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Abstract: The COVID-19 pandemic demonstrated the significant value of systems modelling in
supporting proactive and effective public health decision making despite the complexities and
uncertainties that characterise an evolving crisis. The same approach is possible in the field of mental
health. However, a commonly levelled (but misguided) criticism prevents systems modelling from
being more routinely adopted, namely, that the presence of uncertainty around key model input
parameters renders a model useless. This study explored whether radically different simulated
trajectories of suicide would result in different advice to decision makers regarding the optimal
strategy to mitigate the impacts of the pandemic on mental health. Using an existing system dynamics
model developed in August 2020 for a regional catchment of Western Australia, four scenarios were
simulated to model the possible effect of the COVID-19 pandemic on levels of psychological distress.
The scenarios produced a range of projected impacts on suicide deaths, ranging from a relatively
small to a dramatic increase. Discordance in the sets of best-performing intervention scenarios across
the divergent COVID-mental health trajectories was assessed by comparing differences in projected
numbers of suicides between the baseline scenario and each of 286 possible intervention scenarios
calculated for two time horizons; 2026 and 2041. The best performing intervention combinations over
the period 2021–2041 (i.e., post-suicide attempt assertive aftercare, community support programs to
increase community connectedness, and technology enabled care coordination) were highly consistent
across all four COVID-19 mental health trajectories, reducing suicide deaths by between 23.9–24.6%
against the baseline. However, the ranking of best performing intervention combinations does alter
depending on the time horizon under consideration due to non-linear intervention impacts. These
findings suggest that systems models can retain value in informing robust decision making despite
uncertainty in the trajectories of population mental health outcomes. It is recommended that the
time horizon under consideration be sufficiently long to capture the full effects of interventions, and
efforts should be made to achieve more timely tracking and access to key population mental health
indicators to inform model refinements over time and reduce uncertainty in mental health policy and
planning decisions.

Keywords: suicide prevention; strategic planning; decision analysis; systems modelling; simulation;
mental health
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1. Introduction

At the outset of the COVID-19 pandemic, systems models were rapidly deployed in
many countries to estimate the likely trajectories of transmission, mortality, and health
system burden, to determine the most impactful mitigation strategies, and to most ef-
fectively allocate limited resources [1–3]. The extent to which decision makers engaged
with modelling and simulation to help inform proactive and timely actions to arrest virus
transmission varied across nations. Countries, such as Australia and New Zealand, that
engaged early and consistently with the modelling, avoided the significant adverse im-
pacts on health system, economic, and social indicators seen elsewhere in the world. For
example, Australia’s early mandated suppression strategies that were informed by the
Doherty Institute’s original modelling [4] have since been estimated to have prevented tens
of thousands of deaths from COVID-19 compared to delayed mandated suppression, and
prevented ICU demands that would have been up to 40 times the capacity of the healthcare
system, saving $13.5 billion in health care costs, and preventing substantial losses to the
Australian economy compared to a strategy of unmitigated spread [5]. The pandemic
has helped to highlight the significant value of systems models as decision support tools,
providing the ability to test the likely impact of policy and planning scenarios (helping
to understand what combination of strategies are needed, at what time, at what scale,
and for how long), and informing proactive and effective action despite the complexity,
uncertainties, and imperfect knowledge that characterise an evolving crisis [6]. Beyond its
benefits for informing decision making, systems modelling has long been used to advance
scientific understanding of the spread of human disease from the first compartmental
model of smallpox described by Daniel Bernoulli in 1776, to the Nobel Prize winning
dynamic transmission modelling of malaria developed by Ronald Ross in the early 20th
Century [7].

