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Abstract: The COVID-19 pandemic demonstrated the significant value of systems modelling in sup-

porting proactive and effective public health decision making despite the complexities and uncer-

tainties that characterise an evolving crisis. The same approach is possible in the field of mental 

health. However, a commonly levelled (but misguided) criticism prevents systems modelling from 

being more routinely adopted, namely, that the presence of uncertainty around key model input 

parameters renders a model useless. This study explored whether radically different simulated tra-

jectories of suicide would result in different advice to decision makers regarding the optimal strat-

egy to mitigate the impacts of the pandemic on mental health. Using an existing system dynamics 

model developed in August 2020 for a regional catchment of Western Australia, four scenarios were 

simulated to model the possible effect of the COVID-19 pandemic on levels of psychological dis-

tress. The scenarios produced a range of projected impacts on suicide deaths, ranging from a rela-

tively small to a dramatic increase. Discordance in the sets of best-performing intervention scenarios 

across the divergent COVID-mental health trajectories was assessed by comparing differences in 

projected numbers of suicides between the baseline scenario and each of 286 possible intervention 

scenarios calculated for two time horizons; 2026 and 2041. The best performing intervention combi-

nations over the period 2021–2041 (i.e., post-suicide attempt assertive aftercare, community support 

programs to increase community connectedness, and technology enabled care coordination) were 

highly consistent across all four COVID-19 mental health trajectories, reducing suicide deaths by 

between 23.9–24.6% against the baseline. However, the ranking of best performing intervention 

combinations does alter depending on the time horizon under consideration due to non-linear in-

tervention impacts. These findings suggest that systems models can retain value in informing robust 

decision making despite uncertainty in the trajectories of population mental health outcomes. It is 

recommended that the time horizon under consideration be sufficiently long to capture the full ef-

fects of interventions, and efforts should be made to achieve more timely tracking and access to key 

population mental health indicators to inform model refinements over time and reduce uncertainty 

in mental health policy and planning decisions. 
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1. Introduction 

At the outset of the COVID-19 pandemic, systems models were rapidly deployed in 

many countries to estimate the likely trajectories of transmission, mortality, and health 

system burden, to determine the most impactful mitigation strategies, and to most effec-

tively allocate limited resources [1–3]. The extent to which decision makers engaged with 

modelling and simulation to help inform proactive and timely actions to arrest virus trans-

mission varied across nations. Countries, such as Australia and New Zealand, that en-

gaged early and consistently with the modelling, avoided the significant adverse impacts 

on health system, economic, and social indicators seen elsewhere in the world. For exam-

ple, Australia’s early mandated suppression strategies that were informed by the Doherty 

Institute’s original modelling [4] have since been estimated to have prevented tens of 

thousands of deaths from COVID-19 compared to delayed mandated suppression, and 

prevented ICU demands that would have been up to 40 times the capacity of the 

healthcare system, saving $13.5 billion in health care costs, and preventing substantial 

losses to the Australian economy compared to a strategy of unmitigated spread [5]. The 

pandemic has helped to highlight the significant value of systems models as decision sup-

port tools, providing the ability to test the likely impact of policy and planning scenarios 

(helping to understand what combination of strategies are needed, at what time, at what 

scale, and for how long), and informing proactive and effective action despite the com-

plexity, uncertainties, and imperfect knowledge that characterise an evolving crisis [6]. 

Beyond its benefits for informing decision making, systems modelling has long been used 

to advance scientific understanding of the spread of human disease from the first com-

partmental model of smallpox described by Daniel Bernoulli in 1776, to the Nobel Prize 

winning dynamic transmission modelling of malaria developed by Ronald Ross in the early 

20th Century [7]. 

In recent times there have been sustained calls for more routine use of the systems 

modelling approach in mental health research and decision making as a key strategy in 

addressing the disappointing progress on population mental health outcomes over dec-

ades and to inform mitigation of the social and economic impacts of the pandemic on 

mental health [6,8–12]. Evidence from systems modelling applications to answer ques-

tions related to mental health systems strengthening, system reform, and investments in 

the social determinants of mental health have elucidated a range of important insights. 

