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Abstract: In order to develop a low-cost, fast, and efficient adsorbent, the fish bone charcoal B600

prepared at 600 ◦C was modified by chitosan (Cs) and Fe3O4 to produce the material Cs-Fe3O4-
B600. Results showed that Cs-Fe3O4-B600 had magnetic responsiveness and can achieve solid–liquid
separation, macropores disappeared, pore volume and specific surface area are increased, and
amino functional groups appear on the surface. The adsorption process of Cd(II) by Cs-Fe3O4-B600

conformed best to the pseudo-second order kinetics model and the Langmuir model, respectively.
The behavior over a whole range of adsorption was consistent with chemical adsorption being
the rate-controlling step, which is a very fast adsorption process, and the isothermal adsorption is
mainly monolayer adsorption, which belongs to favorable adsorption. In addition, the saturated
adsorption capacity obtained for the Cs-Fe3O4-B600 to Cd(II) was 64.31 mg·g−1, which was 1.7 times
than B600. The structure and morphology of Cs-Fe3O4-B600 were characterized through SEM-EDS,
TEM, FTIR, and XRD, indicating that the main mechanism of Cs-Fe3O4-B600 and Cd(II) is mainly
the complexation of amino groups, and it also includes part of the ion exchange between Cd(II)
and Fe3O4. Therefore, Cs-Fe3O4-B600 can be employed as an effective agent for remediation of Cd
contaminated water.

Keywords: Cd; fish bone char; Fe3O4; chitosan; modification; adsorption mechanism

1. Introduction

Cadmium (Cd) is a highly toxic carcinogen, which enters the human body through the
food chain and causes damage to human health [1,2]. Human intake of Cd mainly includes
food, smoking, and drinking water. Among them, grains and vegetables are the largest
sources of human long-term intake of Cd [3]. Cd in the soil is easily absorbed by plants and
transported in their tissues [4]. At present, Cd content of many food crops in China has
exceeded the corresponding national food safety standard [3,5]. Wastewater irrigation is an
important cause of cadmium pollution in agricultural soil. Therefore, it is very important
to remove cadmium in wastewater.

Cd pollution cannot reduce or even eliminate its harmfulness through environmental
self-purification but can only achieve the transformation of the occurrence state and the
migration of the location. A variety of remediation measures are used for the remediation
of Cd-contaminated soils, such as physical and chemical remediation, microbial remedi-
ation, and phytoremediation [6]. Currently, the adsorption method has attracted much
attention due to its high efficiency, low cost, and non-secondary pollution. Adsorption is
considered to be a process in which molecules gather from a fluid to a solid surface. In
recent years, the use of low-cost, widely sourced industrial/agricultural/domestic waste or
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by-products as adsorbents to remove heavy metals in water bodies has received widespread
attention [7–10]. Bone char mainly includes hydroxyapatite (70–76%), a small part of char
(9–11%) and carbonate (7–9%) [11]. Several studies have demonstrated that bone char has a
good adsorption effect on heavy metals Cu(II), Zn(II), Co(II), Hg(II) [12–14]. For example,
the research of Wang [15] and Liu [16] showed that bone char also has a good treatment
effect on Pb(II) and As(V), and the adsorption capacity can reach 84.75 and 0.335 mg·g−1,
respectively. In addition, Moreno et al. [17] found that the saturated adsorption capacity of
bone char for Mn and Ni can reach 29.56 and 35.44 mg·g−1, respectively. Sneddon et al. [18]
used column leaching experiments to study the fixation effect of bone char on Pb(II), Zn(II),
and Cd(II) in soil, that is, to test the stability of metals in contaminated soil by forming
low-soluble metal phosphates. The results show that when bone char:soil = 1:10 (mass
ratio), the release of heavy metals is inhibited during the whole process of the experiment,
which may involve surface complexation and ion exchange.

The modification of bone meal materials usually refers to the use of impregnation
or co-precipitation methods to load target functional groups or target components on the
surface of the material. Common composite modifications include metal ion loading modi-
fication such as aluminum, iron, lanthanum, sulfhydryl, and other surface group loading
modification, graphene modification, γ-Fe2O3, Fe3O4, NiFe2O4, CoFe2O4, CuFe2O4, and
ZnFe2O4 particles and other magnetic properties modified [19–24]. However, compared
with bone meal, bone char materials have well-developed pores and are more suitable as a
carrier for loading materials. Therefore, the composite modification of bone meal materials
is mostly performed on the bone char obtained by treatment at different temperatures.

