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Abstract: Over the years, industrial accidents and military actions have led to unintentional, large-
scale, high-dose human exposure to environmental contaminants with endocrine-disrupting action.
These historical events, in addition to laboratory studies, suggest that exposure to toxicants such as
dioxins and polychlorinated biphenyls negatively impact the reproductive system and likely influence
the development of gynecologic diseases. Although high-level exposure to a single toxicant is rare,
humans living in industrialized countries are continuously exposed to a complex mixture of manmade
and naturally produced endocrine disruptors, including persistent organic pollutants and heavy
metals. Since minorities are more likely to live in areas with known environmental contamination;
herein, we conducted a literature review to identify potential associations between toxicant exposure
and racial disparities in women’s health. Evidence within the literature suggests that the body burden
of environmental contaminants, especially in combination with inherent genetic variations, likely
contributes to previously observed racial disparities in women’s health conditions such as breast
cancer, endometriosis, polycystic ovarian syndrome, uterine fibroids, and premature birth.

Keywords: women’s health; environmental contaminants; pollution; health disparities; minorities

1. What Are Environmental Contaminants?

An unintended consequence of industrialization has been the release of thousands
of synthetic chemicals into our environment without consideration of potential adverse
effects on human health [1,2]. Additional sources of environmental contamination include
cigarette smoke, wildfires, volcanic eruptions, and the burning of fossil fuels [3–5]. As will
be discussed below, naturally occurring heavy metals are also considered environmental
contaminants when their presence exceeds normal background levels.

1.1. Persistent Organic Pollutants, Endocrine Disrupting Chemicals, and Heavy Metals

Environmental contaminants generally fall into three categories: persistent organic
pollutants (POPs), endocrine-disrupting chemicals (EDCs), and heavy metals. POPs are
carbon-based chemicals that are not easily metabolized and exhibit an extended half-life of
10+ years. Because of their ability to bioaccumulate in adipose tissue, they can biomagnify
within the food chain; thus, the body burden of toxicants tends to increase with age in both
humans and animals [6]. POPs are produced by both natural and anthropogenic processes,
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though most POPs of concern are produced intentionally for commercial use, as shown
in Figure 1 [7].
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Figure 1. A tree diagram listing emission sources of POPs, representative examples of chemicals from
each source, and how/why they are in the environment.

Many POPs can disrupt the endocrine system and are therefore also classified as
EDCs. The endocrine system is a collection of hormone-secreting glands that are critical
to regulating developmental, metabolic, and reproductive processes [5]. EDCs frequently
act as hormone agonists or antagonists and influence the endocrine system by activating,
blocking, or by altering normal hormone activity via interactions with nuclear receptors or
altering metabolism [8]. Steroid hormones and their respective target organs are exquisitely
sensitive to interference by EDCs and these chemicals can have wide-ranging effects
on human health. Humans can be exposed to EDCs through residential, agricultural,
pharmaceutical, and industrial activities, as shown in Figure 2 [9].

Naturally occurring heavy metals are normally present in the environment as trace
elements; however, their accumulation can lead to toxicity—making these compounds
environmental contaminants. Although heavy metals are not always classified as EDCs,
some have endocrine-disrupting properties. For example, cobalt and cadmium have both
been shown to exhibit estrogen-like activity in the absence of estradiol [10–12]. Additional
metals with endocrine-disrupting properties include arsenic, lead, mercury, chromium,
copper, nickel, cadmium, and tin [12,13]. Thus, while heavy metals are naturally occurring
and have both geogenic and atmospheric sources their use in industrial, pharmaceutical,
and agricultural processes can lead to their excess accumulation in the environment, as
demonstrated by Figure 3 [14].

1.1.1. Examples of POPs

Pesticides are well-characterized synthetic POPs. Dichlorodiphenyltrichloroethane
(DDT), a pesticide that was widely used in the United States from 1946 to 1972, acts as
an estrogen agonist [15]. However, its metabolite, dichlorobiphenyl dichloroethylene
(DDE), is an androgen antagonist [16]. Chlordane is another pesticide and POP that was in
commercial and residential use in the United States from 1948 to 1988 but was banned due
to health concerns. Perfluorinated compounds (PFCs) are examples of POPs that are still
used today to create heat-resistant and non-stick kitchenware [17] despite concerns that
they can disrupt pregnancy and have been suggested to be carcinogenic [18].
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Unintentionally generated POPs include polychlorinated biphenyls (PCBs), poly-
chlorinated dibenzo-p-dioxins (PCDDs), polycyclic aromatic hydrocarbons (PAHs), and
polychlorinated dibenzofurans (PCDFs). Although PCBs were previously widely produced
for commercial use, intentional manufacturing of these compounds has now been banned
in most countries. Nevertheless, they are still released by some industrial processes as well
as incineration of household and commercial waste [19]. From the 1950s until 1977, PCBs
were synthesized to create microwave ovens, air conditioners, and electric cables [19,20].
PCDDs are byproducts of pesticide manufacture and processes utilizing chlorine bleaching.
PCDDs are also produced by volcanic eruptions and forest fires. The generation of PCDFs
is associated with the synthesis and incineration of products containing PCBs [21]. Lastly,
PAHs are byproducts of cigarette smoke, barbecuing, and grilling [22,23].
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1.1.2. Examples of EDCs