These insights include, (i) that more is not necessarily better, i.e., investing in programs 

and initiatives beyond the best performing combination can deliver little additional ben-

efit [13]; (ii) that even evidence based interventions can fail to deliver impact or can po-

tentially result in unintended consequences [14]; (iii) that health systems exhibit non-lin-

ear behaviour and threshold effects that have implications for system investment [15,16]; 

(iv) that some intervention combinations and system reforms have the potential to deliver 

synergistic effects, i.e., where the impact of key strategies combined is greater than the 

sum of their impact if implemented in isolation [14,17]; (v) that some social determinants 

of mental health can be more important than others [18]; (vi) that regional variation in 

population and health system characteristics modifies the impact of suicide prevention 

measures on local suicide rates [19]; and (vii) that there can be marked trade-offs between 

minimising different population mental health outcomes, which have significant implica-

tions for cross-agency planning when there are competing priorities [20]. This growing 

evidence suggests that the comprehensive, ‘evidence-based’ approach long promoted by 

the population health research community and embraced by public health planners lacks 

nuance, focus, and strategic sophistication. As a result of the ‘comprehensive’ approach, 

decades of national mental health and suicide prevention action plans have included a 

promiscuous array of programs and initiatives that have delivered disappointing impacts 

and created mental health systems that are difficult to navigate and lack continuity and 

coordination of care [11]. 

Despite the promise systems modelling presents to population mental health, a com-

mon misperception contributes to a resistance to engage with modelling and simulation 
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in research, policy, and planning; that is, that the presence of parameter uncertainty can 

render such models useless. Uncertainty is indeed an important consideration for model 

credibility and the appropriate interpretation of modelling results. Sources of uncertainty 

can include a lack of data availability or quality, a lack of contextually relevant, general-

isable research evidence, and/or a highly dynamic, evolving situation, such as a natural 

disaster or outbreak of a novel infectious disease. However, even in the early stages of the 

pandemic when there was sparse data on key input parameters of coronavirus transmis-

sion models, these models remained valuable to decision making. The same is possible for 

decision making to improve population mental health modelling that benefits from dec-

ades of research and administrative data collection. However, in modelling the social and 

economic impacts of COVID-19 on mental health there remain uncertainties in parameters 

that would significantly influence the mental health trajectory over the next five years. 

Specifically, it is unclear to what extent the disruption, social dislocation, and financial 

hardships brought about by the pandemic will increase rates of psychological distress. In 

order to understand whether this uncertainty renders systems models inadequate for in-

forming effective mitigation strategies, we used an existing regional mental health model 

to explore whether radically different simulated trajectories of an important mental health 

outcome (suicide deaths) would result in different advice to decision makers regarding 

the optimal mitigation strategy. 

2. Materials and Methods 

2.1. Context, Model Structure and Outputs 

This analysis was undertaken using an existing regional system dynamics model de-

veloped in August 2020 for the Perth South Primary Health Network (PHN) population 

catchment. Perth South PHN is a metropolitan region of Western Australia, covering 5069 

square kilometres with an estimated resident population of 973,769 [21,22]. The system 

dynamics model developed was based on a similar model reported elsewhere [20] that 

was reviewed, re-parameterised, and verified in partnership with Perth South PHN col-

laborators to ensure that the model structure and assumptions were valid for the Perth 

South context. Briefly, the model includes: (1) a population component, capturing changes 

over time in population size resulting from births, migration, and mortality; (2) a psycho-

logical distress component that models flows of people to and from states of low or no 

psychological distress (Kessler 10 [K10 scores below 15), and moderate to very high psy-

chological distress (K10 score 16−50); (3) a mental health services component that models 

the movement of psychologically distressed people through possible service pathways 

across the primary to tertiary service continuum involving (potentially) general practi-

tioners (GPs), psychiatrists and allied mental health professionals (including psycholo-

gists, mental health nurses, social workers, etc.), psychiatric inpatient care, community 

mental health centres, and online services; (4) a suicidal behaviour component that cap-

tures self-harm hospitalisations and suicide deaths; and (5) a COVID-19 component that 

captures the impact of the pandemic and recession on social connectedness, unemploy-

ment, and psychological distress from 1 March 2020. The primary model output used for 

this analysis was the total (cumulative) numbers of suicide deaths. Figure 1 presents a 

high-level map of the system dynamics model showing the (causal) interconnections be-

tween the components and Figure 2 presents the interactive user interface of the model. 

