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Abstract: The SARS-CoV-2 virus emergency prompted unprecedented safety measures, which were
accepted by the population of each country to different degrees, for example, with more or less
willingness to use personal protective elements (PPEs). We have developed a mathematical model
of the contagion process, based on chilean data, to assess the interaction between biological factors
(such as the impact of vaccination) and behavioral factors (such as the population’s perception of
risk). The model clearly shows that the virus spreads through three waves of contagion, the second
being the most prominent, regardless of any alteration in the variables taken into account, which only
affect the overall number of people infected. By considering alternative values of the risk perception
variable and examining the different possible scenarios, we have also found that the less reaction
to change the population has (and the lower the disposition to use PPEs), the higher the waves of
contagion and the death toll are.

Keywords: mathematical model; risk perception; vaccination; COVID-19

1. Introduction

Since December 2019, the world has been involved in a pandemic which has dramati-
cally changed the way we consider a “normal” life. There have been other documented
pandemics in the past (since the 1918 flu; [1]), but they did not have the impact that
COVID-19 has had in modern life. It has involved practically all countries in the world
and forced governments to take actions which had an important impact on the economical,
political, and socio-cultural level [2].

With more than 200 million infected people and a death toll coming closer every day to
5 million as of this writing, the loss in terms of human lives and political/economic assets
has been enormous, as the virus reduced global economic growth in 2020 to an annualized
rate of−3.4% to−7.6% and global trade is estimated to have fallen by 5.3% [2]. Throughout
2020 and 2021, a number of countries have imposed significant restrictions to their citizens’
mobility and freedom, affecting the concept of workplace, social meetings, communication,
arts and entertainment [3], and increasing the incidence of psychological or psychiatric
issues [4–8].

Scientists from different areas and fields are still trying to investigate the multifaceted
aspects of the phenomenon, in order to understand it and find a way to limit the number
of casualties without undermining other aspects of human life. This way, some policies
adopted by the governments of certain countries have been considered more “virtuous”
than others, or more “effective” than others according to the citizens’ appraisal or epidemi-
ological evaluation ([9,10]).

By constructing a mathematical model based on the way a phenomenon unfolds, we
can find factors that can influence it through the variables associated with the model [11,12].
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In particular, models related to COVID-19 have been typically used to determine the spread
of the disease according to different factors that could influence the total number of infected,
such as the mitigation measures presented by the affected countries and the epidemiological
effect on population [13–16].

In classical mathematical models, behavioral variables, such as the reactions of individ-
uals and their adaptation during the course of a pandemic are generally underrepresented.
This information might modulate the outcome of classic models, bringing them closer
to what happens in real life and, thus, offer more realistic information about pandemics.
For example, a model proposed by Epstein and colleagues (2021) [17] considers a “triple
contagion” model including a new variable, the vaccine, which fuels the “fear of contagion”
variable with a new kind of fear: the “fear of the vaccination”.

Amongst the many countries pursuing an efficient vaccination process in order to
reduce the contagion ([18]), Chile has been acknowledged as one of the countries that
were able to lead a successful vaccination program, standing for some time at the third
position amongst the countries with highest vaccination rates (after the UK and Israel [19]).
Surprisingly, Chile also had to face a subsequent increase in contagions and death toll till
the beginning of June 2021, when the new daily positive cases finally started to decrease.

In the present study, we developed a model using information shared by the WHO
and by the Health Ministry of Chile (which mostly bases their knowledge base on the
WHO indications), in their official page and in a public database [20]. As values for vaccine
effectiveness on contagion prevention, hospitalization, ICU admission, and deaths, we
have taken as a reference the study published from Jara and colleagues (2021) [21]. Their
results show the infection rate of volunteers after a 3 months follow-up, and improve the
accuracy of the effectiveness with respect to the first report.