Bisphenol A (BPA) is a high-volume EDC with broad residential use. It is used to
make plastics for food and beverage storage, and it is a component of epoxy resins that
were used to form the lining of food cans and baby bottles in previous years. It was
determined that BPA can leach from these and other containers and accumulate in food.
Although the use of BPA in food containers has now been banned in most countries, this
compound remains in production and can be found in a variety of consumer products. BPA
was previously considered to be a weak estrogen; however, more recent studies indicate
that this compound exhibits similar potency to estradiol in some cellular contexts [24–26].
For this reason, BPA was replaced by bisphenol S (BPS) in most countries in the early
2000s [25,27]. Unfortunately, BPS appears to have similar adverse health effects as those
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associated with BPA [28]. Phthalates are another widely used residential EDC with a short
half-life in humans. They are used to make plastic flexible and more durable. Phthalates
are also incorporated into personal care products including soap and hair spray due to
their binding and solvent properties [29].

Pharmaceutical EDCs include diethylstilbestrol (DES), a synthetic estrogen that was
prescribed to pregnant women to prevent miscarriages and preterm birth from 1938 to
1971 [30]. DES was also injected into livestock to increase meat production [31]. DES
was banned as a therapy for pregnant women following the clinical manifestations of
its endocrine-disrupting properties. Clinical manifestation of in utero exposure to DES
included increased incidence of vaginal cancers in reproductive-age daughters as well
as adverse effects in mothers and sons [32]. Shortly after DES was banned as a phar-
maceutical, the United States Food and Drug Administration also banned its use in
meat production [33].
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Agricultural EDCs include the pesticide DDT, a POP described above. Atrazine is an
agricultural EDC that currently remains in use despite having been found to influence the
female reproductive system by dysregulating the hypothalamic–pituitary–ovarian axis [34].
Industrial EDCs include PCB-153 which was previously used to create dielectric insulating
fluid. PCB-153 is no longer synthesized today, but the chemical persists in the environment
and is the most prevalent PCB found in the human body [7]. Industrial EDCs also include
PFCs, which are also considered POPs.
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1.1.3. Examples of Heavy Metals

Cobalt is an example of a geogenic heavy metal, whereas cadmium and copper are
considered pharmaceutical compounds [35,36]. Domestic and industrial heavy metals
include lead [14] while atmospheric heavy metals include nickel and copper. Cadmium
and nickel are also considered agricultural heavy metals [37].

Although heavy metals, POPs, and EDCs have overlapping characteristics, each group
also has unique distinctions as noted in Figure 4. Members of each of these groups of
chemicals have also been shown to influence the endocrine system and are well positioned
to influence the development of reproductive diseases in women. Since the literature
and environmental justice movements suggest that minorities are more likely to live in
areas with known environmental contamination [38,39], herein, we will review the current
literature to identify potential associations between environmental contaminant exposure
and the development of diseases known to exhibit racial disparities among women.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 6 of 22 
 

 

 
Figure 4. A three-way Venn diagram displaying commonalities and differences in the characteristics 
of POPs, EDCs, and heavy metals. 

1.2. Risk Factors Associated with Human Exposure to Environmental Contaminants  
A plethora of factors influences a person’s risk of exposure to environmental contam-

inants. These factors include socioeconomic status, occupation, diet, and personal habits. 
Although race is not a risk factor for environmental exposures per se, certain minority 
groups are more likely to fall into social groups (e.g., low socioeconomic status) that are 
at increased risk of exposure. 

1.2.1. Socioeconomic Status, Occupation, and Geographic Locale 
Previous studies suggest that socioeconomic status—which is correlated to occupa-

tion and geographic locale—plays a significant role in the risk of exposure to environmen-
tal contaminants [40]. In the United States, low-income residents, which are dispropor-
tionally minorities, have a more pronounced exposure to particulate matter-emitting fa-
cilities [41,42]. Furthermore, it has been reported that Black and Hispanic women living 
in Chicago were more likely to reside in areas with higher ambient concentrations of 
heavy metals including cadmium, mercury, and lead compared to white women [43]. 

The risk of exposure to environmental contaminants also varies by occupation. 
United States military personnel, which includes a disproportionally high percent of Black 
and Hispanic Americans, are at increased risk of exposure to environmental contaminants 
[44]. Additional occupations that may lead to disproportionate exposure to environmental 

Figure 4. A three-way Venn diagram displaying commonalities and differences in the characteristics
of POPs, EDCs, and heavy metals.

1.2. Risk Factors Associated with Human Exposure to Environmental Contaminants

A plethora of factors influences a person’s risk of exposure to environmental contami-
nants. These factors include socioeconomic status, occupation, diet, and personal habits.
Although race is not a risk factor for environmental exposures per se, certain minority
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groups are more likely to fall into social groups (e.g., low socioeconomic status) that are at
increased risk of exposure.

1.2.1. Socioeconomic Status, Occupation, and Geographic Locale

Previous studies suggest that socioeconomic status—which is correlated to occupation
and geographic locale—plays a significant role in the risk of exposure to environmental con-
taminants [40]. In the United States, low-income residents, which are disproportionally mi-
norities, have a more pronounced exposure to particulate matter-emitting facilities [41,42].
Furthermore, it has been reported that Black and Hispanic women living in Chicago were
more likely to reside in areas with higher ambient concentrations of heavy metals including
cadmium, mercury, and lead compared to white women [43].