Parameter estimates and other numerical inputs were derived (where possible) from 

published research and available data or were estimated via constrained optimisation us-

ing historical time series data. Powell’s method [23] was employed to obtain the set of 

(optimal) parameter values, minimising the sum of the mean absolute percent error cal-

culated for each time series separately (i.e., the mean of the absolute differences between 

the observed time series values and the corresponding model outputs, where each differ-

ence is expressed as a percentage of the observed value). The model broadly reproduces 

historic trends across a range of indicators, including the prevalence of psychological 
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distress, mental health-related emergency department (ED) presentations, self-harm hos-

pitalisations, suicide deaths, and service referrals, from 2011–2017/18. In addition to the 

ability to scale up or down mental health services capacity captured in the core structure 

of the model, a range of possible mental health and suicide prevention programs and ini-

tiatives were integrated into the model, including post-suicide attempt care, general prac-

titioner training, community-based education programs, family psychoeducation and 

support, safety planning, safe space services (based on the UK’s Safe Haven café model), 

social connectedness programs, community-based acute care services, and technology en-

abled care coordination. Supplementary Materials (Figure S1-S15, Table S1-S3) provides a 

detailed description of each of the model components, their interconnections, parameter 

inputs, and model validation graphs (Sections 1 and 2), as well as intervention definitions 

and the research evidence used to inform default intervention parameter values (Section 

3). Model construction and analysis were performed using Stella Architect version 1.9.4 

[24]. 

 

Figure 1. High-level map of the core system dynamics model showing the causal connections among 

model sectors. Single-headed arrows indicate unidirectional causal connections; bidirectional causal 

connections are shown as double-headed arrows. 
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Figure 2. Interactive model interface. 

2.2. Policy Testing and Sensitivity Analyses 

The substantial adverse mental health impacts of social dislocation and job loss re-

sulting from the continuing COVID-19 pandemic [25–27] were modelled primarily as an 

increase in psychological distress incidence from 1 March 2020 that declines gradually 

until the end of the simulation period. The scale (denoted by CES, i.e., COVID-19 Effect 

Scale) and duration (denoted by CED, i.e., COVID-19 Effect Duration) of the COVID-19 

effect on psychological distress are the key uncertain parameters that influence the trajec-

tory of the primary outcome (suicide deaths) that were determined through preliminary 

sensitivity analysis. Parameters controlling the modelled effect of the COVID-19 pan-

demic on psychological distress onset are detailed in Table S1. Specifically, we considered 

four scenarios of the COVID-19 effect on psychological distress that resulted in a range of 

projected impacts on rates of suicide, from very little to dramatic: 

• Scenario A: short duration (CED = 0.5 years) and low impact (CES = 0.11)—lowest 

projected increase in suicides 

• Scenario B: short duration (CED = 0.5 years) and high impact (CES = 0.33), 

• Scenario C: long duration (CED = 1.5 years) and low impact (CES = 0.11), 

• Scenario D: long duration (CED = 1.5 years) and high impact (CES = 0.33)—highest 

projected increase in suicides 

Determining the optimal combination of interventions: The effectiveness of different 

combinations of interventions were explored across a range of possible estimates of the 

scale and duration of the adverse COVID-19 effect on psychological distress to see 

whether the best performing set of three interventions for reducing suicide deaths were 

consistent or inconsistent across the alternative trajectories. Our choice of intervention set 

size of three reflects the fact that suicide prevention programs are generally implemented 

within resource-constrained settings, where only a limited number of interventions can 

be supported and implemented simultaneously. Potential discordance in the best-per-

forming intervention scenarios across the four COVID-mental health scenarios (A–D) was 

assessed by examining reductions in the total (cumulative) numbers of suicides under all 

possible combinations of three interventions selected from the 13 programs, services and 

initiatives modelled. Differences in projected numbers of suicides between the baseline 

scenario and each optimal intervention scenario were calculated using two different time 

horizons; the period 2021–2026, and the period 2021–2041. 
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Sensitivity analyses were performed to assess the impact of uncertainty in estimates 

of the direct effects of each intervention and forecasted growth in services capacity (i.e., 

GP mental health services, psychiatrists and allied services, community mental health ser-

vices, and psychiatric hospital care) on the simulation results. We used Latin hypercube 

sampling to draw 100 sets of values for the selected model parameters from a uniform 

joint distribution spanning ±20% of the default values. The resulting 95% intervals gener-

ated for the projected impact of each intervention combination provide a measure of the 

effect of uncertainty, but should not be interpreted as confidence intervals. 