Studies have shown that magnetic materials not only easily achieve solid–liquid sepa-
ration, but also have a good removal effect on heavy metals. For example, functionalized
magnetic microspheres NiFe2O4 can adsorb Cu up to 20.16 mg·g−1 [25], FeS-coated iron
can adsorb Cr(VI) up to 69.7 mg·g−1 [26], FeNi3/TiO2 material can adsorb Cr(VI) up to
76.335 mg·g−1 [27]. Among the above-mentioned magnetic particles, Fe3O4 is widely used
because of its strong superparamagnetism, low toxicity, and easy synthesis [28,29]. The
typical synthesis process of nano Fe3O4 particles mainly includes DC (Direct Current) arc
plasma method, thermal decomposition method, co-precipitation method, hydrothermal
method, and microemulsion method. Du et al. [30] used the co-precipitation method to
prepare Fe3O4 magnetic biochar and applied it to the treatment of heavy-metal polluted
wastewater. The results show that after the magnetic modification, the specific surface
area of the adsorbent increases, and the removal rate of Cu and Zn can reach 61.1% and
60.4%, respectively. During the modification process, functional groups such as hydroxyl
and carboxyl groups increased [30]. Hu et al. [31] studied the removal of Cd(II) by mag-
netically modified corn stalk biochar, and the results showed that after the material was
magnetically modified, the pH value, specific surface area, and polar oxygen-containing
functional groups all increased, resulting in a saturated adsorption capacity. The mecha-
nism of magnetic biochar to remove Cd is ion exchange, surface complexation, electrostatic
adsorption, and cation-π interaction. The strong affinity of iron oxide for Cd can enhance
the complexation between them [31]. In addition, chitosan is a low cost, biodegradable, and
nontoxic biopolymer [32]. Chitosan has a large number of amino functional groups and has
strong adsorption capacity for heavy metals in aqueous solution, so it can be widely used
in the removal of heavy metal pollutants [33]. However, due to the low specific surface area
and limited active sites of chitosan, its adsorption capacity is still insufficient [34]. Chitosan
can be introduced on the surface of fish bone char to enhance the adsorption capacity and
active sites of fish bone char for heavy metals [34].

However, there are few studies on the effect and mechanism of chitosan and Fe3O4
composite modified bone char for Cd removal. In this work, we successfully prepared a
novel chitosan combined Fe3O4 modified fish bone char (Cs-Fe3O4-B600), which can be
used as a suitable adsorbent for cadmium solution. The objectives of this study were to (1)
prepare and characterize the Cs-Fe3O4-B600 and (2) explore the capabilities and mechanisms
of Cs-Fe3O4-B600 for adsorption on Cd.
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2. Materials and Methods
2.1. Adsorbent Preparation
2.1.1. Preparation of Fish Bone Char

The fish bone meal used in the experiment was pulverized by a universal pulverizer
and passed through a 100-mesh sieve. A part of the sieved fish bone meal was selected,
and N2 was used as a protective gas to react in a muffle furnace (SLX1100-50, Shanghai
Shengli Testing Instrument Co., Ltd., Shanghai, China) at 200, 400, 600, and 800 ◦C for 3.5 h
to obtain fish bone char treated at different temperatures. By measuring the Cd adsorption
capacity of fish bone char prepared at different temperatures, we found that fish bone
char prepared at 600 ◦C (B600) had the highest adsorption capacity, so B600 was selected
for subsequent experiments. B600 was grind pulverized and passed through a 200-mesh
sieve for use. In addition, the basic properties of fish bone meal are as follows. The main
component of fish bone meal is Ca10(PO4)6(OH)2, the specific surface area is 2.27 m2·g−1,
the pore volume is 0.0035 cm3·g−1, and the average pore diameter is 4.811 nm.

2.1.2. Preparation of Nano Fe3O4

The ultrapure water was boiled and then cooled and sealed for later use. After
ferrous chloride tetrahydrate (0.0994 g, Shanghai Macklin Biochemical Co., Ltd., Shanghai,
China) and ferric chloride hexahydrate (2.7029 g, Shanghai Macklin Biochemical Co.,
Ltd., Shanghai, China) were dissolved in the above ultrapure water (100 mL) in a three-
necked flask, ammonia water with a concentration of 3.5 M was added dropwise, and then
vigorously stirred with a Vortex Mixer (QL-866, Haimen Kylin-Bell Lab Instruments Co.,
Ltd., Haimen, China) to mix well and when the measured pH was 10, addition of ammonia
water (about 40 mL) was stopped. In this process, the nitrogen-blowing device (N-EVAP,
Organomation, Berlin, MA, USA) was used to pass N2 to undertake the reaction under
anaerobic conditions. The obtained precipitate was washed with deionized water and
dried in a muffle furnace at 70 ◦C. The above process was repeated several times to obtain
a sufficient amount of nano Fe3O4.

