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Abstract: Kicking is a fundamental skill in soccer that often contributes to match outcomes. Lower limb
movement features (e.g., joint position and velocity) are determinants of kick performance. However,
obtaining kicking kinematics under field conditions generally requires time-consuming manual tracking.
The current study aimed to compare a contemporary markerless automatic motion estimation algorithm
(OpenPose) with manual digitisation (DVIDEOW software) in obtaining on-field kicking kinematic
parameters. An experimental dataset of under-17 players from all outfield positions was used. Kick
attempts were performed in an official pitch against a goalkeeper. Four digital video cameras were used
to record full-body motion during support and ball contact phases of each kick. Three-dimensional
positions of hip, knee, ankle, toe and foot centre-of-mass (CMfoot) generally showed no significant
differences when computed by automatic as compared to manual tracking (whole kicking movement
cycle), while only z-coordinates of knee and calcaneus markers at specific points differed between
methods. The resulting time-series matrices of positions (r2 = 0.94) and velocity signals (r2 = 0.68) were
largely associated (all p < 0.01). The mean absolute error of OpenPose motion tracking was 3.49 cm
for determining positions (ranging from 2.78 cm (CMfoot) to 4.13 cm (dominant hip)) and 1.29 m/s for
calculating joint velocity (0.95 m/s (knee) to 1.50 m/s (non-dominant hip)) as compared to reference
measures by manual digitisation. Angular range-of-motion showed significant correlations between
methods for the ankle (r = 0.59, p < 0.01, large) and knee joint displacements (r = 0.84, p < 0.001, very
large) but not in the hip (r = 0.04, p = 0.85, unclear). Markerless motion tracking (OpenPose) can help to
successfully obtain some lower limb position, velocity, and joint angular outputs during kicks performed
in a naturally occurring environment.

Keywords: image processing; human estimation; COCO; MPII; deep learning; team sports

1. Introduction

Kicking is a frequent technical action taken in football matches, and achieving high-
velocity and accurate targeting standards usually contributes to winning matches [1,2].
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Extracting players’ movement kinematics data derived from ball kicking, such as passing
actions or shooting against goalposts, is arguably important in the coaching process since
it assists in identifying and understanding (a) body mechanical factor determinants for
performance outputs; (b) practice constraints’ (e.g., acute-to-chronic exercise or recovery
related) effects on coordination aspects [3]; most importantly, (c) individual weaknesses
in need of improvement, thereby allowing the provision of specific feedback to refine
movement patterns [4]. Currently, among the tools available to examine kicking movement
performance, video analysis originates the most objective and sensitive kinematic metrics,
which are not always captured by only visual ratings [5]. In fact, video analysis has been
used in some other research fields (e.g., animal displacement detection and analysis), as
well as in a range of sports [6–14]. However, while ecologically valid assessment protocols
using an on-field multiple-camera setup (such as high-speed action sport cameras [15])
have made it possible to record the three-dimensional and open nature of soccer kicks,
flexible/reliable and boosting image processing methods are still required to provide useful
information to practitioners in due time [3,16,17].

Traditional excess of the manual digitisation necessary in obtaining body landmark
position time-series information is one important issue related to video kinematic investi-
gations of kicking [18–20], which would render as long as half a year of data processing
depending on sample sizes [21]. Indeed, manual tracking generally results in the existence
of both inter- and intra-operator variability in labelling [22] and is highly dependent on
marker sharpness/contrast in relation to the skin and environment [23,24]. Furthermore,
game rules do not always allow players to wear objects [25], implying that kick assessment
routines should attempt to respect the realities of competition [3]. The latter can also
prevent athlete monitoring with foot-mounted sensors [26], or otherwise attaching any
apparatus to the player’s body may interfere with their normal technique [27–29]. Thus,
publicly available markerless motion estimation algorithms seem to be a potential solution
in analysing video data and extracting kick kinematics in a likely less time-consuming,
more cost-effective, and non-invasive way. For such purposes, advanced computer vision
and deep learning techniques (e.g., convolutional neural network (CNN) mask) [30] have
been applied whilst the validity of the various contemporary markerless systems is still
lacking consensus in research (for a recent review, see Cronin [31]).