In recent times there have been sustained calls for more routine use of the systems
modelling approach in mental health research and decision making as a key strategy
in addressing the disappointing progress on population mental health outcomes over
decades and to inform mitigation of the social and economic impacts of the pandemic on
mental health [6,8–12]. Evidence from systems modelling applications to answer questions
related to mental health systems strengthening, system reform, and investments in the
social determinants of mental health have elucidated a range of important insights. These
insights include, (i) that more is not necessarily better, i.e., investing in programs and
initiatives beyond the best performing combination can deliver little additional benefit [13];
(ii) that even evidence based interventions can fail to deliver impact or can potentially result
in unintended consequences [14]; (iii) that health systems exhibit non-linear behaviour
and threshold effects that have implications for system investment [15,16]; (iv) that some
intervention combinations and system reforms have the potential to deliver synergistic
effects, i.e., where the impact of key strategies combined is greater than the sum of their
impact if implemented in isolation [14,17]; (v) that some social determinants of mental
health can be more important than others [18]; (vi) that regional variation in population
and health system characteristics modifies the impact of suicide prevention measures on
local suicide rates [19]; and (vii) that there can be marked trade-offs between minimising
different population mental health outcomes, which have significant implications for cross-
agency planning when there are competing priorities [20]. This growing evidence suggests
that the comprehensive, ‘evidence-based’ approach long promoted by the population
health research community and embraced by public health planners lacks nuance, focus,
and strategic sophistication. As a result of the ‘comprehensive’ approach, decades of
national mental health and suicide prevention action plans have included a promiscuous
array of programs and initiatives that have delivered disappointing impacts and created
mental health systems that are difficult to navigate and lack continuity and coordination of
care [11].

Despite the promise systems modelling presents to population mental health, a com-
mon misperception contributes to a resistance to engage with modelling and simulation
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in research, policy, and planning; that is, that the presence of parameter uncertainty can
render such models useless. Uncertainty is indeed an important consideration for model
credibility and the appropriate interpretation of modelling results. Sources of uncertainty
can include a lack of data availability or quality, a lack of contextually relevant, general-
isable research evidence, and/or a highly dynamic, evolving situation, such as a natural
disaster or outbreak of a novel infectious disease. However, even in the early stages of the
pandemic when there was sparse data on key input parameters of coronavirus transmission
models, these models remained valuable to decision making. The same is possible for
decision making to improve population mental health modelling that benefits from decades
of research and administrative data collection. However, in modelling the social and eco-
nomic impacts of COVID-19 on mental health there remain uncertainties in parameters
that would significantly influence the mental health trajectory over the next five years.
Specifically, it is unclear to what extent the disruption, social dislocation, and financial
hardships brought about by the pandemic will increase rates of psychological distress.
In order to understand whether this uncertainty renders systems models inadequate for
informing effective mitigation strategies, we used an existing regional mental health model
to explore whether radically different simulated trajectories of an important mental health
outcome (suicide deaths) would result in different advice to decision makers regarding the
optimal mitigation strategy.

2. Materials and Methods
2.1. Context, Model Structure and Outputs

This analysis was undertaken using an existing regional system dynamics model
developed in August 2020 for the Perth South Primary Health Network (PHN) population
catchment. Perth South PHN is a metropolitan region of Western Australia, covering
5069 square kilometres with an estimated resident population of 973,769 [21,22]. The sys-
tem dynamics model developed was based on a similar model reported elsewhere [20]
that was reviewed, re-parameterised, and verified in partnership with Perth South PHN
collaborators to ensure that the model structure and assumptions were valid for the Perth
South context. Briefly, the model includes: (1) a population component, capturing changes
over time in population size resulting from births, migration, and mortality; (2) a psycho-
logical distress component that models flows of people to and from states of low or no
psychological distress (Kessler 10 [K10 scores below 15), and moderate to very high psycho-
logical distress (K10 score 16−50); (3) a mental health services component that models the
movement of psychologically distressed people through possible service pathways across
the primary to tertiary service continuum involving (potentially) general practitioners
(GPs), psychiatrists and allied mental health professionals (including psychologists, mental
health nurses, social workers, etc.), psychiatric inpatient care, community mental health
centres, and online services; (4) a suicidal behaviour component that captures self-harm hos-
pitalisations and suicide deaths; and (5) a COVID-19 component that captures the impact
of the pandemic and recession on social connectedness, unemployment, and psychological
distress from 1 March 2020. The primary model output used for this analysis was the
total (cumulative) numbers of suicide deaths. Figure 1 presents a high-level map of the
system dynamics model showing the (causal) interconnections between the components
and Figure 2 presents the interactive user interface of the model.