3. Results 

Table 1 provides the percent increase in cumulative suicide deaths over the period 

2020–2041 (with uncertainty intervals) for the four COVID-mental health scenarios. These 

increases are measured against a scenario of the pandemic having not occurred. Figure 3 

provides the percent reduction in cumulative suicides against the baseline (business as 

usual) with uncertainty intervals for the five best performing intervention combinations 

for each of the four COVID-19 mental health scenarios (A–D) over the period 2021–2041. 

These results demonstrate that the top two best performing intervention combinations 

(i.e., (i) post-suicide attempt assertive aftercare, community support programs to increase 

community connectedness, and technology enabled care coordination; (ii) post-suicide at-

tempt assertive aftercare, community support programs to increase community connect-

edness and family education and support) delivered impacts that were highly consistent 

across all four possible COVID-19 mental health trajectories, reducing suicide deaths by 

between 23.9–24.6% against the baseline. 

Table 1. Percent increase in cumulative suicide deaths over the period 2020–2041 (with 95% inter-

vals) for the four COVID-19 mental health scenarios. 

Suicide Deaths Scenario A Scenario B Scenario C Scenario D 

% increase com-

pared to no pan-

demic 

4.9 18.6 8.1 34.7 

95% intervals * 4.5, 5.3 18.1, 19.1 7.7, 8.5 33.9, 35.5 

* Uncertainty intervals presented are a measure of the impact of uncertainty of projected growth in 

services capacity on the simulation results and should not be interpreted as confidence intervals. 
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Figure 3. Forest plots arising from sensitivity analyses of reduction in cumulative suicide deaths (2021–2041) as a result of 

top performing intervention combinations across the four COVID-19 mental health scenarios. Panels represent different 

COVID-19 scenarios: top left, short duration and low impact (Scenario A); top right, short duration and high impact (Sce-

nario B); bottom left, long duration and low impact (Scenario C); bottom right; long duration and high impact (Scenario 

D). The y-axis of each panel presents the mean percent reduction in cumulative suicides against the baseline (business as 

usual) for each intervention combination with uncertainty intervals in brackets. Overlapping 95% intervals indicate pos-

sible ambiguity of rankings within each COVID-19 mental health scenario, relating to the uncertainty in intervention effect 

sizes and services capacity growth rates. Similarity of possible rankings between scenarios is indicative that uncertainty 

about the effects of COVID-19 on mental health do not change recommendations about optimal intervention investments. 

AA is post-suicide attempt aftercare; CS is community support programs to increase community connectedness; SP is 

safety planning; FE is family education and support; TCC is technology-enabled care coordination. 

Figure 4 shows time series graphs of the best performing combinations across the 

four COVID-19 mental health scenarios (A–D), demonstrating their non-linear impacts 

over time. Results of the analysis of best performing interventions for different time hori-

zons are presented in Figure 3 (with a 2041-time horizon) and Figure 5 (with a 2026-time 

horizon). These results demonstrate that for each COVID-19 mental health trajectory, the 

ranking of best performing intervention combinations changes depending on the time 

horizon under consideration. For example, the best performing combination of interven-

tions for the 2041-time horizon under the most conservative COVID-19 mental health sce-

nario (i.e., Scenario A) includes post-suicide attempt aftercare, community support pro-

grams to increase community connectedness, and technology enabled care coordination, 

delivering a 24.5% (95% interval, 24.2–24.8%) reduction in suicide deaths against the 
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baseline. However, the best performing combination of interventions for the 2026-time 

horizon under Scenario A includes post-suicide attempt aftercare, family education and 

support, and technology-enabled care coordination, delivering a 12.4% (95% interval, 

12.2–12.5%) reduction in suicide deaths against the baseline. However, the rankings of 

best performing intervention combinations are largely consistent between COVID-19 sce-

narios (A–D) at any given horizon. 