To date, results on the performance of a widespread, state-of-the-art open-source pose
estimation tool called ‘OpenPose’ [32] are found for a range of dynamic tasks, including
human walking [33], running [34], jumping [35], and ball throwing [36]; this method demon-
strated acceptable functioning in two- [33,37] or three-dimensional [34–36] plane analysis
(e.g., agreement with measures derived from ‘gold-standard’ marker-based kinematic sys-
tems). Either of these previous experiments assessing movements pertaining to team sports
was notably performed indoors in such controlled environments as a laboratory room.
To our knowledge, no studies determined its measurement error under field conditions
such as a soccer pitch scenario and considering the inclusion of ballistic (explosive) tasks
involving object manipulation using the lower limbs such as in ball kicking. Differently
from a throw, during kicking actions, one limb is fixed on the ground while another moves
in parallel, generating some blocking between these body segments in the camera’s view,
which can influence tracking effectiveness [31]. Notwithstanding, as this method involves
the recognition/estimation of key body points in each image (i.e., video frame) separately,
the implementation of tracking strategies represents an important attempt to further im-
prove such a tool in motion analysis, despite the fact that it was almost overlooked in the
existing works specifically interested in sports tasks. Additionally, non-controllable aspects
comprising lighting, possible mutual occlusions and diversified subject/background config-
urations may often collectively interfere during image processing in team sport real-world
contexts [13,29,38]. Therefore, the purpose of the current preliminary study was to compare
traditional frame-by-frame manual and modified OpenPose automatic motion tracking
methods in determining soccer kicking movement kinematic parameters in a naturally
occurring environment.
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2. Materials and Methods
2.1. Data Acquisition

In an official, FIFA-standard, natural grass pitch, four tripod-mounted digital video cam-
eras (240 Hz, 1920× 1080 pixel; Hero 7/Black Edition, GoPro® GmbH, München, Germany)
were distributed perpendicular to each other and 2.5 m laterally to the established kick mark
(18 m apart from the midpoint goal line). An experimental dataset (unpublished observations)
including six outfield—defenders, midfielders and forwards—U17 academy players was used
(16.1± 1 years old, 176± 6 cm, 71± 11 kg). Spherical markers (25 mm diameter) were attached
externally on the participant’s greater femoral trochanter and also, on the non-dominant side,
the lateral malleolus, calcaneus, and distal phalanx of the fifth metatarsal head (dominant limb).
As illustrated in Figure 1A, kick attempts were performed near the entrance of the penalty area
(18 m from the midpoint goal line), and participants were instructed to strike the target’s centre
(1× 1 m in both goalpost upper corners) while avoiding a teammate goalkeeper intercepting
the ball. A detailed description of the design of the field assessments and the test–retest reliabil-
ity measures of the task adopted to measure soccer kicking characteristics are both available
elsewhere [39]. Following collection, image sequences were transferred to a computer Ubuntu
20.04.2 LTS (Intel i7-8750H (12) @ 2.208 GHz; 16 GB RAM; Intel Corporation, Santa Clara,
CA, USA) with GPU (GeForce GTX 1050 Ti; 4096 MB GDDR5; NVIDIA Corporation, Santa
Clara, CA, USA), and 30 kicking attempts were randomly selected (https://www.random.org;
accessed on 8 July 2021) for further analysis.

Figure 1. Illustration of (A) experimental setup used for data collection, (B) calibration, (C) a given
kicking trial digitised using OpenPose markerless system and (D) manual tracking frame by frame.