Parameter estimates and other numerical inputs were derived (where possible) from
published research and available data or were estimated via constrained optimisation using
historical time series data. Powell’s method [23] was employed to obtain the set of (optimal)
parameter values, minimising the sum of the mean absolute percent error calculated
for each time series separately (i.e., the mean of the absolute differences between the
observed time series values and the corresponding model outputs, where each difference is
expressed as a percentage of the observed value). The model broadly reproduces historic
trends across a range of indicators, including the prevalence of psychological distress,
mental health-related emergency department (ED) presentations, self-harm hospitalisations,
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suicide deaths, and service referrals, from 2011–2017/18. In addition to the ability to
scale up or down mental health services capacity captured in the core structure of the
model, a range of possible mental health and suicide prevention programs and initiatives
were integrated into the model, including post-suicide attempt care, general practitioner
training, community-based education programs, family psychoeducation and support,
safety planning, safe space services (based on the UK’s Safe Haven café model), social
connectedness programs, community-based acute care services, and technology enabled
care coordination. Supplementary Materials (Figures S1–S15, Tables S1–S3) provides a
detailed description of each of the model components, their interconnections, parameter
inputs, and model validation graphs (Sections 1 and 2), as well as intervention definitions
and the research evidence used to inform default intervention parameter values (Section 3).
Model construction and analysis were performed using Stella Architect version 1.9.4 [24].

Population

Psychological distress

Suicidal behaviour

Health services

COVID effects

Figure 1. High-level map of the core system dynamics model showing the causal connections among
model sectors. Single-headed arrows indicate unidirectional causal connections; bidirectional causal
connections are shown as double-headed arrows.

2.2. Policy Testing and Sensitivity Analyses

The substantial adverse mental health impacts of social dislocation and job loss re-
sulting from the continuing COVID-19 pandemic [25–27] were modelled primarily as an
increase in psychological distress incidence from 1 March 2020 that declines gradually until
the end of the simulation period. The scale (denoted by CES, i.e., COVID-19 Effect Scale)
and duration (denoted by CED, i.e., COVID-19 Effect Duration) of the COVID-19 effect on
psychological distress are the key uncertain parameters that influence the trajectory of the
primary outcome (suicide deaths) that were determined through preliminary sensitivity
analysis. Parameters controlling the modelled effect of the COVID-19 pandemic on psycho-
logical distress onset are detailed in Table S1. Specifically, we considered four scenarios of
the COVID-19 effect on psychological distress that resulted in a range of projected impacts
on rates of suicide, from very little to dramatic:
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• Scenario A: short duration (CED = 0.5 years) and low impact (CES = 0.11)—lowest
projected increase in suicides

• Scenario B: short duration (CED = 0.5 years) and high impact (CES = 0.33),
• Scenario C: long duration (CED = 1.5 years) and low impact (CES = 0.11),
• Scenario D: long duration (CED = 1.5 years) and high impact (CES = 0.33)—highest

projected increase in suicides

Figure 2. Interactive model interface.

Determining the optimal combination of interventions: The effectiveness of different
combinations of interventions were explored across a range of possible estimates of the
scale and duration of the adverse COVID-19 effect on psychological distress to see whether
the best performing set of three interventions for reducing suicide deaths were consistent
or inconsistent across the alternative trajectories. Our choice of intervention set size of
three reflects the fact that suicide prevention programs are generally implemented within
resource-constrained settings, where only a limited number of interventions can be sup-
ported and implemented simultaneously. Potential discordance in the best-performing
intervention scenarios across the four COVID-mental health scenarios (A–D) was assessed
by examining reductions in the total (cumulative) numbers of suicides under all possible
combinations of three interventions selected from the 13 programs, services and initiatives
modelled. Differences in projected numbers of suicides between the baseline scenario and
each optimal intervention scenario were calculated using two different time horizons; the
period 2021–2026, and the period 2021–2041.

Sensitivity analyses were performed to assess the impact of uncertainty in estimates
of the direct effects of each intervention and forecasted growth in services capacity (i.e.,
GP mental health services, psychiatrists and allied services, community mental health
services, and psychiatric hospital care) on the simulation results. We used Latin hypercube
sampling to draw 100 sets of values for the selected model parameters from a uniform joint
distribution spanning ±20% of the default values. The resulting 95% intervals generated
for the projected impact of each intervention combination provide a measure of the effect
of uncertainty, but should not be interpreted as confidence intervals.