However, how can the increase in contagion dynamics (waves, peaks amplitude, etc.)
be explained as interacting with the vaccine effectiveness and other variables? Similarly to
Epstein and colleagues [17], in fact, we observed that many people in Chile were “adjusting”
their social behavior to the situation: when fewer infections were reported, they were more
prone to go out, reduce social distancing, and neglecting personal protective equipment
(PPE), and protocols (such as the use of face masks, alcohol, hands washing, etc.), while
some other people did not change their attitude towards the pandemic at all (they never
engaged social distancing or using personal protection items in any case), at the same
time pushing forward a belief of vaccines as a “bad medicine”, refusing to receive their
vaccination (more information on this topic [22]). On the other hand, there were also
individuals who, having been vaccinated, felt an excessive sense of safety and stopped
using PPE, social distancing, and other measures to prevent the spread altogether, which
increased both their likelihood of spreading the virus amongst their non-vaccinated or
partially-vaccinated contacts and their likelihood of becoming sick themselves and ending
up in an ICU (since, according to Jara and Coll., 2021 [21], the vaccine effectiveness is,
respectively, 65.9% against COVID-19 symptoms, 87.5% preventing hospitalization, 90.3%
protective against ICU admission, and 86.3% avoiding COVID-19–related deaths). It is clear
that the presence of these attitudes dramatically affects the output of any mathematical
model describing the vaccine’s effect on the disease prevalence, and weakens efforts to
present realistic scenarios in different countries. Therefore, in our model we included the
possible adaptation (or lack thereof) of individuals to the epidemic context, observing how
the model’s output changed by varying Risk Perception (we defined that variable as P)
through Change Resistance Rate (Λ1) and Reaction Speed (Λ2). We have modeled these
two variables considering results from previous pandemics (SARS) models as part of the
more complex construct of Perception Risk (see for example Poletti et al., 2012 [23]) and
following the model from Poletti et al., (2011; [24]) showing that spontaneous behavioral
changes driven by cost/benefit considerations on the perceived risk of infection have an
effect on the pandemic’s overall behavior. Risk Perception is a complex construct, which
in pandemics is related to different factors applying to the general population (from mass
media communication and sources of information [25]; to personal knowledge level [26]),
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although a small amount of people seem to be more reluctant to change their attitude [27].
In many cases, such as the Poletti and colleagues model or in the Bagnoli and colleagues
(2007; [28]) the Risk Perception strictly depends on how fast people perceive the contagion
is spreading around them.

Our first objective in this study was to observe how an increase in vaccine rollout
speed would affect the situation in terms of infected people, casualties and hospitalizations
and see if, for instance, during one year there would be fewer contagion peaks or fewer
epidemic waves in case much more people were vaccinated. In this scenario, the Risk
Perception variable has not been manipulated.

A second objective was to see if different scenarios where people had different behav-
ioral reactions and Risk Perception levels (higher vs. lower) would have had an effect on
the pandemic’s behavior (number of peaks, number of casualties, and people entering the
ICU) independently from the vaccination rate, which, contrarily to the first model, in these
two scenarios has been kept at a stable rate to isolate the variable of interest (that is, the
behavioral change).

2. Materials and Methods

The mathematical model used to represent the COVID-19 dynamics has been built
through a system of ordinary differential equations. We performed a variation to the
classic compartmental model’s SIR (Susceptible (S)-Infectious (I)-Recovered (R)) from
Kermack–McKendrick [29,30]. Because the COVID-19 infection has an incubation period,
it is also advisable to assign the said compartment, which E will denote. After being
infected, individuals may or may not present symptoms. To distinguish these two states,
we denoted by A those asymptomatic and by I those with symptoms. Another factor to
consider is people who need medical assistance after becoming infected; T denotes these.
For the susceptible and recovered states, the notation S and R are maintained, respectively.
In addition, after including vaccination, each state will be subdivided into two, those
vaccinated and those without the vaccine, where those vaccinated will have a subscript v.
The status summary can be seen in Table 1.

Table 1. Notation of compartments associated with the mathematical model (NVac. = Not vaccinated,
Vac = Vaccinated).

Susceptible Exposed Asymptomatic Infected Treatment Recovered

NVac. S E A I T R

Vac. Sv Ev Av Iv Tv Rv

In the model dynamics, it is assumed that all individuals are born without disease
at a rate b, and there is a mortality rate d that is not associated with the disease since the
rate m is assigned for deaths from COVID-19. The infection occurs between the meeting of
a susceptible and an infectious person through a β rate, which we differentiate between
asymptomatic (βa) and those who present symptoms (βi). The average time during which
an individual remains infectious is denoted by 1/α. Once the person leaves the incubation
period, there are two alternatives; they present symptoms or not; λi and λa, respectively,
represent these proportions. Some individuals can be asymptomatic for a certain period of
time and, subsequently, they present symptoms; we denote this flow by φ, while others
acquire partial immunity at a γa rate. Regarding individuals with symptoms (I), we propose
two possibilities, one is that they need some medical treatment (T), and the other is that
they recover by acquiring partial immunity (R); the rates associated with these two events
are denoted by µ and γi, respectively. For individuals who need some medical treatment,
either they recover (γT) or may eventually die from the disease (m). Additionally to the
possible cases of reinfection, we have also considered partial immunity. Thus, the average
time in which an individual remains immune is denoted by 1/ψ. The vaccination rate is
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given by f , while fv gives the total loss of the effect of the vaccine. The rates associated
with vaccinated people differ from those not immunized by the v index.