2.1.3. Preparation of Chitosan-Fe3O4-Modified Fish Bone Char

Chitosan (100 g, Shanghai Macklin Biochemical Co., Ltd., Shanghai, China) was added
to absolute ethanol (1000 mL) and stirred vigorously for 2 h to obtain a viscous gum. Bone
char (5 g) (B600, 200-mesh sieve) and nano Fe3O4 (2 g) were added to the above viscous gel,
and the Vortex Mixer was vigorously stirred for 1 h. The above homogeneous mixture was
added dropwise to 500 mL 15% NaOH and 95% absolute ethanol mixture (volume ratio 4:1)
with a rubber tip dropper, and continuously stirred to produce chitosan-Fe3O4-modified
fish bone char mixture. After keeping in the solution for 12 h, the precipitate was collected,
washed with deionized water to remove surface impurities, dried in a muffle furnace at
70 ◦C, and sieved for later use. The resulting material was recorded as Cs-Fe3O4-B600.
This method refers to Reza’s magnetic modification of bone char [35] and optimizes it on
this basis.

2.2. Characterization

The magnetic properties of Cs-Fe3O4-B600 were characterized by a Vibrating Sample
Magnetometer (Mpms Squid, American quantum design company, San Diego, CA, USA)
at room temperature, applying a magnetic field of −20 kOe–20 kOe; the specific surface
area and pore volume of Cs-Fe3O4-B600 were measured by a specific surface area analyzer
(Quadrasorb Si, Quanta Instruments, Inc., Boynton Beach, FL, USA) using multipoint BET
(Method of Brunauer, Emmett and Teller) method and BJH (Method of Barrett, Joyner and
Halenda). The multifunctional X-ray diffractometer (Bruker D8 Advance, Bruker, Karlsruhe,
Germany) was used to perform XRD (diffraction of x-rays) analysis on Cs-Fe3O4-B600, with
a scan range of 10◦–90◦, a scan rate of 4◦·cm−1, and a scan step size of 0.02◦; Fourier
transform infrared spectrometer (Thermo Nicolet 380, Madison, WI, USA) was used for
FTIR (Fourier Transform Infrared Spectrometer) analysis of Cs-Fe3O4-B600; The measured
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wavenumber range was 400–4000 cm−1 and the resolution was 1 cm−1; Scanning electron
microscope (Hitachi SU8200, Hitachi technologies, Tokyo, Japan) and energy dispersive
X-ray spectrometer (Hitach, Hitachi technologies, Tokyo, Japan) were used in combination
to analyze the sample by SEM-EDS; Transmission electron microscope (JEOL JEM 2010FEF,
Jeol, Tokyo, Japan) was used for TEM (Transmission Electron Microscope) analysis of
Cs-Fe3O4-B600.

2.3. Adsorption

To prepare the standard stock solution, ultrapure water and Cd(NO3)2·4H2O were
used to prepare the Cd standard stock solution. In the experiment, ultrapure water was
used to dilute the standard stock solution to the required concentration.

To study the adsorption kinetics, Cd(II) solution (25 mL) with an initial pH of 5.40 and
an initial concentration of 200 mg·L−1 was added to a 50 mL conical flask, and then adsor-
bent (0.05 g) was added to the Cd(II) solution, under the conditions of 25 ◦C, 200 r·min−1,
using a constant temperature culture oscillator (ZHWY-2102C, Shanghai ZHICHENG an-
alytical Instrument Manufacturing Co., Ltd., Shanghai, China) to oscillate for 1, 3, 5, 10,
20, 30, 40, 60, 90, 120, 180, 240, 300, 360, 480, 600, 720, and 1440 min. Finally, the resulting
solution was passed through a 0.45 µm water filter membrane, and an atomic absorption
spectrophotometer (ZEEnit 700P, Jena Analytical Instrument Co., Ltd., Thuringia, Germany)
was used to determine the concentration of Cd(II) in the filtrate. At the same time, the pH
of the solution was measured at the above time point. The sample loaded with Cd was
washed with ultrapure water and dried at 70 ◦C and it was recorded as Cs-Fe3O4-B600-Cd.

To study the adsorption isotherm, a series of Cd(II) solutions (25 mL) with an initial
pH of 5.40 were added to a 50 mL conical flask, adsorbent (0.05 g) was added to the Cd(II)
solution, and then under the conditions of 25 ◦C and 200 r·min−1, the constant-temperature
culture oscillator was used to oscillate for 12 h, and the resulting solution was passed
through a 0.45 µm water-based filter membrane. An atomic absorption spectrophotometer
was used to determine the Cd(II) concentration in the filtrate.