3. Results

Table 1 provides the percent increase in cumulative suicide deaths over the period
2020–2041 (with uncertainty intervals) for the four COVID-mental health scenarios. These
increases are measured against a scenario of the pandemic having not occurred. Figure 3
provides the percent reduction in cumulative suicides against the baseline (business as
usual) with uncertainty intervals for the five best performing intervention combinations
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for each of the four COVID-19 mental health scenarios (A–D) over the period 2021–2041.
These results demonstrate that the top two best performing intervention combinations (i.e.,
(i) post-suicide attempt assertive aftercare, community support programs to increase com-
munity connectedness, and technology enabled care coordination; (ii) post-suicide attempt
assertive aftercare, community support programs to increase community connectedness
and family education and support) delivered impacts that were highly consistent across
all four possible COVID-19 mental health trajectories, reducing suicide deaths by between
23.9–24.6% against the baseline.

Figure 3. Forest plots arising from sensitivity analyses of reduction in cumulative suicide deaths
(2021–2041) as a result of top performing intervention combinations across the four COVID-19
mental health scenarios. Panels represent different COVID-19 scenarios: top left, short duration
and low impact (Scenario A); top right, short duration and high impact (Scenario B); bottom left,
long duration and low impact (Scenario C); bottom right; long duration and high impact (Scenario
D). The y-axis of each panel presents the mean percent reduction in cumulative suicides against the
baseline (business as usual) for each intervention combination with uncertainty intervals in brackets.
Overlapping 95% intervals indicate possible ambiguity of rankings within each COVID-19 mental
health scenario, relating to the uncertainty in intervention effect sizes and services capacity growth
rates. Similarity of possible rankings between scenarios is indicative that uncertainty about the
effects of COVID-19 on mental health do not change recommendations about optimal intervention
investments. AA is post-suicide attempt aftercare; CS is community support programs to increase
community connectedness; SP is safety planning; FE is family education and support; TCC is
technology-enabled care coordination.

Figure 4 shows time series graphs of the best performing combinations across the four
COVID-19 mental health scenarios (A–D), demonstrating their non-linear impacts over
time. Results of the analysis of best performing interventions for different time horizons are
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presented in Figure 3 (with a 2041-time horizon) and Figure 5 (with a 2026-time horizon).
These results demonstrate that for each COVID-19 mental health trajectory, the ranking
of best performing intervention combinations changes depending on the time horizon
under consideration. For example, the best performing combination of interventions for
the 2041-time horizon under the most conservative COVID-19 mental health scenario
(i.e., Scenario A) includes post-suicide attempt aftercare, community support programs
to increase community connectedness, and technology enabled care coordination, deliv-
ering a 24.5% (95% interval, 24.2–24.8%) reduction in suicide deaths against the baseline.
However, the best performing combination of interventions for the 2026-time horizon
under Scenario A includes post-suicide attempt aftercare, family education and support,
and technology-enabled care coordination, delivering a 12.4% (95% interval, 12.2–12.5%)
reduction in suicide deaths against the baseline. However, the rankings of best performing
intervention combinations are largely consistent between COVID-19 scenarios (A–D) at
any given horizon.

Figure 4. Trajectories for the best performing intervention combinations in reducing suicides deaths
over the period 2021–2041 for the four different COVID-19 mental health scenarios: top left, short
duration and low impact (Scenario A); top right, short duration and high impact (Scenario B);
bottom left, long duration and low impact (Scenario C); bottom right; long duration and high
impact (Scenario D). Default parameters are chosen for each intervention. The top three ranking
sets of interventions are consistent across COVID-19 scenarios; however, the fourth top intervention
combination differs depending on CES. The thick black curve indicates the business-as-usual case,
the coloured curves indicate the top performing intervention combinations for reducing cumulative
suicides from 2021–2041. Distribution means are indicated with a heavy line, and span of individual
trajectories from the 100 runs of the sensitivity analysis are presented. AA is post-suicide attempt
aftercare; CS is community support programs to increase community connectedness; SP is safety
planning; FE is family education and support; TCC is technology-enabled care coordination.
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Table 1. Percent increase in cumulative suicide deaths over the period 2020–2041 (with 95% intervals)
for the four COVID-19 mental health scenarios.