Other factors to consider are those that reduce the susceptibility and infectivity of
vaccinated people. These factors will be denoted by σ and δ, respectively. One aspect to
highlight is the perception of risk (P) of people towards the COVID-19 pandemic. Based
on [31,32], the associated equation is expressed by P = Λ1(P− P∗) + Λ2(I + Iv + T + Tv),
where Λ1 is defined as the rate of resistance to change, Λ2 the reaction speed, and P∗ the
perception of the quantified average risk. Thus, we have defined the rate of transition β
as dependent on the Risk Perception (β = β∗ ∗ P∗/P). It should be noted that the Risk
Perception variable has certain limitations in this model, one of which is not considering
certain factors of social behavior, prior knowledge, feelings about the problem, among
others; but these variables were not an object of investigation here. The summary of
parameters is observed from Table 2, and the flow diagram representing the dynamics of
the disease is observed in Figure 1.

Table 2. Description of parameters and parameter values related to behavior. D = days, UN = unitless.
N = Nu + Nv. In order to not discriminate between people with different beliefs and attitudes
towards vaccination, we used the same numeric values for both P∗ and P∗v . ∗ The detail of the
referenced values is presented in the Appendix A, Table A1.

Parameters Description Units

b (d) Birth (Mortality) rate D−1

f Vaccination rate D−1

fv Loss of immunity of vaccinated D−1

β∗a (β∗i ) Transmission rate of asymptomatic (infectious) D−1

σ (δ) Susceptibility (Infectivity) reduction factor UN

α (αv) Exit rate from latent unvaccinated (vaccinated) D−1

to infectious unvaccinated (vaccinated)

λa (λv
a) Proportion of latent unvaccinated (vaccinated) UN

that transit to asymptomatic unvaccinated
(vaccinated)

λi (λv
i ) Proportion of latent unvaccinated (vaccinated) UN

that transit to infectious unvaccinated
(vaccinated)

φ (φv) Transition rate from asymptomatic unvaccinated D−1

(vaccinated) to infectious unvaccinated (vaccinated)

µ (µv) Transition rate of people unvaccinated (vaccinated) D−1

needing medical intervention

m (mv) Disease induced death rate of unvaccinated (vaccinated) D−1

γa (γv
a ) Recovered rate of asymptomatic unvaccinated (vaccinated) D−1

γi (γv
i ) Recovered rate of infectious unvaccinated (vaccinated) D−1

γT (γv
T) Recovery rate from treatment of people D−1

unvaccinated (vaccinated)

ψ (ψv) Natural immunity loss rate of people D−1

unvaccinated (vaccinated)

Λ1 (Λv
1) Rate of resistance to behavioral change those D−1

unvaccinated (vaccinated)

Λ2 (Λv
2) Reaction rate to behavior change those D−1

unvaccinated (vaccinated)

P∗ (P∗v ) quantified average risk perception of those UN
unvaccinated (vaccinated)

Nu (Nv) Unvaccinated (vaccinated) population UN
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Figure 1. The model is divided into two main groups: (i) the unvaccinated and (ii) the vaccinated,
differentiating (ii) from (i) by their v index. The general dynamics of the two groups are similar,
except for the associated values at the respective rates. It is assumed that all entering the model are
unvaccinated susceptible. Susceptible people (S and SV) are infected after encountering an infectious
individual, either with symptoms (I and Iv) or without them (A and Av), differing mainly by the
respective transmission rates. Once the infection is contracted, it has an incubation period for some
time (E or Ev) to become later infectious (A, I, Av, or Iv). Asymptomatic people, after a while, may
have symptoms. There are individuals with symptoms that need medical intervention (T or Tv), and
some of them might die from the disease (m or mv). The recovery of people, whether asymptomatic,
with symptoms and of those who need medical intervention, are directed to the R or Rv compartment
depending on whether (i) or (ii), whose immunity is temporary, becoming susceptible again. Note that
Ω = (βa A+ βi I)/Nu + δ(βa Av + βi Iv)/Nv, Ωv = (βv

a A+ βv
i I)/Nu + δ(βv

a Av + βv
i Iv)/Nu, where Nv

and Nu correspond to the vaccinated and unvaccinated populations, respectively. The transmission

rate is dependent on the risk perception (P) so that βx = β∗x
P∗

P
and βv

x = β∗x
P∗v
Pv

, with x ∈ {a, i}.
N = Nu + Nv.

The model is expressed by the following system of differential equations:

S′ = bN − S[(βa A + βi I)/Nu + δ(βa Av + βi Iv)/Nv] + ψR− ( f + d)S + fvSv

S′v = f S− σSv[(βv
a A + βv

i I)/Nv + δ(βv
a Av + βv

i Iv)/Nv] + ψvRv − ( fv + d)Sv

E′ = S[(βa A + βi I)/Nu + δ(βa Av + βi Iv)/Nu]− (α + d)E

E′v = σSv[(βv
a A + βv

i I)/Nu + δ(βv
a Av + βv

i Iv)/Nv]− (αv + d)Ev

A′ = λaαE− (φ + γa + d)A

A′v = λv
aαvEv − (φv + γv

a + d)Av

I′ = λiαE + φA− (µ + γi + d)I

I′v = λv
i αvEv + φv Av − (µv + γv

i + d)Iv

T′ = µI − (γT + d + m)T

T′v = µv Iv − (γv
T + d + mv)Tv

R′ = γa A + γi I + γTT − (ψ + d)R

R′v = γv
a Av + γv

i Iv + γv
TTv − (ψv + d)Rv

P′ = −Λ1(P− P∗) + Λ2(I + Iv + T + Tv)

