-
nomenon in the model training process, indicators were used to evaluate the training set
and testing set of Baishuihe landslide data; the results are shown in Tables 5 and 6.
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Table 5. Evaluation index of trend displacement.

Data MAE MAPE (%) RMSE R2 (%)

Training Set 2.31 11.2 2.87 99.1

Testing Set 2.39 10.7 2.96 99.5

Table 6. Evaluation index of periodic displacement.

Data MAE MAPE (%) RMSE R2 (%)

Training Set 0.712 3.198 0.86 99.3

Testing Set 0.696 3.256 0.81 99.8

The results of Tables 5 and 6 show that the indices of the training set and testing set
are similar when the BiLSTM model is used to predict the trend and periodic displacement.
This indicates that the model has learned the general features of the data and has not taken
the local features of the training set as the general features. The prediction performance of
the model has no obvious change, and there is no fitting phenomenon.

Although the dynamic mixed landslide displacement prediction model proposed
in this paper achieves a satisfactory performance in the Baishuihe landslide prediction,
there remain improvements to be made. The use of the BiLSTM model to predict trend
displacement and the BiLSTM model to predict periodic displacement produces more
process parameters that should be adjusted during model training than are produced
by the traditional polynomial, RNN, CNN, GRU and LSTM models, which increases the
difficulty of model training. It is challenging to determine the parameters of the entire
model to obtain the optimal state. The second deficiency is that the mixed proposed model
has only been verified against the Baishuihe landslide but has not been applied in other
regions or landslides, so the stability and accuracy of the model cannot be guaranteed. In
the future, we will consider further model improvements to reduce the difficulty of the
model parameter adjustment and improve the model prediction performance. In addition,
the model will be applied in other areas that may produce landslides or other landslides to
verify the feasibility of the proposed model better.

5. Conclusions

Landslide displacement prediction constitutes the key to landslide warning sys-
tems [14]. Better prediction of landslide displacement allows decision makers to make
better decisions about whether the slope or the area is prone to landslides so as to warn
people who live or work here and protect their health and safety. In previous studies, most
landslide displacement prediction algorithms did not treat landslide displacement data
as time series data, which resulted in certain limitations on the prediction performance of
previous models. Considering that landslide cumulative, trend and periodic displacement
data comprise typical time series data, a time series analysis method and Double-BiLSTM
hybrid dynamic landslide displacement prediction model are proposed. In this paper, the
EWMA-based method fully considers the time series characteristics of landslide data and
decomposes landslide displacement into trend and periodic displacement components.
Considering that trend displacement is mainly influenced by internal landslide factors, this
paper employs the BiLSTM model, which suitably processes time series data to predict
trend displacement. As the landslide displacement process is cyclical, previous and post
landslide data can provide a certain reference function, and we apply the MIC method to
select the factors influencing the high correlation to periodic displacement. The BiLSTM
model parameters are trained on these data, and landslide periodic displacement is pre-
dicted. In this paper, actual landslide data pertaining to the Baishuihe landslide in the
Three Gorges, China, over 108 months are selected in simulation experiments to verify
the feasibility and accuracy of the proposed hybrid dynamic Double-BiLSTM landslide
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displacement prediction model. The trend and periodic displacement prediction results
are compared to those obtained with previous algorithms or models. In the comparison
process, four kinds of commonly considered prediction model performance indices are
adopted, which verifies that the performance of the proposed model is notably better than
that of the other landslide displacement prediction models. In conclusion, the time series
analysis method and dynamic hybrid landslide prediction model proposed in this paper
can achieve accurate landslide displacement prediction, effectively improve the judgment
of common people and decision makers on landslide, reduce the suddenness of landslides
and improve human welfare. This method can be applied in other landslide areas or other
time series data prediction fields.
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