Suicide Deaths Scenario A Scenario B Scenario C Scenario D

% increase compared to no
pandemic 4.9 18.6 8.1 34.7

95% intervals * 4.5, 5.3 18.1, 19.1 7.7, 8.5 33.9, 35.5
* Uncertainty intervals presented are a measure of the impact of uncertainty of projected growth in services
capacity on the simulation results and should not be interpreted as confidence intervals.

Figure 5. Forest plots similar to Figure 3 for percent reduction in cumulative suicides over the period
2021–2026 as a result of top performing intervention combinations. Note substantially different per-
formance rankings from Figure 3 but similarity of rankings across COVID-19 mental health scenarios.
Panels represent different COVID-19 scenarios (A–D) as per previous figures. AA is post-suicide
attempt aftercare; CS is community support programs to increase community connectedness; SP is
safety planning; FE is family education and support; TCC is technology-enabled care coordination.

The difference in rankings due to time horizon is a result of some intervention combi-
nations acting quickly to reduce suicide deaths while others are slower to realise their full
impact but have amplifying effects over time. This is highlighted in Figure 6, which presents
the mean and 95% intervals of cumulative suicides for each of the five top performing
combinations of interventions normalised by respective business as usual cases. The time
slices at 2026 in Figure 6 indicate the best performing combination to consist of post-suicide
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attempt aftercare, family education, and technology-enabled care coordination, however,
this is no longer the case by 2041. Analyses, in which optimal sets of four interventions are
selected from the 12 modelled interventions, yield results qualitatively similar to those in
Figure 3 (Figure S15).

Figure 6. Mean and 95% intervals of cumulative suicides for each top performing combination of
interventions (normalised by respective business as usual cases) for the four COVID-19 mental health
scenarios (A–D) from 2021–2041. Time slices illustrated in Figures 3 and 5 are noted at 2026 and 2041.
Note that while different combinations of interventions change rankings over time, the rankings
(including 95% intervals) remain similar regardless of the severity or duration of the COVID-19
mental health scenario.

4. Discussion

This study aimed to determine whether the presence of input parameter uncertainty
pertaining to the impacts of the pandemic on the trajectory of suicide deaths renders sys-
tems models inadequate for informing best mitigation strategies. The findings showed
that despite simulating four vastly different scenarios relating to the potential impact of
the pandemic on rates of moderate to very high psychological distress and hence the
trajectory of suicide deaths, the best performing combinations of three interventions se-
lected from the 13 interventions modelled remained highly consistent across the alternative
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COVID-19 mental health trajectories. For the Perth South PHN population catchment, the
best performing intervention combinations projected for the period 2021–2041 included
post-suicide attempt assertive aftercare, community support programs to increase com-
munity connectedness, technology enabled care coordination, and family education and
support. While a broader range of programs, services, and initiatives not examined in
the current study may offer value, and while different combinations may perform best
in different regions, these findings suggest that systems models offer value in guiding
investments in suicide prevention even in the presence of significant uncertainty in the
COVID-19 mental health trajectory.

Systems modelling-based decision analysis provides a systematic, robust, and objective
basis for determining the most effective combination, scale, targeting, timing and duration
of interventions needed to deliver impact on key population health outcomes; advantages
that have been increasingly recognised in recent times with their use in responding to both
the physical and mental health threats posed by the pandemic [4,10,28,29]. However, when
the use of such models is for the purpose of estimating future burden of disease, healthcare
costs, or surge capacity planning in mental health care systems rather than strategic decision
analysis, greater precision around the likely future trajectory becomes far more important.
Therefore, strengthening the mental health data ecosystem in Australia to support systems
modelling, and establishing mechanisms for continuous feedback between real world and
modelled systems will be important for reducing uncertainty around projected trajectories
of population mental health outcomes and estimates of the resources needed to change
those trajectories.