P′v = −Λv
1(Pv − P∗v ) + Λv

2(I + Iv + T + Tv)

(1)
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βx = β∗x
P∗

P
and βv

x = β∗x
P∗v
Pv

. Observe from (1) that by increasing the perception of risk,

the probability of contagion decreases.

3. Results

The numerical simulations associated with the proposed Model (1) were performed
using Matlab software [33], in particular the “ode45” function to solve nonstiff differential
equations. The baseline values of the parameters related to the different rates are those
mentioned in Table A1 (see Appendix A). Figure 2 shows the dynamics of the general
infected population (black line), that is, those with or no symptoms, including those that
need medical intervention, differentiating the vaccinated (blue line) from the unvaccinated
(red line). During the 360 simulated days, three “waves” of contagion are seen, where the
second reaches a significant peak. After incorporating vaccination, apart from reducing
the quantity of infections, it is possible to observe a slight delay in the spreading of the
contagion with respect to the unvaccinated population.
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Time (days)
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4

Not vaccinated (A + I + T)
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(105 , 5958) (259 , 6857)

(257 , 4143)

(261 , 2725)

(22 , 337)

(100 , 15,910)

(99 , 10,181)

Figure 2. Dynamics of the vaccinated and unvaccinated infected, that is, adding asymptomatic patients,
with symptoms, and who are undergoing health treatment. The initial values are S(0) = 99,000,
Sv(0) = 100, E(0) = 500, Ev = 100, A(0) = 100, Av(0) = 85, I(0) = 100, Iv(0) = 10, T(0) = 0,
Tv(0) = 0, R(0) = 5, Rv(0) = 0, P(0) = P∗, and Pv(0) = P∗v .

One of the main concerns after the onset of the pandemic is the number of people
who need medical assistance, since the resources to provide it are limited. From Figure 3,
it can be seen that after increasing the number of daily vaccinations (Figure 3b,c), there is
only one significant “wave” of cases that require medical intervention, and mainly in the
unvaccinated population, unlike the base case. (Figure 3a). Another aspect to highlight is
that the “wave” happens earlier, which may be associated with the fact that the first wave
disappears as there is growth until the second peak, producing a unification between the
waves. After this, there is a significant flattening of the curve after increasing the daily
vaccination dose. Finally, after increasing the daily dose, it is also observed that the trend
of cases at the end of the period is reduced by half (see Figure 3).

Another factor associated with the development of pandemics is people’s perception
of risk. This factor from our model (1) is affected mainly by resistance to change (Λ1)
and reaction speed (Λ2). From Figures 4 and 5, it can be observed that, after reducing the
resistance rate by half the change, there is a decrease in the peak of people who need medical
intervention, and the third “wave” flattens considerably (see Figures 4b and 5b). Moreover,
adding a faster reaction from people (obtained by doubling the values of reaction speed), the
third “wave” disappears, and the peak of the second also decreases (see Figures 4c and 5c).

https://www.mathworks.com/help/matlab/ref/ode45.html


Int. J. Environ. Res. Public Health 2022, 19, 2022 7 of 12

0 60 120 180 240 300 360

Time (days)

0

1000

2000

3000

4000

5000

6000

7000

T
re

a
tm

e
n
t

T

T
v

(104 , 5259)

(23 , 2060)
(266 , 2218)

(118 , 422)
(266 , 214)

(a)

0 60 120 180 240 300 360

Time (days)

0

1000

2000

3000

4000

5000

6000

7000

T
re

a
tm

e
n
t

T

T
v

(22 , 1281)

(67 , 6082)

(77 , 740)

(191 , 286)

(182 , 1828)

0 60 120 180 240 300 360

Time (days)

0

1000

2000

3000

4000

5000

6000

7000

T
re

a
tm

e
n
t

T

T
v

(45 , 5556)

(138 , 1284)(53 , 1053)

(146 , 335)

(b) (c)

Figure 3. Dynamics of people who need some intervention after varying the vaccination rate. It
is observed for the unvaccinated (T) and the vaccinated (Tv). (a) Base case. (b) Application of the
double dose of daily vaccines. (c) Quadruplication of daily vaccine doses.
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Figure 4. Dynamics of the behavior of the pandemic after varying the perception of risk baseline values.
(a) Base case. (b) Halving of the rate of resistance to change (Λ1), that is, people are less reluctant to
behavioral change. A similar graph is obtained after doubling the speed of people’s reaction to the
pandemic (Λ2). (c) Reduction of resistance to change by half and increase in reaction speed by double.
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Figure 5. Dynamics of people who need some intervention after varying the baseline values of Risk
Perception. (a) Base case. (b) Halving of the rate of resistance to change (Λ1), that is, people are less
reticent to change their behavior and start adopting PPE and reduce social distancing. A similar
graph is obtained after doubling the speed of people’s reaction to the pandemic (Λ2). (c) Reduction
of resistance to change by half and increase in reaction speed by double.