The risk of exposure to environmental contaminants also varies by occupation. United
States military personnel, which includes a disproportionally high percent of Black and
Hispanic Americans, are at increased risk of exposure to environmental contaminants [44].
Additional occupations that may lead to disproportionate exposure to environmental con-
taminants include firefighters, miners, farmers, and industrial workers [45]. Furthermore,
Ash et al. reported that individuals in low-paying jobs, which are more likely to be Black
or Hispanic, were subjected to higher incidences of exposure than their counterparts with
higher-paying occupations [46].

Furthermore, low socioeconomic status is positively correlated to high exposure to
air pollution globally [47]. A study conducted in Italy supported the correlation between
socioeconomic status and atmospheric pollution, reporting that low socioeconomic status
increased the risk of exposure to particulate matter and nitrogen dioxide—each of which is
a public health concern [48]. Citizens of developing countries are also at heightened risk of
exposure to air pollution. However, it is predicted that much of the pollution experienced
in developing countries is generated indoors as opposed to industrialized countries where
pollution is generated from activities such as fossil fuel burning [49]. For example, in some
developing nations such as sub-Saharan Africa, approximately 83% of the population relies
on cooking methods that generate indoor pollution (e.g., solid fuel burning). In these
settings, women are typically responsible for cooking and are therefore more susceptible to
being exposed to this form of indoor pollution [50].

Peruvian and Guatemalan women are susceptible to exposure to PAHs and other
harmful compounds through cooking methods as well [51]. Additionally, indoor exposure
to benzo(a)pyrene (BaP) from cooking oil fumes has been reported to range from 19 to
23 µg/m3 in Taiwan [52]. Similarly, in rural Burundi, indoor BaP emission from wood
combustion is estimated to be approximately 100 µg/m3 [53]. Socioeconomic status, oc-
cupation, and geographic location each influence one’s risk of exposure to environmental
contaminants. Unfortunately, persons of color are disproportionally affected by factors that
increase the risk of environmental contaminant exposure compared to whites.

1.2.2. Diet

As stated above, POPs, EDCs, and heavy metals have the potential to bioaccumulate
and biomagnify within the food chain [54]. Thus, dietary habits can influence the body’s
burden of environmental contaminants. Although data tracking dietary environmental
contaminant exposure are scarce, a group in India recently reported that meat and dairy
products are often traced with environmental contaminants [55]. Law et al. reported
that chicken skin and fish from China had higher levels of environmental contaminants
compared to beef and pork [56]. Food packaging, which is prevalent in industrialized
countries, is also a major source of environmental contaminants because EDCs/POPs
can leach into food [57]. Therefore, the food-borne risk of exposure to environmental
contaminants may vary depending on the country of origin, food preferences, and food
storage practices.
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1.2.3. Use of Personal Care Products

Individuals that use personal care and beauty products are also susceptible to excess
chemical exposures because these products frequently contain environmental contami-
nants [58]. Zota et al. reported that chemical exposures from beauty products vary by race
and Black women were more likely to use products that contain EDCs. The group reported
that Black women were at risk of being exposed to heavy metals, parabens, and phthalates
through beauty products such as hair relaxers and vaginal douches [59]. Using a nationally
representative sample of reproductive-aged women, Branch et al. found that Black women
in the United States douched more frequently than other races. The group also found that
women who douched had a 150% higher exposure to diethyl phthalate [60]. Studies suggest
that hair care products used by Black women are more likely to contain placental-derived ex-
tracts, typically from cows or sheep, which have endocrine-disrupting activity. James-Todd
et al. reported 49.4% (African American) and 26.4% (African-Caribbean) of Black women
used hair products that contain placental extracts compared to 7.7% of white women [61].

The use of hair products that contain placental extracts or other EDCs among Black
women has also been linked to altered reproductive development. Tiwary et al. reported
that the use of hair products containing placental extracts on Black daughters between
the ages of 14 and 93 months led to the premature development of breast and pubic hair.
However, after the use of these products ceased, their sexual development regressed [62].
The group also reported that among military personnel, non-whites were four times more
likely to use hair products containing EDCs and placental extracts compared to whites.
However, women of all races/ethnicities were more likely to use these products compared
to men [63]. Together, these studies suggest that the environmental contaminants found
in hair products can negatively impact the endocrine system, potentially contributing to
racial health disparities and sex-related differences in disease occurrence [59,62–64].

2. Scope of Review

Overall, numerous groups have reported that women of color exhibit a higher body
burden of environmental contaminants [65–67]. Since many environmental contaminant
exposures have been linked to reproductive dysfunction, we reviewed the literature to
address the question: Does environmental contaminant exposure contribute to racial dispar-
ities in women’s health? We will discuss the potential role of environmental contaminants
in the development of breast cancer, endometriosis, fibroids, polycystic ovarian syndrome,
and premature birth. We chose to investigate the correlation between toxicant exposure and
these women’s health conditions because many have higher incidences (fibroids, PCOS,
and premature birth) and/or mortality rates (breast cancer) in women of color. We chose
to investigate the correlation between toxicant exposure and endometriosis because, his-
torically, women of color have been less likely receive adequate diagnoses. It should be
noted that in this review, the terms Black, Hispanic, Asian, and white encompass multiple
ethnicities. Research articles cited were selected by searching key terms such as “Black
women” and “toxicants”/“pollution” and “endometriosis” using the PUBMED library.