To study the effect of pH on the adsorption performance of Cd(II), Cd(II) solution
(25 mL) with an initial concentration of 100 mg·L−1 and an initial pH of 3–8 was added to a
50 mL conical flask, and then, adsorbent (0.05 g) was added to the Cd solution. At 25 ◦C
and 200 r·min−1, a constant temperature incubation oscillator was used to oscillate for
30 min. Finally, the resulting solution was passed through a 0.45 µm water filter membrane,
and an atomic absorption spectrophotometer was used to determine the concentration of
Cd(II) in the filtrate.

2.4. Statistical Analysis

The adsorption capacity of the adsorbent for Cd(II) was calculated using the follow-
ing formula:

qe =
(C0 − Ct)×V

m
(1)

where C0 and Ct represent the initial concentration of Cd(II) in the solution (mg·L−1)
and the concentration of Cd(II) in the solution at the adsorption time t (min) (mg·L−1),
respectively; V is the volume of the solution (L); m is the mass of the adsorbent (g).

All detected data were repeated three times, and all treatments were repeated three
times independently. The average value was used as the measurement result. The average
value was calculated by Microsoft Excel 2010 and Origin 8.6 (OriginLab Corporation,
Commonwealth of Massachusetts, America) was used for graphing.

3. Results and Discussion
3.1. Characterization of Cs-Fe3O4-B600

Fe3O4 was characterized by XRD as shown in Figure S1. The XRD pattern of Fe3O4
has obvious diffraction apex and corresponding crystal face at 2θ = 30.091◦ (220), 35.443◦

(311), 43.074◦ (400), 56.964◦ (511), 62.553◦ (440). The peak shape of PDF#85-1436 is in good
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agreement, indicating that its main component is Fe3O4, which is a pure inverse sine spinel
material with a single-phase [36]. In addition, the X-ray diffraction pattern of Fe3O4 has a
sharp diffraction apex, indicating that the self-made Fe3O4 has high crystallinity [37].

The magnetic hysteresis loops of Fe3O4 and Cs-Fe3O4-B600 are shown in Figure 1. It
can be seen that the magnetic hysteresis loops of Fe3O4 (Figure 1a) and Cs-Fe3O4-B600
(Figure 1b) all pass through the origin, no hysteresis phenomenon occurs, and the coercivity
and remanence magnetic are both zero [38]. The magnetic hysteresis loop presents an “S”
shape, indicating that Fe3O4 and Cs-Fe3O4-B600 have superparamagnetism [15]. When
the applied external field intensity is 20,000 Oe, the saturation magnetization of Fe3O4
and Cs-Fe3O4-B600 measured at room temperature is 66.90 and 3.30 emu·g−1, respectively.
The research of Huang and Tang [39] measured the saturation magnetization of pure
iron bulk Fe3O4 as 88 emu·g−1; the saturation magnetization of Fe3O4 synthesized by
the co-precipitation method is 72.1 emu·g−1 [40]; the saturation magnetization of Fe3O4
prepared in a spiral microreactor by co-precipitation method is 53 emu·g−1 [15] and the
above research results are similar to the measured values in this experiment. The significant
decrease in saturation magnetization of Cs-Fe3O4-B600 (as low as 3.30 emu·g−1) proves the
successful synthesis of composite materials [41]. At the same time, we can see from the
embedded picture (2) of Figure 1b that Cs-Fe3O4-B600 can be collected on the surface of
the liquid by the magnet, and the liquid becomes clear. That is, although the saturation
magnetization of the composite material is significantly lower than that of Fe3O4, it still has
magnetic responsiveness and can achieve solid–liquid separation. The magnetic biochar
prepared by Yuan et al. [42] by hydrothermal carbonization has strong ferromagnetism,
the coercivity and remanence are 0.0 Oe and 0.0 emu·g−1, respectively, and the saturation
magnetization reaches 16.7 emu·g−1. When the magnet is close to the aqueous solution
containing magnetic biochar, the biochar particles are immediately attached to the bottle
wall near the magnet, and the water becomes transparent at the same time, which is
conducive to the recovery and reuse of biochar as an adsorbent.
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Figure 1. Hysteresis loop of Fe3O4 (a) and Cs-Fe3O4-B600 (b). Note: (a) shows the magnetism of
Fe3O4 and (b) exhibits the magnetic separation of Cs-Fe3O4-B600 with a hand magnet.