2.2. Motion Tracking
2.2.1. Manual Digitisation

Manual frame-by-frame tracking of markers was completed (Figure 1D) by a single
experienced (>10 years) examiner using the DVIDEOW interface (v.5.0; Laboratory of In-
strumentation for Biomechanics & Institute of Computing UNICAMP, Brazil—see Figueroa
et al. for more information [40]). This motion tracking method is considered as the reference
measurement in the current study. The audio-band feature embedded into the software was
employed to synchronise the video cameras before tracking [41]. The image sequences of
the same initial and final events and the duration (i.e., number of frames) were inputted
in DVIDEOW and OpenPose tracking methods. A common calibration frame containing
49 control points was also defined for both in order to completely cover the kicking area
(3.6 × 3.2 × 1.3 m, respectively, in antero-posterior, medio-lateral and vertical directions—
Figure 1B). Reconstructed calibration points were compared to the reference values entered
by the operator to compute a global error.

https://www.random.org
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2.2.2. Markerless System

OpenPose is a bottom-up deep-learning-based approach designed to estimate human
pose and joint angles. In brief, this approach estimates and encodes the locations (Figure 1C)
and orientations of the limbs, in addition to the association score between body parts. For
this, the method produces confidence maps that encode the location of each body part in
the image domain. Then, a set of 2D vector fields of part affinity fields (PAFs) is used to
encode both location and information. Next, the PAFs are used to estimate the degree of
association between the body parts, which is used to assemble the limbs and thus come up
with a full-body pose for all people in the scene. A more detailed description of this method
can be found in [32]. Although OpenPose can detect the pose of all people in a scene, a
tracking strategy is necessary for associating a set of poses found in the frame t with their
respective poses detected in a subsequent frame t + 1. In this work, we proposed a simple
tracking strategy that firstly consists of computing the centre of mass of a given pose in the
frame t. Then, we associate it with the pose in the frame t + 1 whose centre of mass presents
the smallest Euclidean distance. We take advantage of the K-Means algorithm [42] for
efficiently computing the pairwise distances between a set of poses found in the frame t and
frame t + 1. The source code is freely available for scientific purposes on GitHub repository
(https://github.com/allansp84/allansp84-markerless-motion-detection, accessed on 9
November 2021).

2.3. Data Treatment and Measures

In a Matlab® environment (R2019a; MathWorks Inc., Natick, MA, USA), 3-dimensional
coordinates were obtained from Direct Linear Transformation (DLT) [43], with previous
correction for radial lens distortion [44] caused by the type of action that the sports cameras
used. The raw data from both methods were treated with a dual filter fourth-order But-
terworth plus rloess [45,46], using a span equal to 0.1 and a cut-off frequency of 25 Hz as
smoothing parameters, which were set after a residual analysis. The dependent variables
of the current study were determined for all kick attempts using custom-built routines and
included: (a) time-series reconstructed 3-dimensional position of each marker; (b) its associ-
ated time-series velocity; (c) foot centre-of-mass (CMfoot) velocity at impact; (d) angular
range of motion (ROM). Velocity outputs were taken from finite central differences using
time-series data of the entire attempt duration as input arguments [18]. CMfoot velocity at
impact was calculated from the three final frames just before ball contact considering the
centroid of malleolus, calcaneus, and toe coordinates. Local reference frames and segment
centres were defined as per previous studies [21,47]. Joint ROMs were then computed as
the difference between the lowest and the highest joint (hip, knee, and ankle) angle values
observed in the sagittal plane [47]. Independent variables were the two distinct methods
used (DVIDEOW software for manual tracking and OpenPose markerless system) for the
digitisation of the kicking motion.

2.4. Statistical Analysis

The data were time normalised and presented as medians and 95% confidence intervals
(CI). Significant differences between methods in time-series analysis were flagged when
CIs did not overlap [21,45,48]. Mean absolute error (MAE) was computed according to
Equation (1) [36] separately to support phase (1% to 65% of the cycle—starting from the
take-off of the kicking limb until complete touchdown of the supporting limb in the last step
before impact), contact phase (from 66% to 100% of the cycle, starting immediately following
termination of the support phase until foot–ball impact [45]) as well as considering the
whole kick cycle. Correlation coefficients were determined (time-series (corrcoef.m Matlab
function) and single-point measures (Pearson product-moment (r) and intraclass correlation
coefficients—ICC)) to gain insights about the random error and interchangeability of signals
obtained among the two methods. For the latter, the statistical significance level was pre-set
at p ≤ 0.05. The correlation values (r, 95% CI) were deemed as being trivial (<0.1), small
(>0.1–0.3), moderate (>0.3–0.5), large (>0.5–0.7), very large (>0.7–0.9) or almost perfect