 

 

Figure 4. Trajectories for the best performing intervention combinations in reducing suicides deaths over the period 2021–

2041 for the four different COVID-19 mental health scenarios: top left, short duration and low impact (Scenario A); top 

right, short duration and high impact (Scenario B); bottom left, long duration and low impact (Scenario C); bottom right; 

long duration and high impact (Scenario D). Default parameters are chosen for each intervention. The top three ranking 

sets of interventions are consistent across COVID-19 scenarios; however, the fourth top intervention combination differs 

depending on CES. The thick black curve indicates the business-as-usual case, the coloured curves indicate the top per-

forming intervention combinations for reducing cumulative suicides from 2021–2041. Distribution means are indicated 

with a heavy line, and span of individual trajectories from the 100 runs of the sensitivity analysis are presented. AA is 

post-suicide attempt aftercare; CS is community support programs to increase community connectedness; SP is safety 

planning; FE is family education and support; TCC is technology-enabled care coordination. 
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Figure 5. Forest plots similar to Figure 3 for percent reduction in cumulative suicides over the period 2021–2026 as a result 

of top performing intervention combinations. Note substantially different performance rankings from Figure 3 but 

similarity of rankings across COVID-19 mental health scenarios. Panels represent different COVID-19 scenarios (A–D) as 

per previous figures. AA is post-suicide attempt aftercare; CS is community support programs to increase community 

connectedness; SP is safety planning; FE is family education and support; TCC is technology-enabled care coordination. 

The difference in rankings due to time horizon is a result of some intervention com-

binations acting quickly to reduce suicide deaths while others are slower to realise their 

full impact but have amplifying effects over time. This is highlighted in Figure 6, which 

presents the mean and 95% intervals of cumulative suicides for each of the five top per-

forming combinations of interventions normalised by respective business as usual cases. 

The time slices at 2026 in Figure 6 indicate the best performing combination to consist of 

post-suicide attempt aftercare, family education, and technology-enabled care coordina-

tion, however, this is no longer the case by 2041. Analyses, in which optimal sets of four 

interventions are selected from the 12 modelled interventions, yield results qualitatively 

similar to those in Figure 3 (Figure S15). 
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Figure 6. Mean and 95% intervals of cumulative suicides for each top performing combination of interventions (normal-

ised by respective business as usual cases) for the four COVID-19 mental health scenarios (A–D) from 2021–2041. Time 

slices illustrated in Figures 3 and 5 are noted at 2026 and 2041. Note that while different combinations of interventions 

change rankings over time, the rankings (including 95% intervals) remain similar regardless of the severity or duration 

of the COVID-19 mental health scenario. 

4. Discussion 

This study aimed to determine whether the presence of input parameter uncertainty 

pertaining to the impacts of the pandemic on the trajectory of suicide deaths renders sys-

tems models inadequate for informing best mitigation strategies. The findings showed 

that despite simulating four vastly different scenarios relating to the potential impact of 

the pandemic on rates of moderate to very high psychological distress and hence the tra-

jectory of suicide deaths, the best performing combinations of three interventions selected 

from the 13 interventions modelled remained highly consistent across the alternative 

COVID-19 mental health trajectories. For the Perth South PHN population catchment, the 

best performing intervention combinations projected for the period 2021–2041 included 

post-suicide attempt assertive aftercare, community support programs to increase com-

munity connectedness, technology enabled care coordination, and family education and 
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support. While a broader range of programs, services, and initiatives not examined in the 

current study may offer value, and while different combinations may perform best in dif-

ferent regions, these findings suggest that systems models offer value in guiding invest-

ments in suicide prevention even in the presence of significant uncertainty in the COVID-

19 mental health trajectory. 

Systems modelling-based decision analysis provides a systematic, robust, and objec-

tive basis for determining the most effective combination, scale, targeting, timing and du-

ration of interventions needed to deliver impact on key population health outcomes; ad-

vantages that have been increasingly recognised in recent times with their use in respond-

ing to both the physical and mental health threats posed by the pandemic [4,10,28,29]. 

However, when the use of such models is for the purpose of estimating future burden of 

disease, healthcare costs, or surge capacity planning in mental health care systems rather 

than strategic decision analysis, greater precision around the likely future trajectory be-

comes far more important. Therefore, strengthening the mental health data ecosystem in 

Australia to support systems modelling, and establishing mechanisms for continuous 

feedback between real world and modelled systems will be important for reducing uncer-

tainty around projected trajectories of population mental health outcomes and estimates 

of the resources needed to change those trajectories. 