The pore structures of B600 and Cs-Fe3O4-B600 were characterized by N2 adsorption
method. It can be seen from Figure 2a that the N2 adsorption–desorption isotherm of
B600 belongs to a typical type IV curve, and there is an obvious H3 hysteresis loop in
the range of P/P0 = 0.2–0.9, indicating that the material belongs to mesoporous material.
The N2 adsorption–desorption isotherms of Cs-Fe3O4-B600 are a typical IV curve, and the
obvious H3 hysteresis loop appeared in the range of P/P0 = 0.6–0.9. It is generally believed
that the H3 hysteresis loop is caused by the slit pores formed by the accumulation of
sheet shaped particles [43], and the adsorption is the coagulation capillary effect of the
mesopores [44]. According to the IUPAC pore size classification, Figure 2b shows that Cs-
Fe3O4-B600 is mainly mesopores (2–50 µm). The pore volume and pore diameter measured
by the BJH equation is 0.047 cm3·g−1, 9.764 nm, and the specific surface area measured by
BET is 19.287 m2·g−1. B600 contains a large number of mesopores and macropores. The
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pore volume, pore diameter, and specific surface area are 0.014 cm3·g−1, 19.97 nm, and
2.47 m2·g−1, respectively. By comparison, the composite material has a large pore volume,
high specific surface area, and small pore diameter. The disappearance of the macropores
of the composite material may be caused by the blockage of the macropores caused by
the attachment of chitosan and Fe3O4 to the surface of the fish bone char. In addition,
after modification, the specific surface area of biochar is greatly increased, providing more
adsorption sites [45]. After the biochar prepared by Du et al. [46] was modified by Fe3O4,
its specific surface area increased from 117.595 to 145.963 m2·g−1, and its pore volume
increased from 0.05256 to 0.06549 cm3·g−1. After the rice husk biochar prepared by Zhang
et al. [47] was modified with Fe3O4, its specific surface area and pore volume increased by
99.88 m2·g−1 and 0.238 cm3·g−1, respectively; for the Fe3O4 modified biochar prepared by
Wang et al. [48], when the Fe2+ concentration increased to 0.4 mol·L−1, the specific surface
area of the biochar increased significantly from 1.856 to 16.223 m2·g−1, and the pore volume
increased from 0.011 to 0.064 cm3·g−1. The increases in specific surface area, pore volume,
and pore size of the Fe3O4 modified biochar prepared in the above study are similar to this
experimental study.
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Figure 2. (a) N2 adsorption–desorption isotherms and (b) pore size distribution (BJH) of B600 and Cs-
Fe3O4-B600. Note: STP means standard temperature and pressure. 
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3.2. The Performance of Cd(II) Adsorption on Cs-Fe3O4-B600
3.2.1. Adsorption Kinetic Characteristics

Figure 3 shows the changing trend of Cd(II) adsorption capacity of B600 and Cs-
Fe3O4-B600 with the continuation of the reaction time. We can see that Cs-Fe3O4-B600 more
easily to reaches adsorption equilibrium than B600, and it only takes 3 min. Li et al. [49]
prepared nano-magnetic calcium dihydrogen phosphate and used it for the removal of
Cd(II). Studies have shown that the process is a fast adsorption process, and it only takes
1 min to reach the adsorption equilibrium, involving surface adsorption, electrostatic
interaction, ion exchange, complexation, and chelation [49]. In addition, the removal of
As(V) by magnetite-modified water hyacinth biochar requires 5 min to reach the adsorption
equilibrium [44]; the removal of Cd(II) and Pb(II) by Fe3O4/bentonite composite takes
30 min to reach equilibrium; the removal of Co(II), Cd(II), and Pb(II) by magnetic camel
bone char takes 120 min to reach equilibrium [50]. The removal of Cd(II) by unmodified
B600 takes 540 min to reach equilibrium (Figure 3a). In contrast, the composite adsorbent
Cs-Fe3O4-B600 prepared in this experiment has certain advantages in achieving extremely
fast adsorption of heavy metals.

The pseudo-first-order kinetics model (Equation (2)) and pseudo-second-order kinetics
model (Equation (3)) were used to fit the obtained data. The relevant parameters obtained
during the fitting process are shown in Table 1.
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Figure 3. Fitting of kinetics of Cd(II) on B600 (a) and Cs-Fe3O4-B600 (b) and isotherm fitting of Cd(II)
on Cs-Fe3O4-B600 (c).

Table 1. Pseudo-first-order and pseudo-second-order kinetics models for Cd(II) adsorption on B600

and Cs-Fe3O4-B600.