Finally, the greatest threat posed by this pandemic is the number of deaths attributable
to this disease. After comparing the accumulated ends of the base case with the variation
in risk perception, we can show how people’s behavior brings to a scenario with a reduced
number of deaths (see Figure 6). If the resistance to change decreases by half, the number
of deaths decreases by approximately 16% (see Figure 6b); and if we change the values
simulating that people additionally to that react faster (that is, doubling the reaction speed),
the number of deaths decreases by approximately 31% (see Figure 6c) compared to the base
case (see Figure 6a).
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Figure 6. Accumulated deaths associated with SARS-CoV-2. (a) Base case. (b) Half the rate of
resistance to change (Λ1), that is, people are less reticent to change their behavior with PPE and
reduce social distancing. A similar graph is obtained after doubling the speed of people’s reaction
to the pandemic (Λ2). (c) Reduction of resistance to change by half and increase in reaction speed
by double.

4. Discussion and Conclusions

We propose a COVID-19 contagion model that considers variables that are generally
not included in mathematical models when accounting for vaccination modeling. In
particular, the Risk Perception (P) and the two associated factors, the Reaction Speed of
the population to adopt PPEs and behavioral preventive measures (Λ2), and the rate of
Resistance to Change (Λ1); the modeling of these two factors has been inspired by previous
models about SARS pandemic [23,24,28], where spontaneous behavioral changes in people
are driven by the perceived risk of infection which, of course, can affect the pandemic’s
overall behavior. In our case, we modeled the resistance to change factor through a time
factor (the faster the reaction, the more the willingness to adapt to change one’s behavior).
Another important factor that we added in our model is the possibility of being re-infected
or susceptible to the virus despite being fully vaccinated (that is, after 2 weeks of receiving
the 2 doses of CoronaVac shots in Chile), which has been observed during the COVID-19
pandemic and we thought was missing in previous models. Since the objective of this
study was not to evaluate the impact of personal beliefs about vaccination on infection,
we decided to initiate the numerical values associated with the perception of risk without
distinguishing between vaccinated and unvaccinated (P∗ = P∗v , Λ1 = Λv

1, and Λ2 = Λv
2).

In future studies, this variable could be manipulated to observe the impact of individual’s
beliefs and attitudes toward vaccination (pro-vax or no-vax).

The proposed vaccination model’s novelty is that, in the equation, the transmission
rate depended also on Risk Perception, which varies over time and responds to internal
values variations of both number of daily cases and patients entering the ICU needing
treatment. This led to obtaining an approximation to reality, via numerical simulations,
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regarding the number of waves that occurred in some countries where the pandemic has
hit. Our model has some limitations, but can still give hints about the importance of the
modeled variables: although the model does not consider essential variables in the spread
of the disease, such as mitigation measures, access to vaccines, socioeconomic status, and
mutations of the virus, it shows that the behavioral variable (Risk Perception) is essential
for controlling this disease. If this variable is supported with mitigation measures, good
access to vaccines, and others more to consider, peak infections would be better controlled.
Therefore, developing mechanisms to increase Risk Perception is a factor that should be
considered to enhance mitigation measures.

Our model shows that, regardless of the vaccination rate or the risk perception and
reactivity of the population, the contagion goes trough 3 waves (with the second one bigger
than the others) over the course of one year (360 days). Not only the non-vaccinated people
risk more contagion than people who have been fully vaccinated, but also they are more
likely to need health care and eventually die. This is more or less what we could see in
different countries [34], where there have been 3 waves of contagion (the second one with
more infected people), independently from the politics actuated from local governments
and vaccination rates.

In Chile, a third shot is going to be performed, and this will probably change the
scenario of our model, but still we believe that the model was able to capture the dynamics
of the pandemic considering a very important variable, which is people’s behavior.
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Appendix A

Table A1. Parameter values related to behavior. D = days, UN = unitless. N = Nu + Nv. In order to
not discriminate between people with different beliefs and attitudes towards vaccination, we used
the same numeric values for both P∗ and P∗v .