Despite the improvements yet to be made in strengthening population mental health 

data and compiling further empirical evidence on the impact of the pandemic on mental 

health and suicide outcomes, at what cost do we wait for greater certainty before engaging 

with decision analytic tools grounded in complexity science that can provide insights into 

effective strategic actions? Concerns about model uncertainty need to be balanced against 

the known limitations of existing approaches to mental health planning. Investments and 

actions that rely on issues to first be realised and signalled in the data does not provide 

systems with the capacity to understand and proactively address shifting contemporary 

mental health needs in communities [6]. The pandemic has demonstrated how unfit for 

purpose these traditional approaches to mental health planning are. Even in the presence 

of uncertainty (and because of it), systems modelling approaches provide important new 

planning infrastructure in mental health. 

Another key finding of this study was the importance of the time horizon in estimat-

ing both the optimal combination of interventions to inform a strategic response, and the 

impact that optimal combination is likely to have. Even under the most conservative sce-

nario of the trajectory of suicide deaths, this study showed that the best performing com-

bination of interventions for the 2041-time horizon delivered double the percent reduction 

in cumulative suicide deaths against the baseline than the 2026-time horizon did due to 

non-linear intervention impacts. This has important implications for decision making that 

seeks to make the best use of limited public health resources but represents a current chal-

lenge in the context of short funding cycles and the political desire to provide ‘instant 

solutions’ [30,31]. While time horizons that are too long are likely to be perceived by de-

cision makers as impractical, and in themselves represent an additional source of uncer-

tainty, good practice guidelines in dynamic modelling and simulation recommend that 

the time horizon be sufficiently long to capture all the effects of an intervention [32]. Fig-

ure 3 demonstrates a plateauing of intervention impacts well beyond the 2026-time hori-

zon, suggesting that this shorter time horizon would be inadequate for an analysis of the 

optimal intervention combination. The unique value of systems modelling methods in ac-

counting for intervention scale up, time to full effect, and non-linear intervention impacts 

have previously been highlighted and this knowledge can assist in supporting longer term 

policy and program planning and decision making [33]. 

5. Limitations 

The key limitation of this work is the lack of examination of the impact of the struc-

tural uncertainty of the model on findings. Structural uncertainty relates to the possibility 

that multiple alternative representations of a complex system could reproduce observed 
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data, but give rise to divergent model behaviours and outputs [34]. The impact of the 

structural uncertainty of models (as opposed to parameter uncertainty) is often ignored 

due to it being very difficult to quantify, particularly for high dimensional models. While 

it has been proposed that a range of structural representations of a complex system that 

reproduce observed data be developed and the divergence in their forecasts examined 

[35,36], this is often unfeasible within the timeframe of a modelling project and may not 

necessarily adequately capture the extent of the uncertainty. However, participatory 

model building processes can contribute to improving the structural validity of models 

during their development, and particle filtering methods can contribute to reducing the 

impact of structural uncertainty as an ongoing process. 

The model used for the current analysis was originally developed using a broad and 

inclusive participatory process involving stakeholders from state governments, health 

and social policy agencies, local councils, non-government organisations, the education 

sector, emergency services, research institutions, community groups, primary care pro-

viders, multidisciplinary researchers, indigenous representatives, and people with lived 

experience of suicide [20]. The model was further verified during the re-parameterisation 

processes with Perth South PHN collaborators. This process sought to reduce structural 

uncertainty by ensuring model structure and assumptions were, as far as possible, in-

formed by the available empirical evidence and exposed to critique by those with diverse 

perspectives and knowledge of that system. 

A model’s structure drives its dynamics [37]. Particle filtering is a machine learning 

(sequential Monte Carlo state inference and identification) method that uses new obser-

vational time series data to characterise and correct for uncertainty in model dynamics 

[38,39]. While widely employed in non-health fields, such as robotics, particle filtering is 

only more recently being applied in health, particularly to infectious disease models [39–44]. 

Similarly, mental health time series data (which itself can be noisy and offer little capacity 

for predicting future trajectories or the impacts of interventions) could be used to contin-

uously reground dynamic models (which can provide accurate shorter-term projections 

but diverge from empirical patterns over the longer term) to mitigate the weaknesses of 

both and confer greater reliability in forward projections [45]. Particle filtering enables the 

recurrent updating of systems modelling-based decision support tools to ensure their on-

going usefulness and can offer reliable forecast capability even in the context of unantici-

pated events that lie outside of the scope of the model [45]. 

6. Conclusions 

Achieving representation of a complex system with absolute certainty is impossible. 