Materials
C0

(mg·L−1)
qe, exp

(mg·g−1)

Pseudo-First-Order Kinetics Model Pseudo-Second-Order Kinetics Model

qe, cal
(mg·g−1)

k1
(1·min−1) R2 qe, cal

(mg·g−1)
k2

(g·mg−1·min−1) R2

B600 150 19.487 20.792 0.0034 0.9385 26.696 0.00001 0.9081
Cs-Fe3O4-B600 150 25.134 25.284 0.4825 0.8989 25.871 0.0302 0.8305

The pseudo-first-order equation is expressed as:

dqt

dt
= k1(qe − qt) (2)

The pseudo-second-order equation is expressed as:

dqt

dt
= k1(qe − qt)

2 (3)

where qe is the amount of Cd(II) adsorbed per unit mass of shell powder in adsorption
equilibrium, mg·g−1; qt is the amount of Cd(II) absorbed per unit mass of shell powder at
time t, mg·g−1; t: adsorption time (min); k1 is the rate constant, min−1; k2 is the pseudo-
second-order rate constant, g·mg−1·min−1.

It can be seen from Table 1 that the adsorption of Cd(II) by Cs-Fe3O4-B600 is more
in line with the pseudo-second-order kinetics model, and the correlation coefficient can
reach 0.8989. The qe, cal (25.284 mg·g−1) obtained by the pseudo-second-order kinetics
model fitting is closer to the experimental adsorption quantity qe, exp (25.134 mg·g−1). The
pseudo-second-order kinetics model believes that the rate control step in the adsorption
process is chemical adsorption, that is, in the adsorption process, through the covalent force
and ion exchange between the adsorbent and the adsorbate, electrons are exchanged and
shared, thereby forming chemical bonds [51,52].

3.2.2. Adsorption Isotherm Characteristics

Cs-Fe3O4-B600 was used to adsorb Cd(II) with different initial concentrations. After
the adsorption equilibrium was reached, the adsorption amount was calculated. The
obtained data were fitted with the Langmuir adsorption isotherm model (Equation (4))
and Freundlich adsorption isotherm model (Equation (5)). The fitting results are shown in
Figure 3c, and the relevant parameters in the fitting process are shown in Table 2.

qe =
QmKLCe

1 + KLCe
(4)
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qe = KFCe
1
n (5)

where qe is the equilibrium adsorption capacity, mg·g−1; Qm is the adsorption constant; Ce is
equilibrium concentration, mg·L−1; KL is adsorption parameters, L·mg−1; KF is adsorption
capacity, mg·g−1(L·mg−1)1/n.

Table 2. Langmuir and Freundlich isotherm models for Cd(II) adsorption on Cs-Fe3O4-B600 and B600.

Adsorption Isotherm Model Parameter
Adsorbent Adsorbent

Cs-Fe3O4-B600 B600

Langmuir
qm (mg·g−1) 64.310 37.799
KL (L·mg−1) 2.0890 0.0591

R2 0.8653 0.9892

Freundlich
KF (mg·g−1(L·g−1)1/n) 39.804 7.4522

n 8.9967 3.1546
R2 0.7704 0.9362

The correlation coefficient R2 of Langmuir equation fitting is 0.8653, which is higher
than the correlation coefficient of the Freundlich equation of 0.7704. Therefore, compared
with the Freundlich model, the adsorption of Cd(II) by Cs-Fe3O4-B600 is more in line with
the Langmuir isotherm adsorption model. This model assumes that there is no interaction
between the adsorbed molecules, that is, once Cd(II) occupies a certain adsorption site, the
site will not undergo further adsorption. Therefore, it is assumed that the adsorption pro-
cess is a single-layer adsorption and there is a saturated adsorption capacity. Cs-Fe3O4-B600
has abundant available adsorption sites on the surface at the beginning of the adsorption
process. As the adsorption process continues, the number of available adsorption sites
of Cs-Fe3O4-B600 decreases, so the adsorption amount slowly rises until it remains un-
changed [53]. The saturated adsorption capacity qm obtained in this study is 64.310 mg·g−1,
which is far greater than the saturated adsorption capacity of unmodified fish bone char
B600 (37.799 mg·g−1, Table 2). Other studies have shown that the saturated adsorption ca-
pacity of Fe3O4/bentonite composite for Pb(II) can reach 81.5 mg·g−1, which is 10.7 mg·g−1

more than that of unmagnetic modified bentonite [54]. The saturated adsorption capacity
of magnetic corn stover biochar for Cd(II) in water can reach 43.45 mg·g−1, which is greater
than the 25.31 mg·g−1 of unmodified corn stover biochar [31]. Reza et al. [35] studied the
removal of As(V) by magnetically modified bone char coated with chitosan. The results
showed that the modified material is at 600 cm−1. Fe-O functional groups can be observed,
the adsorption of arsenic is mainly monolayer adsorption, and the saturated adsorption ca-
pacity can reach 112,000 mg·g−1. In addition, RL is the separation factor. For the Langmuir
adsorption isotherm model, it can be calculated by formula 6 to determine whether the
reaction is favorable adsorption. In this experiment, RL < 1 indicates that the adsorption
process is favorable adsorption.