3. Breast Cancer

Breast cancer, the uncontrolled proliferation of breast cells, frequently metastasizes to
other areas of the body. Breast cancer affects women across all races and approximately 1
in 10 women have been diagnosed with breast cancer worldwide. Breast cancer is highly
influenced by the endocrine system and steroid hormone response. Approximately 70–75%
of breast carcinomas express estrogen and progesterone receptors and are considered lu-
minal tumors [68]. Luminal tumors are further classified as luminal A or B. Luminal A
tumors express estrogen and progesterone receptors, whereas luminal B tumors typically
exhibit reduced expression of these receptors along with increased expression of HER2
(human epidermal growth factor receptor 2) [69]. HER2 is a proto-oncogene normally
present on epithelial cells of the breast; however, cancer cells with a higher-than-normal
level of expression of HER2 are considered HER2 positive and are typically the most aggres-
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sive subtype [70]. Breast carcinomas that are deficient in estrogen receptors, progesterone
receptors, and HER2 are termed triple-negative breast cancer. Importantly, since breast
cancer treatment typically targets these receptors, triple-negative cancers are more difficult
to treat compared to other subtypes [71].

Although the occurrence of breast cancer does not exhibit significant racial disparity,
recent studies suggest that there are clear disparities regarding the type and aggressiveness
of breast cancer that women of color develop compared to white women. Importantly, in
the United States, survival rates are significantly impacted by both the type of breast cancer
and its stage at the time of diagnosis. Black women are typically diagnosed with breast
cancer at a younger age (59 years old) compared to white women (63 years old). Despite the
earlier diagnosis, Black women are more likely to develop triple-negative and/or metastatic
breast cancer when compared to non-Hispanic white women [72]. For poorly understood
reasons, the incidence of breast cancer among Black women has increased 0.4% per year
since 1975 but has remained stagnant among white women [72].

It is well known that genetic variations also contribute to an individual woman’s risk
of developing breast cancer. Women with BRCA1/2 mutations are at increased risk of
breast cancer and are known to contribute to the familial occurrence of this disease in most,
if not all, ethnicities [73,74]. Beverly et al. reported that white women with breast cancer
exhibited a higher prevalence of estrogen and progesterone receptors compared to Black
women with breast cancer—which may contribute to improved survival rates in white
women since many breast cancer treatments target hormone receptors [75]. An additional
study found that two single-nucleotide polymorphisms (SNPs) (rs590688 and rs10895054)
in the progesterone receptor gene were significantly associated with breast cancer in Black
women, but not in white women [76].

Lifestyle habits may also influence disparities in breast cancer. For example, it has been
reported that cigarette smoking (an activity that releases PCDDs) promotes the metastasis
of breast cancer into the pulmonary system [77,78]. Despite these data and the known influ-
ence of inherent genetic differences, the potential role of gene–environment interactions in
the development of cancer and/or the racial disparity in breast cancer type and mortality
has not been well investigated. Nevertheless, Lambda et al. described a wide variation in
the expression of CYP3A enzymes across racial groups as a consequence of gene polymor-
phisms and/or isoform expression [79]. Cytochrome P450 monooxygenases (CYPs) play
an important role in the metabolism of xenobiotics, such as environmental contaminants;
thus, racial differences in expression of one or more of these genes could readily play a
role in increasing or decreasing cellular response to environmental contaminants, thereby
influencing disease pathogenesis.

The potential for gene–environment interactions is relevant to the discussion regarding
EDC exposure and breast cancer, as PCDDs and some PCBs appear to promote breast cancer
metastasis into the lymph node [78]. Reynolds et al. collected adipose tissue from breast
cancer patients of various races and measured the levels of environmental contaminants.
The group found that Black, Asian and Hispanic women exhibited significantly higher
concentrations of 12378-PeCDD and 123478-HxCDF compared to white women [80]. A
separate study reported that Black women exhibited mean total pesticide and PCB concen-
trations that were 10% higher than white women. The group also reported that increased
adipose PCB concentrations were associated with reoccurring tumors [81].

A longitudinal cohort study compared contaminant body burden and mortality rate
in white and Black women diagnosed with invasive breast cancer between 1993 and 1996.
White participants had a mean total lipid PCB concentration of 0.38 µg/g, and Black
participants had a mean of 0.56 µg/g. Black women were also more likely to have more
aggressive forms of breast cancer, resulting in 61% of Black women versus 46% of white
women succumbing to disease over the course of the study. Increasing body burdens of
PCB-74, 99, and 118 and total PCBs were associated with a 33–40% increase in breast cancer
mortality, with the strongest effects within 5 years of diagnosis. Black women were more
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likely to have a higher body burden of PCB-74, which was associated with a larger elevated
risk of 5 year breast cancer-specific mortality compared to white women [82].

Exposure to heavy metals has also been linked to the development and progression
of breast cancer [83]. White et al. reported that exposure to heavy metals was associated
with increased breast density, which is strongly related to the risk of breast cancer [84].
Kaushiva et al. reported that Black and Hispanic women living in census tracts with high
quartile ambient concentrations of heavy metals exhibited an increased risk of breast cancer
compared to women living in low quartile environments. This higher incidence of breast
cancer was associated with exposure to cadmium, lead, and nickel [43]. Overall, the current
literature suggests that environmental exposures, combined with genetic variations, likely
contribute to the previously observed racial differences in the type of breast cancer, disease
recurrence, and rate of mortality.