Despite the improvements yet to be made in strengthening population mental health
data and compiling further empirical evidence on the impact of the pandemic on mental
health and suicide outcomes, at what cost do we wait for greater certainty before engaging
with decision analytic tools grounded in complexity science that can provide insights into
effective strategic actions? Concerns about model uncertainty need to be balanced against
the known limitations of existing approaches to mental health planning. Investments and
actions that rely on issues to first be realised and signalled in the data does not provide
systems with the capacity to understand and proactively address shifting contemporary
mental health needs in communities [6]. The pandemic has demonstrated how unfit for
purpose these traditional approaches to mental health planning are. Even in the presence
of uncertainty (and because of it), systems modelling approaches provide important new
planning infrastructure in mental health.

Another key finding of this study was the importance of the time horizon in esti-
mating both the optimal combination of interventions to inform a strategic response, and
the impact that optimal combination is likely to have. Even under the most conservative
scenario of the trajectory of suicide deaths, this study showed that the best performing
combination of interventions for the 2041-time horizon delivered double the percent reduc-
tion in cumulative suicide deaths against the baseline than the 2026-time horizon did due
to non-linear intervention impacts. This has important implications for decision making
that seeks to make the best use of limited public health resources but represents a cur-
rent challenge in the context of short funding cycles and the political desire to provide
‘instant solutions’ [30,31]. While time horizons that are too long are likely to be perceived
by decision makers as impractical, and in themselves represent an additional source of
uncertainty, good practice guidelines in dynamic modelling and simulation recommend
that the time horizon be sufficiently long to capture all the effects of an intervention [32].
Figure 3 demonstrates a plateauing of intervention impacts well beyond the 2026-time
horizon, suggesting that this shorter time horizon would be inadequate for an analysis of
the optimal intervention combination. The unique value of systems modelling methods in
accounting for intervention scale up, time to full effect, and non-linear intervention impacts
have previously been highlighted and this knowledge can assist in supporting longer term
policy and program planning and decision making [33].
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5. Limitations

The key limitation of this work is the lack of examination of the impact of the structural
uncertainty of the model on findings. Structural uncertainty relates to the possibility that
multiple alternative representations of a complex system could reproduce observed data,
but give rise to divergent model behaviours and outputs [34]. The impact of the structural
uncertainty of models (as opposed to parameter uncertainty) is often ignored due to it
being very difficult to quantify, particularly for high dimensional models. While it has been
proposed that a range of structural representations of a complex system that reproduce
observed data be developed and the divergence in their forecasts examined [35,36], this
is often unfeasible within the timeframe of a modelling project and may not necessarily
adequately capture the extent of the uncertainty. However, participatory model building
processes can contribute to improving the structural validity of models during their devel-
opment, and particle filtering methods can contribute to reducing the impact of structural
uncertainty as an ongoing process.

The model used for the current analysis was originally developed using a broad and
inclusive participatory process involving stakeholders from state governments, health and
social policy agencies, local councils, non-government organisations, the education sector,
emergency services, research institutions, community groups, primary care providers,
multidisciplinary researchers, indigenous representatives, and people with lived experience
of suicide [20]. The model was further verified during the re-parameterisation processes
with Perth South PHN collaborators. This process sought to reduce structural uncertainty
by ensuring model structure and assumptions were, as far as possible, informed by the
available empirical evidence and exposed to critique by those with diverse perspectives
and knowledge of that system.

A model’s structure drives its dynamics [37]. Particle filtering is a machine learning
(sequential Monte Carlo state inference and identification) method that uses new observa-
tional time series data to characterise and correct for uncertainty in model dynamics [38,39].
While widely employed in non-health fields, such as robotics, particle filtering is only
more recently being applied in health, particularly to infectious disease models [39–44].
Similarly, mental health time series data (which itself can be noisy and offer little capacity
for predicting future trajectories or the impacts of interventions) could be used to continu-
ously reground dynamic models (which can provide accurate shorter-term projections but
diverge from empirical patterns over the longer term) to mitigate the weaknesses of both
and confer greater reliability in forward projections [45]. Particle filtering enables the recur-
rent updating of systems modelling-based decision support tools to ensure their ongoing
usefulness and can offer reliable forecast capability even in the context of unanticipated
events that lie outside of the scope of the model [45].