RL =
1

1 + KLCe
(6)

3.2.3. Influence of pH on Cd(II) Adsorption

The relationship between the adsorption capacity of Cs-Fe3O4-B600 and the initial pH
value is shown in Figure 4. Studies have shown that in the range of pH = 3–7 (when the
acidity is low) Fe ions will not be generated in the system [31]; at the same time, at pH < 8,
Cd mainly exists in the state of Cd(II). When the adsorbent dosage is 2 g·L−1 and the initial
concentration is 100 mg·L−1, the adsorption capacity will increase significantly between
pH = 3–5 and then slowly increase with the increase of pH. The adsorption capacity of
Cs-Fe3O4-B600 varies from 46.08 to 48.64 mg·g−1 and 48.64 to 50.22 mg·g−1. The total
increase in adsorption capacity is 4.14 mg·g−1, indicating that pH has a weak effect on the
adsorption of Cd(II) on Cs-Fe3O4-B600. The trend of the relationship curve between the
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adsorption capacity of glutamic acid coupled chitosan modified activated carbon on Cd(II)
and the initial pH value is consistent with this study [55].
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Cs and B600 may combine with Fe3O4 through the surface hydroxyl group and the
intermediate oxygen (-O-) in the carboxyl functional group. The involved process is shown
in formula 7 and formula 8 [56]. The adsorption of Cd(II) by Cs-Fe3O4-B600 mainly includes
ion exchange, surface complexation and precipitation of partially exposed to Cs-coated
outer fish bone char, complexation of heavy metals with amino groups on Cs [57], and
cations of composite materials specific adsorption, electrostatic adsorption. In addition,
it may also include the ion exchange between isomorphic Cd(II) and Fe3O4 to produce
CdFe2O4 [56]. When the pH of the solution is low, there is competitive adsorption of H+ and
Cd(II); at the same time, the amino groups on the surface of Cs-Fe3O4-B600 are protonated
in the presence of a large amount of H+ to form NH3+. The electrostatic repulsion between
NH3+ and Cd(II) also makes the adsorption capacity low. With the increase of pH, the
amino groups on the surface of chitosan are released, and the complexing ability of Cd(II)
increases [58].

R−OH + Fe3O4 → R−O− Fe3O4 (7)

R−COOH + Fe3O4 → R−COO− Fe3O4 (8)

3.3. Characterization of Cs-Fe3O4-B600 before and after Adsorption

The FTIR spectra of Fe3O4, B600, B600-Cd, Cs-Fe3O4-B600, and Cs-Fe3O4-B600-Cd are
shown in Figure 5. Fe3O4 has three prominent absorption peaks at 578, 1629, and 3405 cm−1.
The peak at 550–580 cm−1 is considered to be the characteristic peak of Fe3O4, which is
caused by the stretching vibration of Fe-O [59]. Compared with the FTIR spectrum of B600,
Cs-Fe3O4-B600 and Cs-Fe3O4-B600-Cd have new absorption peaks at 551 and 562 cm−1,
respectively, which are believed to be caused by Fe3O4 in the composite material. The
prominent absorption peaks of B600 material exist at 1090, 1460, 2924, and 2428 cm−1,
representing PO4

3−, C=O, -CH2, and -OH, respectively. The coating effect of Cs may cause
the weakening of PO4