4. Endometriosis and Endometriosis-Related Infertility

Endometriosis is defined as the growth of endometrial tissue at an extra-uterine
site and is characterized by altered hormone responsiveness, chronic pelvic pain, and,
frequently, infertility [85]. The term endometriosis was coined in 1921 by John A. Samp-
son, who later proposed the landmark theory of retrograde menstruation as its cause in
1927 [5,86]. In 1938, Joseph Meigs noted that endometriosis was more commonly diagnosed
in white, affluent women and theorized that the disease was rare in Black women [87]. In
the early and mid-1900s, reports continued to suggest that the prevalence of endometriosis
was doubled in white women compared to Black women and rarely considered access
to care as a possible confounder. In the 1970s, studies conducted by Donald L. Chatman
demonstrated that more than 20% of Black women who had endometriosis were misdi-
agnosed with pelvic inflammatory disease; he, therefore, concluded that the incidence of
disease was similar between races [87].

We now know that endometriosis affects approximately 10% of women worldwide
and that all races/ethnicities can be impacted. However, it remains unclear if there are
disparities in disease prevalence between women of different ethnicities. A recent report
suggested that Black women are still less likely to be diagnosed with endometriosis than
white women and highlight a likely continuing belief that Black women are at lower risk
of disease [88]. This paper also suggested the possibility of heterogeneity in endometrio-
sis phenotype or clinical presentation between racial/ethnic groups which may impede
diagnosis. Furthermore, numerous studies support a link between EDC exposure and
the development of endometriosis. Since minority populations are more likely to exhibit
exposure to such compounds, it is interesting to speculate whether the body burden of
EDCs could contribute to heterogeneity in disease presentation.

A link between EDCs and endometriosis was first identified following the admin-
istration of DES as a therapeutic agent for pregnant women to prevent early pregnancy
loss and preterm birth. Although the drug had no impact on pregnancy outcomes, daugh-
ters exposed to DES in utero were at increased risk for developing endometriosis and
infertility later in life [89]. A chemical plant explosion in Seveso, Italy in 1976 resulted in
the release of a toxic cloud containing high levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD, commonly known as dioxin) [90]. The population of Seveso and surrounding
areas have been carefully monitored since the explosion, revealing a modestly increased
risk in endometriosis in women with sera levels of 100 parts per trillion (ppt) or higher of
TCDD [91,92]. For comparison, the current estimated “background” body burden of TCDD
in industrialized countries is 2 ppt [93].

Additional studies found that PCB-138, 153, and 180, as well as non-estrogenic PCBs,
were found in high concentrations in women with endometriosis [94]. A relationship
between EDCs and endometriosis is also supported by studies using animal models. For
example, Rier et al. identified endometriosis in a primate colony exposed to dietary TCDD.
Animals with the most severe disease were those with the greatest exposure to TCDD [95].
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Exposure to heavy metals may also be linked to the development of endometriosis as
well as infertility. Jackson et al. reported a dose-dependent association between cadmium
and endometriosis [11]. A separate group found that increased blood concentrations of
lead, but not cadmium, were associated with infertility in Taiwanese women [96]; however,
this group did not examine the relationship between endometriosis and heavy metals.

Although Black women have been reported to have higher body burdens of envi-
ronmental contaminants that have been linked to the development of endometriosis [97];
to date, only limited studies have examined the relationship between contaminant body
burden and endometriosis between races. However, differences in steroid synthesis and
metabolism have been observed between Black and white women and thus may influence
response to EDCs. For example, epidemiological and experimental studies indicate that
luteinizing granulosa cells are dysregulated in endometriosis and endometriosis-related
infertility [98–100], leading to altered production of aromatase. Aromatase is the enzyme
that converts androgens to estradiol and is essential for the ovarian synthesis of this
steroid. Endometriosis is an estrogen-dependent disease and inhibitors of aromatase have
been investigated as therapeutic agents [101]. Shaw et al. reported that Black women
exhibited increased ovarian aromatase mRNA expression, as well as increased estradiol
levels and reduced androgen to estrogen ratios in their follicular fluid compared to white
women [102]. The group suggested that this disparity was the result of a genetic variation
in Cytochrome P450 19 (CYP19), the gene that encodes aromatase [102,103]. Notably, mod-
ulation of steroidogenic enzymes such as aromatase is an important mechanism of action
for estrogenic EDCs.

Thus, as a consequence of CYP19 gene variants, Black women may exhibit heightened
expression of aromatase following environmental exposures. Although several studies
have explored gene–environment interactions in the risk of endometriosis [104,105], to our
knowledge, these have not included a discussion on racial differences. Hence, women of
color may have genotypes and phenotypes that make them susceptible to endometriosis,
but misconceptions regarding risk combined with years of deficits in diagnostic measures
may contribute to the reduced identification of disease among this group.

5. Polycystic Ovarian Syndrome

Polycystic ovarian syndrome (PCOS) is defined as a common hereditary endocrinopa-
thy affecting 4–6% of reproductive-age women [106,107]. PCOS is associated with men-
strual dysfunction, infertility, hirsutism, acne, obesity, and metabolic syndrome. It is classi-
fied into four phenotypes: Phenotype A is most severe and includes hyperandrogenism,
ovulatory dysfunction, and polycystic ovaries; Phenotype B includes hyperandrogenism
and ovulatory dysfunction; Phenotype C, known as ovulatory PCOS, includes hyperandro-
genism and polycystic ovaries; Phenotype D, also known as non-hyperandrogenic PCOS,
includes ovulatory dysfunction and polycystic ovaries [108].