https://github.com/allansp84/allansp84-markerless-motion-detection
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(>0.9–1.0). If the resulting CIs overlapped both small positive and negative values, then
the correlation was deemed unclear [49]. Shared variance was considered small (r2 < 0.30),
moderate (r2 > 0.3–0.5) or large (r2 > 0.50). Ratio limits of agreement (RLOA) were also
computed for the non-time-series parameters (joint ROMs and CMfoot velocity at impact)
as a measure of systematic bias [50]. Finally, effect sizes (ES) assumed as standardised
mean differences (Cohen’s d) were calculated [51] for each comparison (Equation (2)) and
interpreted as trivial (d < 0.2), small (d > 0.2–0.59), moderate (d≥ 0.6–1.19) or large (d ≥ 1.2).

MAE =
1
n ∑n

i=1|dm(i)− da(i)| (1)

ES(i) =
Mm(i)−Ma(i)√

σ2
m(i)+σ2

a (i)
2

(2)

where dm = the data point obtained from manual tracking; da = the data point obtained from
automatic tracking; n = the number of data samples; i = a given frame; Mm = the average
obtained from manual tracking; Ma = the average obtained from automatic tracking; σm = the
standard deviation of the values obtained from manual tracking; σa = the standard deviation
of values obtained from automatic tracking.

3. Results

Figure 2 shows the time series of the absolute position data (x, y and z coordinates)
of selected markers obtained from OpenPose automatic and DVIDEOW manual tracking
methods, while Figure 3 contains its three-dimensional resultant velocity observed across
the whole kicking movement cycle. Separate figures for all markers/axes are provided
in Supplementary online material S1. Global calibration errors were 0.9, 1.1 and 1.8 cm,
respectively, in the x (antero-posterior), y (medio-lateral) and z (vertical) directions.

Positional differences were observed between the two methods only in the z-coordinates
of the knee (from 6 to 12%; 20% instant and 90 to 100% of kicking movement cycle—
Figure 2F) and calcaneus markers (from 16 to 18%—Supplementary online material S1,
Figure 1M). Hip (dominant and non-dominant), ankle, fifth metatarsal head and CMfoot
(Figure 2G–I) showed no significant differences in their three-dimensional positions (x, y or
z coordinates), computed by automatic as compared to manual tracking methods, during
the whole kicking movement cycle. Overall effect sizes (Table 1) were trivial to small for
the x coordinates (ES = 0.01 to 0.39 (mean = 0.17)) and y coordinates (ES = 0.06 to 0.32
(mean = 0.14)) and small to large concerning z coordinates (ES = 0.34 to 6.40 (mean = 1.59)).