3− strength in Cs-Fe3O4-B600. In addition, the absorption peaks of
Cs-Fe3O4-B600 at 1410 and 1580 cm−1 are believed to be caused by the symmetrical variable-
angle vibration of the -CH3 and amide II bands in Cs [60], which are based on Cs A slight
red shift [59]. The appearance of Fe3O4 and Cs characteristic peaks in the Cs-Fe3O4-B600
material indicates that the material was successfully synthesized. Du et al. [30] used the
co-precipitation method to prepare Fe3O4 magnetic biochar. The results showed that the
infrared absorption peaks of C-H, C≡N, and Fe3O4 appeared after magnetic modification.
The increase of hydroxyl, carboxyl, and other functional groups in the modification process
enhances its ability to remove heavy metals through hydrogen bonding and ion exchange;
the presence of aromatic functional groups can cause complexes with heavy metals; when
the pH is high, heavy metals form hydroxyl complexes and magnetic materials can adsorb
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heavy metals through electrostatic interaction [61]. According to the FTIR results before
and after Cs-Fe3O4-B600 adsorption of Cd(II), it can be seen that there are many band shifts,
indicating that a variety of functional groups participate in the adsorption process of Cd(II).
There are methyl or methylene absorption peaks at 1445 and 3034 cm−1, which move from
1445 to 1417 cm−1 after adsorption, and the carboxylic acid C=O stretching vibration peak
at 1579 cm−1, which moves to 1608 cm−1. It shows that there are a large number of carboxyl
groups and hydroxyl groups in the molecular structure of Cs-Fe3O4-B600. The hydroxyl
groups and carboxyl groups can undergo ion exchange and complexation reactions with
Cd(II). In this study, comparing the infrared spectra of Cs-Fe3O4-B600 and Cs-Fe3O4-B600-
Cd, it can be found that the intensity of the absorption peak caused by the amide II band is
weakened, which may be caused by the amino group complexing Cd(II). The research of
Muzzarelli [57] showed that the amino group of Cs has a complexing effect on Cd(II).
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The SEM images of Fe3O4, Cs-Fe3O4-B600, and Cs-Fe3O4-B600-Cd are presented in
Figure 6. The Fe3O4 prepared in this experiment has spherical particles with a particle size
of about 20–200 µm (Figure 6b), which is in contrast to Deng [62] and Peng [63] and other
research conclusions are consistent. In addition, the surface of Fe3O4 particles is rough and
coated with a large number of amorphous microspheres [64]. The TEM Figure 6f of Fe3O4
shows that most of the microspheres are intact. The SEM images of B600 (Figure 6a) show
that there are cracks and gullies on the surface of B600, with a large number of mesopores
and macropores. Comparing the SEM images of Cs-Fe3O4-B600 (Figure 6c), it can be found
that Cs wrapped B600 and Fe3O4, blocked the macropores of B600, and formed a rough
outer surface structure. This conclusion is consistent with the BJH pore size distribution
of Cs-Fe3O4-B600. Figure 6g shows that the spherical particles are coated. Figure 6d can
clearly observe the spherical Fe3O4 particles attached to the bone char in Cs-Fe3O4-B600-Cd,
that is, the spindle-shaped Cd(II) attached to it. The transmission electron microscope can
also observe the obvious Cd spindle structure, showing that Cd(II) is adsorbed on it. The
EDS analysis of Cs-Fe3O4-B600-Cd showed that after adsorption, Cs-Fe3O4-B600 detected
20.65 wt.% Cd, which confirmed the consistency of SEM and TEM analysis results.
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(a) (b)
(c) (d)

(f) (g) (h)

Element （wt.%） Ca Fe Na C O Si Others Cd 

Cs-Fe3O4-B600  2.88 16.91 0.62 36.22 39.22 2.82 1.33 ND 

Cs-Fe3O4-B600-Cd 1.45 14.57 0.43 24.81 35.12 2.01 0.96 20.65 
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4. Conclusions

Cs-Fe3O4-B600 was successfully fabricated, modified with chitosan and Fe3O4 based
on B600. The kinetic data of Cs-Fe3O4-B600 are in the best agreement with the pseudo-
second-order model, and the maximum Cd2+ adsorption capacity by Cs-Fe3O4-B600 is
25.284 mg·g−1 in solution when the initial Cd2+ concentration is 150 mg·L−1. Adsorption
isotherms are in better accordance with Langmuir models. Thermodynamic analysis ex-
plained that the adsorption process, which was monolayer adsorption, was a favorable
adsorption. The saturated adsorption capacity of Cs-Fe3O4-B600 for Cd(II) increased from
37.799 mg·g−1 before unmodified to 64.31 mg·g−1. Cs-Fe3O4-B600 was analyzed using
different techniques (SEM-EDS, TEM, BET, FTIR, and XRD). The resulting Cs-Fe3O4-B600
composites manifested tremendous physicochemical properties such as the appearance of
amino functional groups, larger specific surface area, and larger pore volume. Cd(II) suc-
cessfully adsorbed onto Cs-Fe3O4-B600 because of the amino complexation, ion exchange,
precipitation, cation-specific adsorption, and electrostatic adsorption. In conclusion, apply-
ing Cs-Fe3O4-B600 could be a low-cost, fast, and efficient solution for the removal of Cd(II)
in water.
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