As with much of science, seeking ‘truth’ is an ongoing process, where a theory stands 

because it enjoys shared confidence in its likelihood and has not yet been disproven; ‘like-

wise, one tests a system dynamics model against a diversity of empirical evidence, seeks 

disproofs, and develops confidence as the model withstands tests’ over time [37]. In the 

meantime, the COVID-19 pandemic has demonstrated the significant value of systems 

modelling and simulation in empowering governments that engaged with such tools to 

act proactively and effectively despite uncertainties and imperfect knowledge that char-

acterised the evolving crisis. The findings of this study suggest that systems modelling 

informed decision making in population mental health has the potential to be robust even 

in the presence of significant variation in the simulated trajectory of suicide deaths that 

could arise due to parameter uncertainty. However, efforts should continue to be made to 

achieve more timely tracking and access to key population mental health indicators, in-

cluding the prevalence of psychological distress and incidence of suicidal behaviour, to 

inform model refinements and reduce uncertainty in mental health policy and planning. 

In addition, efforts should be made to ensure that known sources of uncertainty are 

acknowledged, and further research should focus on improving methods to measure 

model uncertainty. 
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Supplementary Materials: The following are available online at www.mdpi.com/arti-

cle/10.3390/ijerph19031468/s1, Detailed model structure, assumptions, and parameters underpin-

ning the system dynamics model. Figure S1: High-level map of the core system dynamics model 

showing the causal connections among model sectors. Single-headed arrows indicate unidirectional 

causal connections; bidirectional causal connections are shown as double-headed arrows. Figure S2: 

Structure of the population sector. Figure S3: Population estimate for the Perth South PHN (2011-

2019) derived from the simulation model and from the Australian Bureau of Statistics 

(https://www.abs.gov.au/). See main text for detail on estimation of PHN population data from ABS 

SA3 data. Figure S4: Stock and flow structure of the psychological distress sector. Figure S5: Psy-

chological distress prevalence estimate for the Perth South PHN, derived from the system dynamics 

model (red line, 2) and corresponding PHN and ABS National Health Survey data and WA Health 

and Wellbeing Surveillance System (blue line, 1). Figure S6: High-level map of the mental health 

services sector. Figure S7: Stock and flow structure of the help-seeking, general practitioner (GP) 

services, and online services components of the mental health services sector. Figure S8: Mental 

health services usage rates derived from the system dynamics model and from Medicare Benefits 

Schedule (MBS) data, data published by the Australian Institute of Health and Welfare (AIHW), and 

data available from Perth South PHN. Figure S9: Stock and flow structure of the psychiatrist and 

allied health services component of the mental health services sector. Figure S10: Stock and flow 

structure of the hospital services component of the mental health services sector. Figure S11 Stock 

and flow structure of the disengagement component of the mental health services sector. Figure S12: 

Structure of the suicidal behaviour sector. Figure S13 Self-harm hospitalisation and suicide death 

rate estimates derived from the system dynamics model and from Perth South PHN, ABS data (su-

icides) and the Australian Institute of Health and Welfare (2018) (self-harm hospitalisations). Figure 

S14: Shape of modelled impact of the continuing COVID-19 pandemic on psychological distress 

across the Perth South PHN catchment. The four COVID-19 scenarios vary the height and duration 

of the increase in distress onset against a baseline scenario (i.e., had the pandemic not occurred). 

Figure S15: Forest plots arising from sensitivity analyses of percent reduction in cumulative suicide 

deaths (2021-2041) as a result of top performing intervention combinations (set of four interventions) 

across the four COVID-mental health scenarios. Panels represent different COVID scenarios (A, B, 

C, D) as per figure 3 in the main paper. Similar to the results reported in the paper, uncertainty 

about the effects of COVID on mental health do not change recommendations about optimal inter-

vention selection. AA is post-suicide attempt aftercare; CS is community support programs to in-

crease community connectedness; SP is safety planning; FE is family education and support; TCC is 

technology-enabled care coordination. Table S1: Parameters controlling the modelled effect of the 

COVID-19 pandemic on the incidence of psychological distress. Table S2: Numerical inputs and 

data sources. Inputs highlighted in red were varied in the sensitivity analyses (see Methods section 

of the paper). Table S3: Intervention definitions and parameter assumptions. Parameters determin-

ing the direct effects of each intervention can be modified via an interactive model interface, ena-

bling users to assess the impact of parameter assumptions on model outputs. 
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