In reference to the marker’s velocity outputs, the overall differences between methods
were trivial (ES ≤ 0.08 (mean = 0.03)) but reached significance in the non-dominant hip
(from 15 to 20%, from 37 to 47%, from 58 to 67%, and from 98 to 100%—Figure 3A),
dominant hip (from 1 to 2% and 65% instant—Figure 3B), calcaneus (from 68 to 90%—
Figure 3D), fifth metatarsal head (from 5 to 7%, 17% instant, from 64 to 68%, and from
97 to 99%—Figure 3E) and CMfoot (from 6 to 8%, 71% instant, and from 99 to 100% of
kicking movement cycle—Figure 3F). Knee showed two separate differences (48% and 97%
instants—Figure 3C), whilst ankle velocity was similar (Supplementary online material
S2) between OpenPose automatic and DVIDEOW manual tracking methods (ES ≤ 0.07
(trivial)) across the whole kicking cycle (Supplementary online material S3).
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The overall MAEs of the OpenPose motion tracking method as compared to manual
digitisation was 3.49 cm for determining positions and 1.29 m/s for calculating markers’
velocity (all pooled). In particular (Table 2), these values ranged, respectively, from 2.78 cm
(CMfoot) to 4.13 cm (dominant hip) and 0.95 m/s (knee) to 1.50 m/s (non-dominant hip).
ROM showed large-to-very large correlations between OpenPose automatic and DVIDEOW
manual tracking methods, respectively, for the ankle (r = 0.59 (±0.40), p < 0.01; ICC = 0.47,
p < 0.01; RLOA = 0.655 ×/÷ 1.758; 1.08 [0.92; 1.24] and 1.41 [1.33; 1.49] rad) and knee joint
displacements (r = 0.84 (±0.08), p < 0.001; ICC = 0.82, p < 0.001; RLOA = 1.072 ×/÷ 0.323;
1.91 [1.83; 1.99] and 1.86 [1.76; 1.96] rad), but it was unclear in the hip (r = 0.04 (±0.15),
p = 0.85; ICC = 0.01, p = 0.48; RLOA = 0.520 ×/÷ 1.940; 0.86 [0.43; 1.28] and 1.14 [1.08;
1.20] rad), while CMfoot velocity at impact showed a moderate correlation (r = 0.48 (±0.23),
p < 0.01; ICC = 0.47, p < 0.01; RLOA = 1.021 ×/÷ 0.046; 21.57 [20.77; 22.36] and 19.70
[19.04; 20.36] m/s, respectively). Finally, large average shared variances were found among
methods in their resulting matrix of position (r2 = 0.94 [0.73; 0.99], all p < 0.001) and velocity
signals (r2 = 0.68 [0.46; 0.92], all p < 0.01).

Figure 2. Time series containing median values (solid lines) and associated confidence intervals of
marker’s absolute position (x, antero-posterior; y, medio-lateral; z, vertical) computed across the
whole kick movement cycle for both tracking methods (dominant hip x-axis (A), dominant hip y-axis
(B), dominant hip z-axis (C), knee x-axis (D), knee y-axis (E), knee z-axis (F), CMfoot x-axis (G), CMfoot

y-axis (H), CMfoot z-axis (I)).
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Figure 3. Time series containing median values (solid lines) and associated confidence intervals
of marker’s resultant three-dimensional velocity computed across the whole kick movement cy-
cle for both tracking methods (non-dominant hip (A), dominant hip (B), knee (C), calcaneus (D),
fifth metatarsal head (E) and CMfoot (F)).

Table 1. Effect sizes (ES) obtained for pairwise comparisons between OpenPose automatic tracking
and DVIDEOW manual tracking positional data (x, antero-posterior; y, medio-lateral; z, vertical) and
velocity outputs.

Marker

Position Velocity
X-Axis Y-Axis Z-Axis

Overall Min Max Overall Min Max Overall Min Max Overall Min Max
Non-dominant

hip 0.01 −0.14 0.15 −0.10 −0.29 0.11 −0.77 −5.03 4.22 −0.08 −0.25 0.00

Dominant hip −0.19 −0.34 0.44 −0.32 −0.63 −0.16 1.40 −3.99 6.33 −0.01 −0.11 0.08
Knee −0.04 −0.39 0.45 −0.15 −0.23 0.00 −6.40 −12.32 −2.78 −0.02 −0.13 0.12
Ankle −0.39 −0.84 −0.17 −0.15 −0.38 0.05 0.88 −4.71 4.12 0.00 −0.07 0.05

Calcaneus 0.29 −1.07 0.96 0.06 −0.08 0.22 0.75 −4.57 5.50 −0.05 −0.21 0.05
5th metatarsal

head −0.19 −1.71 0.15 −0.10 −0.39 0.05 −0.34 −6.22 1.85 −0.02 −0.11 0.04

CMfoot −0.11 −1.23 0.26 −0.07 −0.23 0.10 0.61 −3.76 2.36 −0.02 −0.11 0.05
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Table 2. Mean absolute error (MAE) for three-dimensional positions (cm) and resultant velocity
(m/s) of each joint derived from comparisons between DVIDEOW manual digitisation and OpenPose
automatic tracking algorithm.