Epidemiology studies suggest that women of color exhibit an increased risk of develop-
ing PCOS compared to white women [106,109,110]. Based on an assessment of symptoms,
Goodarzi et al. reported a PCOS prevalence of 13% among Hispanic women, a rate more
than twice that of the general population [111]. However, other studies failed to corroborate
a significant increase in the prevalence of PCOS among this population compared to other
groups [112,113]. A separate study compared the development of PCOS across multiple
ethnicities finding the lowest incidence among Chinese women and a similar incidence
between white, Black, and Middle Eastern women [110]. This study also highlighted the
importance of utilizing the same diagnostic criteria when comparing different studies as
comparing prevalence rates using different methods resulted in the appearance of racial
disparity. Engmann et al. assessed 702 women with PCOS for phenotypic variations across
several racial categories. Since all women in the study were previously diagnosed with
PCOS, they were unable to address the disease prevalence between racial groups; never-
theless, they found interesting phenotypic variations. They found that Hispanic women
tended to have the most severe phenotype of PCOS (presenting with both hyperandro-
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genism and metabolic syndrome) while Black women displayed the mildest phenotype
compared to other racial groups [114].

The ethnic variations observed in PCOS phenotype and clinical symptoms may be
related to genetic and/or environmental exposure differences. Additionally, the potential
importance of interactions between genotype and the environment must also be con-
sidered [112]. Indeed, increasing evidence suggests that environmental contaminants
play a role in the development of PCOS. Takeuchi and Kandaraki et al. reported that
serum BPA levels were higher in hyperandrogenic women with PCOS compared to non-
hyperandrogenic women with PCOS and healthy controls [115,116]. A separate group
reported that increases in serum BPA levels were positively correlated with serum testos-
terone levels in women with PCOS compared to healthy women [117]. Vagi et al. conducted
a case–control study to determine the correlation between various environmental contam-
inants and PCOS. The group reported that women with PCOS had significantly higher
serum concentrations of perfluorooctanoate and perfluorooctane sulfonate. They also
reported that women were up to 7.5 times more likely to have PCOS if they had detectable
levels of PCB-153, 170, 180, 183, or 196 and 203 [118]. Furthermore, the group reported
that there was a negative correlation between phthalate body burden and PCOS. More
specifically, women with PCOS had lower urinary concentrations of mono benzyl phthalate
(mBzP) [118], suggesting poor metabolism of xenobiotics. Animal models also support a
link between PCOS and environmental contaminants. Recent reports suggest that the direct
exposure of pregnant rats to either vinclozolin (a widely used fungicide) or DDT (an insec-
ticide now banned in most countries) was linked to the development of ovarian changes
consistent with PCOS in three subsequent generations via epigenetic processes [119,120].

Heavy metal exposure also influences the development and progression of PCOS and
may be associated with metabolic symptoms of the disease. Kurdoglu et al. reported that
women with PCOS exhibited higher serum levels of copper and zinc, but lower levels of
lead compared to healthy women [121]. However, Kirmizi et al. reported that women
with PCOS exhibited higher levels of cadmium, lead, and mercury and lower levels of zinc
and copper [122]. As previously suggested by Wang and Alvero et al., it seems likely that
individual and or ethnic variations in genotype combined with environmental exposures
ultimately determine a woman’s overall risk of PCOS [112].

6. Uterine Fibroids

Uterine leiomyomas, more commonly known as fibroids, are the most prevalent benign
smooth muscle neoplasm of the female reproductive system, with up to 70% of women
developing this disease by menopause [123–126]. Clinical evidence suggests that fibroids
are hormone dependent since they rarely occur before menarche and shrink substantially
after menopause [124,127]. Additionally, fibroid tumors exhibit increased expression of
estrogen receptor-α gene and protein compared to healthy, surrounding tissues [128–130].
Although most women with fibroids are asymptomatic, the symptomatic disease can be a
major source of morbidity and have a substantial adverse impact on a woman’s quality of
life. Symptoms of uterine fibroids include pelvic pain and uterine bleeding. The symptoms
can be so severe that they cause infertility and lead to 33–50% of all hysterectomies [123,125].

Black women have higher incidences of fibroids at younger ages and have more severe
symptoms compared to white women, suggesting that racial differences contribute to dis-
ease pathogenesis [123,124]. Wise et al. reported that the use of hair relaxers among Black
women increased their risk for uterine fibroids and that this risk was further increased
in women who relaxed their hair frequently [131]. Hair relaxers and other personal care
products frequently used by Black women have been demonstrated to contain a wide vari-
ety of compounds with endocrine-disrupting activity and may be associated with disease
risk [132]. Thus, in addition to endogenous estrogen, fibroid growth may also be promoted
by exogenous estrogen sources associated with environmental exposures [123,124].

Two longitudinal cohort studies reported that prenatal exposure to DES is associated
with the development of uterine fibroids [133,134]; and increased the risk of uterine fibroids
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by 13% in women over the age of 35 [134]. Trabert et al. reported that women diagnosed
with fibroids also exhibited a higher mean concentration of DDT, its metabolite DDE, and
PCB-180 in their omental fat. Interestingly, this group also reported that body burdens
of contaminants differed between women diagnosed with both uterine fibroids and en-
dometriosis compared to women only diagnosed with fibroids. Women with both diseases
had higher body burdens (determined by omental fat) of PCB 99, 138, 146, 153, 196, and 206
compared to women with only endometriosis [135]. Exposure to phthalates has also been
reported to influence the development of uterine fibroids. Zota et al. reported that exposure
to phthalates was ubiquitous among pre-menopausal women with fibroids; however, Black
women with uterine fibroids had levels of specific phthalates (MiBP, MBzP, and MEP) that
were 30% higher than white and Hispanic women [136]. The group also reported that
differences in phthalates (and their metabolites) may be associated with differences in
fibroid size [136].