Parameters Units Baseline Reference

b (d) D−1 0 Author chosen
f D−1 0.012 [20]
fv D−1 1/360 Author chosen

β∗a (β∗i ) D−1 3.08 ∗ 0.75 ∗ 0.3
(βa ∗ 0.5) [17,35,36]

σ (δ) UN 0.35 [20,21,35]
α (αv) D−1 1/5 [17,21,35]

λa (λv
a) UN 0.2 (0.653) [17,21]

https://github.com/MinCiencia/Datos-COVID19
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Table A1. Cont.

Parameters Units Baseline Reference

λi (λv
i ) UN 0.8 (0.347) [17,21]

φ (φv) D−1 1/7 (1/14) [20,35]
µ (µv) D−1 0.1 (µ ∗ 0.13) [17,21,35]
m (mv) D−1 0.001 (m ∗ 0.14) [20,35]
γa (γv

a ) D−1 1/10 [17,20,21,35]
γi (γv

i ) D−1 1/10 [17,20,21,35]
γT (γv

T) D−1 1/14 [17,20,21,35]
ψ (ψv) D−1 1/90 Author chosen

Λ1 (Λv
1) D−1 [0, 1] Author chosen

Λ2 (Λv
2) D−1 [0, 1] Author chosen

P∗ (P∗v ) UN [0.5, 2] Author chosen
Nu (Nv) UN N = 105 Author chosen

References
1. Liu, Y.C.; Kuo, R.L.; Shih, S.R. COVID-19: The first documented coronavirus pandemic in history. Biomed. J. 2020, 43, 328–333.

[CrossRef] [PubMed]
2. Jackson, J.; Weiss, A.; Schwarzenberg, A.; Nelson, M.; Sutter, K.; Sutherland, M. Global Economic Effects of COVID-19.

Congressional Research Service. Updated 4 October 2021. CRS Reports. Available online: https://sgp.fas.org/crs/row/R46270
.pdf (accessed on 4 October 2021).

3. Balanzá-Martínez, V.; Kapczinski, F.; de Azevedo Cardoso, T.; Atienza-Carbonell, B.; Rosa, A.R.; Mota, J.C.; De Boni, R.B. The
assessment of lifestyle changes during the COVID-19 pandemic using a multidimensional scale. Rev. Psiquiatr. Salud Ment. 2021,
14, 16–26. [CrossRef] [PubMed]

4. Stanton, R.; To, Q.G.; Khalesi, S.; Williams, S.L.; Alley, S.J.; Thwaite, T.L.; Fenning, A.S.; Vandelanotte, C. Depression, anxiety and
stress during COVID-19: Associations with changes in physical activity, sleep, tobacco and alcohol use in Australian adults. Int. J.
Environ. Res. Public Health 2020, 17, 4065. [CrossRef] [PubMed]

5. Feter, N.; Caputo, E.; Doring, I.; Leite, J.; Cassuriaga, J.; Reichert, F.; da Silva, M.; Coombes, J.; Rombaldi, A. Sharp increase in
depression and anxiety among Brazilian adults during the COVID-19 pandemic: Findings from the PAMPA cohort. Public Health
2021, 190, 101–107. [CrossRef]

6. Zhou, J.; Zogan, H.; Yang, S.; Jameel, S.; Xu, G.; Chen, F. Detecting community depression dynamics due to COVID-19 pandemic
in australia. IEEE Trans. Comput. Soc. Syst. 2021, 8, 982–991. [CrossRef]

7. Fegert, J.M.; Vitiello, B.; Plener, P.L.; Clemens, V. Challenges and burden of the Coronavirus 2019 (COVID-19) pandemic for child
and adolescent mental health: A narrative review to highlight clinical and research needs in the acute phase and the long return
to normality. Child Adolesc. Psychiatry Ment. Health 2020, 14, 20. [CrossRef]

8. Mansfield, K.E.; Mathur, R.; Tazare, J.; Henderson, A.D.; Mulick, A.R.; Carreira, H.; Matthews, A.A.; Bidulka, P.; Gayle, A.;
Forbes, H.; et al. Indirect acute effects of the COVID-19 pandemic on physical and mental health in the UK: A population-based
study. Lancet Digit. Health 2021, 3, e217–e230. [CrossRef]

9. Wong, C.K.; Wong, J.Y.; Tang, E.H.; Au, C.H.; Lau, K.T.; Wai, A.K. Impact of national containment measures on decelerating the
increase in daily new cases of COVID-19 in 54 countries and 4 epicenters of the pandemic: Comparative observational study.
J. Med. Internet Res. 2020, 22, e19904. [CrossRef]

10. Ge, Y.; Zhang, W.; Liu, H.; Ruktanonchai, C.W.; Hu, M.; Wu, X.; Song, Y.; Ruktanonchai, N.; Yan, W.; Feng, L.; et al. Effects of
worldwide interventions and vaccination on COVID-19 between waves and countries. medrxiv 2021. [CrossRef]

11. van den Driessche, P.; Watmought, J. Reproduction numbers and subthreshold endemic equilibria for compartmental models of
disease transmission. Math. Biosci. 2002, 180, 29–48. [CrossRef]

12. Diekmann, O.; Heesterbeek, H.; Britton, T. Mathematicals Tools for Understanding Infectious Diseases Dynamics; Princeton Series in
Theoretical and Computational Biology; Princeton University Press: Princeton, NJ, USA, 2012.