Marker
Support Phase Contact Phase Whole Kick Cycle

X Y Z All VEL X Y Z All VEL X Y Z All VEL

Non-dominant hip 2.76 1.86 6.54 3.72 1.42 3.11 2.82 7.03 4.32 1.66 2.88 2.20 6.71 3.93 1.50
Dominant hip 2.65 2.49 5.88 3.67 1.06 3.04 2.91 8.98 4.98 1.29 2.79 2.63 6.96 4.13 1.14

Knee 1.91 2.45 4.40 2.92 0.84 1.91 3.19 3.31 2.80 1.14 1.91 2.71 4.02 2.88 0.95
Ankle 3.29 2.09 5.48 3.62 1.54 3.02 1.99 4.68 3.23 1.06 3.19 2.05 5.20 3.48 1.37

Calcaneus 4.44 2.22 5.47 4.04 1.10 4.62 2.59 3.84 3.68 2.12 4.50 2.35 4.90 3.92 1.45
5th metatarsal head 2.60 1.98 5.59 3.39 1.23 3.40 2.13 3.70 3.08 1.81 2.88 2.03 4.93 3.28 1.43

CMfoot 2.50 1.41 4.87 2.93 1.14 2.93 1.41 3.18 2.51 1.24 2.65 1.41 4.28 2.78 1.17
Overall 2.88 2.07 5.46 3.47 1.19 3.15 2.43 4.96 3.51 1.47 2.97 2.20 5.29 3.49 1.29

VEL = resultant three-dimensional velocity; X = antero-posterior; Y = medio-lateral; Z = vertical directions.

4. Discussion

The current study aimed to compare the OpenPose automatic motion detector method [32]
against traditional frame-by-frame manual digitisation (DVIDEOW software) conducted through
a relatively flexible interface [40] in determining on-field soccer kicking movement kinematics.
Furthermore, a simple tracking algorithm was proposed to overcome the original limitation of
OpenPose that provides a set of full-body poses per frame without any tracking information,
allowing us to determine the set of poses for a specific person over time. To the extent of our
knowledge, no previous work has investigated the reliability aspects of markerless tracking in
ball kicking drills. In the following paragraphs, the strengths and weaknesses relating to the
application of such advanced tracking methods are discussed—in particular, within the context
of kicking kinematics analysis—and recommendations for possible further improvements are
also provided.

Manual tracking systems (marker-based) are one of the most common computer meth-
ods adopted in measuring the kinematics of soccer kicks to date, despite their possible
impractical characteristics. According to the original results obtained, a markerless algo-
rithm can help to successfully obtain lower limb position and velocity outputs during kick
tasks performed in an official outdoor pitch. Critical parameters related to kicking effec-
tiveness, such as those derived from knee and ankle joint kinematics, showed acceptable
levels of error when computed by the OpenPose algorithm as compared to traditional
tracking (i.e., manual frame-by-frame tracking of kick movement features [18,19,52–54]).
Conversely, hip motion demonstrated the worst outcomes using this procedure in all of
the position, velocity and angular aspects. Notwithstanding, while the accuracy of the
x axis and y axis was generally preserved, most sources of uncertainties when using the
contemporary tracking tool were likely due to discrepancies identified in the z-axis (vertical)
coordinates among methods, indicating that advances in the OpenPose motion detector
are still necessary, mainly in the hip segment. Regardless, such a markerless system can
be helpful for performance-enhancing purposes (training to correct occasional inefficient
movements) as well as possible clinical cases (e.g., identifying athletes with potentially ex-
cessive plantar flexion amplitude; Tol et al. [55]) owing to the presumable interchangeability
of its signals with manual digitisation.