Qin et al. monitored POP, EDC, and heavy metal levels in Asian women diagnosed
with uterine fibroids. The group found that women with fibroids displayed significantly
higher concentrations of arsenic, cadmium, lead, and mercury in their subcutaneous fat
compared to women without fibroids. They also reported that women with uterine fibroids
exhibited higher mean concentrations of various POPs including PCB-126 and 191 [137].
Taken together, current data support a role for exposure to environmental contaminants
in the development of uterine fibroids. Furthermore, exposure to environmental contam-
inants may influence previously observed racial disparities in the development of these
benign tumors.

7. Premature Birth

Preterm birth (PTB) is a global problem, impacting more than 10% of all pregnancies.
Multiple maternal factors, including age, lifestyle choices (cigarette or alcohol use), occupa-
tion, and lack of prenatal care are known to contribute to the risk of PTB; however, women
with no known risk factors can also deliver early. The normal gestation length of human
pregnancy is 40 weeks. Infants that are born preterm (before 37 weeks gestation) or very
preterm (before 32 weeks gestation) are at significantly increased risk of death before age
5 compared to babies born at term [138]. For poorly understood reasons, non-Hispanic
Black women and Hispanic women are at significantly greater risk of delivering preterm
compared to all other racial and ethnic groups [138].

Relevant to the current discussion, numerous studies report an increased risk of PTB
following maternal exposure to a variety of manmade toxicants as well as selected heavy
metals (reviewed in [139,140]). Although the mechanisms of action of toxicants vary, EDCs
that act either directly or indirectly to interfere with progesterone action are particularly
well positioned to disrupt pregnancy since the appropriate response of the endometrium
and placenta to this steroid is critical to maintaining uterine quiescence until parturition.
For example, cadmium, a heavy metal present in tobacco smoke is known to disrupt proges-
terone production by the ovary and placenta [141,142]. Not surprisingly, numerous studies
have linked cadmium exposure to adverse pregnancy outcomes, including PTB. Wu et al.
conducted a meta-analysis of 59 different studies and concluded that exposure to heavy
metals (cadmium, lead, chromium, copper, magnesium), as well as specific phthalates,
were associated with an increased risk of delivering preterm [140]. Interestingly, this study
did not reveal an increased risk of PTB in association with organochlorines or PCBs. In
contrast, Kofoed et al. found an increased risk of PTB in women exposed to PCBs with
lower chlorine content either before pregnancy or during the first trimester [143,144]. In a
study from the French West Indies, maternal exposure to chlordecone, an organochlorine
pesticide, was associated with decreased gestation length and increased risk of PTB [144].

A major source of environmental contamination is associated with waste incineration,
which produces a variety of EDCs, including TCDD, other dioxins, and BaP. Two separate
studies conducted in Italy reported an increased risk for PTB in women living near a
municipal solid waste incinerator [142,145]. However, a similar study conducted in the
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United Kingdom found no excess risk of stillbirth, PTB, or infant mortality in association
with exposure to incineration-derived particulate matter [146]. These differences may
reflect inherent differences within the populations under investigation or different emission
standards between countries.

As described previously numerous personal care products have been found to contain
compounds with endocrine-disrupting properties. Preston et al. conducted a pilot study
examining the use of selected hair products by women and their subsequent incidence
of PTB. This study revealed an increased risk of PTB in women that frequently used
hair oils, which contain EDCs, during the last trimester of pregnancy [147]. Interestingly,
Black women are more likely than other races to report using hair oil [148]. Although
data are limited concerning the potential role of EDCs contributing to the known racial
disparity in the risk of PTB, some important inferences can be drawn. Minorities, in
addition to being more likely to use personal care products containing EDCs, are also
more likely to reside in areas contaminated with environmental pollutants [149–152]. Thus,
these and other environmental exposures may contribute to the well-known increased
risk of PTB among Black women. Interestingly, although Blacks and Hispanics make up
only 12% and 16% of the general U.S. population, respectively, collectively they represent
nearly half of the active-duty women in the American armed forces today (29% Black;
20% Hispanic) [153]. Military service is frequently associated with significant exposure to
environmental toxicants [44,154] and thus may disproportionately impact women of color
and their pregnancies. A recent study suggested that Black women in the United States
military are more likely to deliver prematurely compared to their counterparts, regardless
of equal access to health care services [155].

Equally important, although pregnancy is largely considered a woman’s health issue,
it is well established that the father can also influence pregnancy outcomes and child health
(reviewed in [156]). The father’s contribution to pregnancy is conveyed primarily via the
sperm, which is known to influence the placental phenotype [21–23]. The placenta plays a
critical role throughout pregnancy [157–159] and placental dysfunction is associated with
numerous adverse outcomes including PTB [160–162]. Not surprisingly, epidemiological
studies suggest that paternal factors, such as obesity and race, can influence pregnancy
outcomes in their partners [163–165]. Thus, paternal EDC exposure also likely contributes
to the overall incidence of PTB [156].