13. Gumel, A.B.; Iboi, E.A.; Ngonghala, C.N.; Elbasha, E.H. A primer on using mathematics to understand COVID-19 dynamics:
Modeling, analysis and simulations. Infect. Dis. Model. 2021, 6, 148–168. [CrossRef] [PubMed]

14. Harjule, P.; Tiwari, V.; Kumar, A. Mathematical models to predict COVID-19 outbreak: An interim review. J. Interdiscip. Math.
2021, 24, 259–284. [CrossRef]

15. D’angelo, D.; Sinopoli, A.; Napoletano, A.; Gianola, S.; Castellini, G.; Del Monaco, A.; Fauci, A.J.; Latina, R.; Iacorossi, L.;
Salomone, K.; et al. Strategies to exiting the COVID-19 lockdown for workplace and school: A scoping review. Saf. Sci. 2020,
134, 105067. [CrossRef] [PubMed]

16. Bhadauria, A.S.; Pathak, R.; Chaudhary, M. A SIQ mathematical model on COVID-19 investigating the lockdown effect. Infect.
Dis. Model. 2021, 6, 244–257. [CrossRef] [PubMed]

http://doi.org/10.1016/j.bj.2020.04.007
http://www.ncbi.nlm.nih.gov/pubmed/32387617
https://sgp.fas.org/crs/row/R46270.pdf
https://sgp.fas.org/crs/row/R46270.pdf
http://dx.doi.org/10.1016/j.rpsm.2020.07.003
http://www.ncbi.nlm.nih.gov/pubmed/32962948
http://dx.doi.org/10.3390/ijerph17114065
http://www.ncbi.nlm.nih.gov/pubmed/32517294
http://dx.doi.org/10.1016/j.puhe.2020.11.013
http://dx.doi.org/10.1109/TCSS.2020.3047604
http://dx.doi.org/10.1186/s13034-020-00329-3
http://dx.doi.org/10.1016/S2589-7500(21)00017-0
http://dx.doi.org/10.2196/19904
http://dx.doi.org/10.1101/2021.03.31.21254702
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/10.1016/j.idm.2020.11.005
http://www.ncbi.nlm.nih.gov/pubmed/33474518
http://dx.doi.org/10.1080/09720502.2020.1848316
http://dx.doi.org/10.1016/j.ssci.2020.105067
http://www.ncbi.nlm.nih.gov/pubmed/33162676
http://dx.doi.org/10.1016/j.idm.2020.12.010
http://www.ncbi.nlm.nih.gov/pubmed/33437896


Int. J. Environ. Res. Public Health 2022, 19, 2022 12 of 12

17. Epstein, J.M.; Hatna, E.; Crodelle, J. Triple contagion: A two-fears epidemic model. J. R. Soc. Interface 2021, 18, 20210186.
[CrossRef]

18. Mathieu, E.; Ritchie, H.; Ortiz-Ospina, E.; Roser, M.; Hasell, J.; Appel, C.; Giattino, C.; Rodés-Guirao, L. A global database of
COVID-19 vaccinations. Nat. Hum. Behav. 2021, 5, 947–953. [CrossRef]

19. Taylor, L. Covid-19: Spike in cases in Chile is blamed on people mixing after first vaccine shot. Br. Med. J. (Online) 2021,
373, n1023. [CrossRef]

20. GitHub. MinCienias/Datos-COVID19. Updated 4 September 2021. COVID-19 Reports. 2021. Available online: https:
//github.com/MinCiencia/Datos-COVID19 (accessed on 4 September 2021).

21. Jara, A.; Undurraga, E.A.; González, C.; Paredes, F.; Fontecilla, T.; Jara, G.; Pizarro, A.; Acevedo, J.; Leo, K.; Leon, F.; et al.
Effectiveness of an inactivated SARS-CoV-2 vaccine in Chile. N. Engl. J. Med. 2021, 385, 875–884. [CrossRef]

22. Maftei, A.; Holman, A.C. SARS-CoV-2 threat perception and willingness to vaccinate: The mediating role of conspiracy beliefs.
Front. Psychol. 2021, 3371. doi:10.3389/fpsyg.2021.672634. [CrossRef]

23. Poletti, P.; Ajelli, M.; Merler, S. Risk perception and effectiveness of uncoordinated behavioral responses in an emerging epidemic.
Math. Biosci. 2012, 238, 80–89. [CrossRef]