6. Conclusions

Achieving representation of a complex system with absolute certainty is impossible.
As with much of science, seeking ‘truth’ is an ongoing process, where a theory stands
because it enjoys shared confidence in its likelihood and has not yet been disproven;
‘likewise, one tests a system dynamics model against a diversity of empirical evidence,
seeks disproofs, and develops confidence as the model withstands tests’ over time [37].
In the meantime, the COVID-19 pandemic has demonstrated the significant value of
systems modelling and simulation in empowering governments that engaged with such
tools to act proactively and effectively despite uncertainties and imperfect knowledge that
characterised the evolving crisis. The findings of this study suggest that systems modelling
informed decision making in population mental health has the potential to be robust even in
the presence of significant variation in the simulated trajectory of suicide deaths that could
arise due to parameter uncertainty. However, efforts should continue to be made to achieve
more timely tracking and access to key population mental health indicators, including the
prevalence of psychological distress and incidence of suicidal behaviour, to inform model
refinements and reduce uncertainty in mental health policy and planning. In addition,
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efforts should be made to ensure that known sources of uncertainty are acknowledged, and
further research should focus on improving methods to measure model uncertainty.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijerph19031468/s1, Detailed model structure, assumptions, and parameters underpinning the
system dynamics model. Figure S1: High-level map of the core system dynamics model showing the
causal connections among model sectors. Single-headed arrows indicate unidirectional causal con-
nections; bidirectional causal connections are shown as double-headed arrows. Figure S2: Structure
of the population sector. Figure S3: Population estimate for the Perth South PHN (2011–2019) derived
from the simulation model and from the Australian Bureau of Statistics (https://www.abs.gov.au/,
accessed on 8 November 2021). See main text for detail on estimation of PHN population data from
ABS SA3 data. Figure S4: Stock and flow structure of the psychological distress sector. Figure S5: Psy-
chological distress prevalence estimate for the Perth South PHN, derived from the system dynamics
model (red line, 2) and corresponding PHN and ABS National Health Survey data and WA Health
and Wellbeing Surveillance System (blue line, 1). Figure S6: High-level map of the mental health
services sector. Figure S7: Stock and flow structure of the help-seeking, general practitioner (GP)
services, and online services components of the mental health services sector. Figure S8: Mental health
services usage rates derived from the system dynamics model and from Medicare Benefits Schedule
(MBS) data, data published by the Australian Institute of Health and Welfare (AIHW), and data
available from Perth South PHN. Figure S9: Stock and flow structure of the psychiatrist and allied
health services component of the mental health services sector. Figure S10: Stock and flow structure
of the hospital services component of the mental health services sector. Figure S11 Stock and flow
structure of the disengagement component of the mental health services sector. Figure S12: Structure
of the suicidal behaviour sector. Figure S13 Self-harm hospitalisation and suicide death rate estimates
derived from the system dynamics model and from Perth South PHN, ABS data (suicides) and the
Australian Institute of Health and Welfare (2018) (self-harm hospitalisations). Figure S14: Shape of
modelled impact of the continuing COVID-19 pandemic on psychological distress across the Perth
South PHN catchment. The four COVID-19 scenarios vary the height and duration of the increase in
distress onset against a baseline scenario (i.e., had the pandemic not occurred). Figure S15: Forest
plots arising from sensitivity analyses of percent reduction in cumulative suicide deaths (2021–2041)
as a result of top performing intervention combinations (set of four interventions) across the four
COVID-mental health scenarios. Panels represent different COVID scenarios (A, B, C, D) as per
Figure 3 in the main paper. Similar to the results reported in the paper, uncertainty about the effects
of COVID on mental health do not change recommendations about optimal intervention selection.
AA is post-suicide attempt aftercare; CS is community support programs to increase community
connectedness; SP is safety planning; FE is family education and support; TCC is technology-enabled
care coordination. Table S1: Parameters controlling the modelled effect of the COVID-19 pandemic
on the incidence of psychological distress. Table S2: Numerical inputs and data sources. Inputs
highlighted in red were varied in the sensitivity analyses (see Methods section of the paper). Table S3:
Intervention definitions and parameter assumptions. Parameters determining the direct effects of
each intervention can be modified via an interactive model interface, enabling users to assess the
impact of parameter assumptions on model outputs.
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