Twin studies have consistently reported a significant familial trend in the incidence of
PTB, suggesting that parental genetics may contribute to its incidence [166]. Although most
studies focus on maternal genes, at least one study identified the heritability of PTB from
the paternal parent [167]. As detailed above, numerous studies support exposure to a wide
variety of EDCs in the risk of PTB [139,168–170]. Therefore, it is appropriate to consider the
potential that gene–environment interactions also contribute to this outcome. However, to
our knowledge, few studies have attempted to examine this potential relationship. Never-
theless, since minorities are more likely to reside in areas contaminated with environmental
pollutants [149–152], gene–environment interactions could be a plausible contributor to the
racial and geographic disparity of PTB. This line of inquiry is supported by a recent study
that examined the presence of specific single-nucleotide polymorphisms in the mother
or fetus and the risk of PTB in association with maternal infections [171]. They found a
significant association with six different SNPs, PTB, and a recent maternal history of a
vaginal infection or urinary tract infection. These data demonstrate that an individual’s
genetic make-up, combined with an environmental threat (e.g., infection), can influence the
timing of birth. Concerning EDC exposure, Mustafa and colleagues reported that women
delivering preterm exhibited higher serum levels of organochlorine pesticides compared to
women delivering at term [172]. Furthermore, this risk was enhanced in women that also
exhibited the CYP1A1m2 or the GSTM1 null genotypes.

The epidemiology studies described herein have value, but differences in study design,
control groups, and timing of exposures contribute to the significant heterogeneity of the
findings and limit our ability to draw major conclusions. Additionally, depending on the
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country of origin, racial and ethnic minorities may be over- or underrepresented within a
given study. Thus, while a large body of evidence supports a role for maternal and paternal
EDC exposure in contributing to the racial disparity of PTB, finite conclusions cannot yet
be drawn.

8. Conclusions

This review highlights the current understanding of the potential relationship between
exposure to environmental contaminants and disparities in women’s health. The literature
suggests that exposure to environmental contaminants increases the risk of breast cancer,
endometriosis, PCOS, uterine fibroids, and premature birth in women, as demonstrated
by Table 1. Reports also suggest that Black women have higher body burdens of environ-
mental contaminants compared to white women and this disproportionate exposure may
be linked to socioeconomic status, geographic location, occupation, dietary habits, and
choice of personal care products. Epidemiology also suggests that increased exposure to
environmental contaminants in Black women may make this group more susceptible to
breast cancer and uterine fibroids. Although numerous studies support a contribution of
EDC exposure and the development of endometriosis, PTB, and PCOS, there is a lack of
studies that additionally investigate the association of race and environmental exposures.
It should be noted that racial disparities in disease diagnosis could also contribute to this
deficit in information. It is also worth mentioning that transgenerational mechanisms
associated with some of the diseases discussed (endometriosis, PCOS and premature birth)
could contribute to a woman’s susceptibility to disease. Therefore, the toxicant exposure
history of a woman’s mother or father may increase her susceptibility to disease; however,
this may not directly correlate to the woman’s toxicant body burden at the time of diagnosis.
It should be noted that this ancestral history of toxicant exposure in combination with
the woman’s exposure history throughout life may influence disease development and
severity. Nevertheless, the disproportionate exposure of women of color to EDCs, POPs,
and heavy metals supports an influence of these compounds in the racial disparity of
women’s health conditions.

Table 1. List of POPs, EDCs, and heavy metals associated with breast cancer, endometriosis, polycystic
ovarian syndrome, uterine fibroids, and preterm birth.

Women’s Health Condition Associated EDCs/POPs Associated Heavy Metals References

Breast Cancer
1,2,3,7,8-PeDCC;

1,2,3,4,7,8-HxCDF; PCB-74;
PCB-99; PCB-118

Cadmium; lead; nickel

Reynolds et al. [80];
Muscat et al. [81];
Parada et al. [82];

Kaushiva et al. [43]

Endometriosis PCB-138; PCB-153; PCB-180;
TCDD; DES Cadmium

Stillman et al. [90];
Homberger et al. [91];

Potera et al. [95]; Lei et al. [97];
Jackson et al. [11].

Polycystic Ovarian
Syndrome

BPA; perfluorooctanoate,
perfluorooctane; PCB-153;

PCB-170; PCB-180; PCB-183;
PCB-196; PCB-203

Cadmium; copper; lead;
mercury; zinc

Takeuchi et al. [116];
Kandaraki [117];

Konieczna et al. [118];
Vagi et al. [119];

Kurdoglu et al. [122];
Kirmizi et al. [123]

Uterine Fibroids
DES; DDT; DDE; PCB-126;
PCB-180; PCB-191; MiBP;

MBzP; MEP
Arsenic; cadmium; lead;

mercury

Mahalingaiah et al. [134];
Baird et al. [135];

Trabert et al. [136];
Zota et al. [137]; Qin et al. [138]

Endometriosis + Uterine
Fibroids

PCB-99; PCB-138; PCB-146;
PCB-153; PCB-196; PCB-206 Unknown Trabert et al. [136]

Preterm Birth
TCDD; BAP; unspecified

PCBs (low chlorine content);
Chlordecone

Cadmium; lead; chromium;
copper; magnesium

Wu et al. [141];
Candela et al. [143];

Kofoed et al. [144]; Kadhel et al.
[145]; Santoro et al. [146]
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