24. Poletti, P.; Ajelli, M.; Merler, S. The effect of risk perception on the 2009 H1N1 pandemic influenza dynamics. PLoS ONE 2011,
6, e16460. [CrossRef] [PubMed]

25. Smith, R.D. Responding to global infectious disease outbreaks: Lessons from SARS on the role of risk perception, communication
and management. Soc. Sci. Med. 2006, 63, 3113–3123. [CrossRef] [PubMed]

26. Majid, U.; Wasim, A.; Bakshi, S.; Truong, J. Knowledge,(mis-) conceptions, risk perception, and behavior change during
pandemics: A scoping review of 149 studies. Public Underst. Sci. 2020, 29, 777–799. [CrossRef] [PubMed]

27. Wise, T.; Zbozinek, T.D.; Michelini, G.; Hagan, C.C.; Mobbs, D. Changes in risk perception and self-reported protective behaviour
during the first week of the COVID-19 pandemic in the United States. R. Soc. Open Sci. 2020, 7, 200742. [CrossRef] [PubMed]

28. Bagnoli, F.; Lio, P.; Sguanci, L. Risk perception in epidemic modeling. Phys. Rev. E 2007, 76, 061904. [CrossRef]
29. Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A Contain.

Pap. Math. Phys. Character 1927, 115, 700–721.
30. Kermack, W.O.; McKendrick, A.G. Contributions to the mathematical theory of epidemics. II.—The problem of endemicity. Proc.

R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 1932, 138, 55–83.
31. Cabrera, M.; Córdova-Lepe, F.; Gutiérrez-Jara, J.P.; Vogt Geisse, K. An SIR type epidemiological model that integrates social

distancing as a dynamic law based on point prevalence and socio-behavioral factors. Sci. Rep. 2021, 11, 10170. [CrossRef]
32. Muñoz-Quezada, M.T.; Lucero, B.; Gutiérrez-Jara, J.P.; Buralli, R.J.; Zúñiga-Venegas, L.; Muñoz, M.P.; Ponce, K.V.; Iglesias, V.

Longitudinal exposure to pyrethroids (3-PBA and trans-DCCA) and 2,4-D herbicide in rural schoolchildren of Maule region,
Chile. Sci. Total Environ. 2020, 749, 141512. [CrossRef]

33. The Mathworks, I. MATLAB Version 9.1 (R2016b). Natick, Massachusetts. 2016. Available online: https://www.mathworks.com
(accessed on 4 September 2021).

34. Fisayo, T.; Tsukagoshi, S. Three waves of the COVID-19 pandemic. Postgrad. Med. J. 2021, 97, 332–332. [CrossRef]
35. Minsal. Casos confirmados en Chile COVID-19. Updated 5 September 2021. Ministerio de Salud de Chile. 2021. Available online:

https://www.minsal.cl/nuevo-coronavirus-2019-ncov/casos-confirmados-en-chile-covid-19/ (accessed on 5 September 2021).
36. Mossong, J.; Hens, N.; Jit, M.; Beutels, P.; Auranen, K.; Mikolajczyk, R.; Massari, M.; Salmaso, S.; Tomba, G.S.; Wallinga, J.; et al.

Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 2008, 5, e74. [CrossRef] [PubMed]

http://dx.doi.org/10.1098/rsif.2021.0186
http://dx.doi.org/10.1038/s41562-021-01122-8
http://dx.doi.org/10.1136/bmj.n1023
https://github.com/MinCiencia/Datos-COVID19
https://github.com/MinCiencia/Datos-COVID19
http://dx.doi.org/10.1056/NEJMoa2107715
http://dx.doi.org/10.3389/fpsyg.2021.672634
http://dx.doi.org/10.1016/j.mbs.2012.04.003
http://dx.doi.org/10.1371/journal.pone.0016460
http://www.ncbi.nlm.nih.gov/pubmed/21326878
http://dx.doi.org/10.1016/j.socscimed.2006.08.004
http://www.ncbi.nlm.nih.gov/pubmed/16978751
http://dx.doi.org/10.1177/0963662520963365
http://www.ncbi.nlm.nih.gov/pubmed/33073717
http://dx.doi.org/10.1098/rsos.200742
http://www.ncbi.nlm.nih.gov/pubmed/33047037
http://dx.doi.org/10.1103/PhysRevE.76.061904
http://dx.doi.org/10.1038/s41598-021-89492-x
http://dx.doi.org/10.1016/j.scitotenv.2020.141512
https://www.mathworks.com
http://dx.doi.org/10.1136/postgradmedj-2020-138564
https://www.minsal.cl/nuevo-coronavirus-2019-ncov/casos-confirmados-en-chile-covid-19/
http://dx.doi.org/10.1371/journal.pmed.0050074
http://www.ncbi.nlm.nih.gov/pubmed/18366252

	Introduction
	Materials and Methods
	Results
	Discussion and Conclusions
	Appendix A
	References