In biomechanical investigations, the validity of the measures is invariably a concern,
notably in field testing where non-controllable/unexpected factors usually exist. In a first
analysis, the error values found were within the range reported previously by applying
OpenPose to other human movements—primarily performed with the lower limbs—which
were found to be 2 cm in walking at a comfortable pace [56], about 3–4 cm in walking
plus quick jumping conditions [36] and up to 5 cm on average in sprinting bouts [28].
However, variable acquisition frequencies (30 [56], 120 [36] or 240 [35] Hz), number of
cameras (one [33], two [34,35,56], five [36] or nine [28]), their positioning (e.g., 1.8 [34],
2.3 [56] or 6.35 m [33] away from the subjects) and recording resolution (640 × 480 [56],
1280 × 720 [35], 1920 × 1080 p [28] or 4 K [36]) may constrain such a direct comparison of



Int. J. Environ. Res. Public Health 2022, 19, 1179 9 of 13

our results and literature. In general, such previous studies also used experimental setups
including cameras with apparently traditional optical systems (e.g., linear field of view)
in which no mention was made concerning whether the image sequences were corrected
for eventual distortions. Thus, it is plausible to state that action sport cameras were not
tested among existing works, which highlights another innovative aspect of the current
study. Regardless, these documented results indicate that, similar to that occurring with
other biomechanical position monitoring systems [57], uncertainties of OpenPose may be
speed dependent. In accordance, we have verified some increases in error values (e.g.,
average +8.23% and +15.07% in x-axis positions and resultant velocities across markers,
respectively) from the support to contact phase of kicking (Table 2). Of note, distal endpoint
kicking velocity increased from ~33–37 km/h in toe-off to 84–102 km/h at the ball contact
instant, as exhibited in Figure 3E. These sudden changes in velocity could alter the image
properties (e.g., might add some blurred pixels), thereby influencing motion estimation [31].
Furthermore, CMfoot velocity—a key parameter of performance—showed infrequent but
significant systematic bias across time moments of the kicking cycle, including ball impact.
Conversely, random error appears to be low given the significant correlations between
methods, whilst the RLOA of CMfoot velocity at impact is also compatible with previous
studies measuring kick velocity [58,59]. In this sense, given the habitual distortion caused by
foot–ball impact on the kicking kinematics data, excluding the last few frames of the contact
phase is not uncommon [3,45,60] and could also solve this issue despite improvements in
the precision of foot detection being mainly required in investigations focused on depicting
the full ball-impact phase.

Here, the OpenPose method had superior performance in determining antero-posterior
/medio-lateral (respectively, x and y axis) than vertical (z axis) positions (Table 1). The
same occurred for intermediate-to-distal (knee, ankle, and foot) limb kinematics—position,
velocity and angular amplitude—of the contact limb as compared to the proximal joint
(hip) involved in the action (Table 2). It should be noted that the resulting velocity was
slightly impacted by the worse results in the z coordinates/vertical direction that are
seemingly cancelled by acceptable functioning in the remaining pair of axes. The strong
similarity of signals between methods (e.g., as indicated by r-squared outcomes and also
the waveforms—Figures 2I and 3C) indicates the presence of more systematic rather
than random error. This is further illustrated by the significant associations observed
from the resulting ROM (knee and ankle) and CMfoot velocity outcomes among the two
methods. As shown in Figure 3, all important events such as continuous knee acceleration
throughout the support phase followed by a reversal to deceleration—around 70% of the
cycle—concomitantly with the foot acceleration, which is a typical illustration of proximal–
distal energy transference during kicks, were correctly identified. The highest discrepancies
between automatic and manual tracking in z coordinates might be partly attributed to a
concomitant greater global calibration error magnitude that was observed in this specific
axis, meaning that uncertainties in the vertical direction are themselves the poorest. Lower
precision in obtaining hip movements is also observed elsewhere in squat and locomotion
tasks [34,37]. The hip is generally entirely covered by clothing (shorts/t-shirt) [61], with
unconstrained portions that are not well fixed to the body, and this probably causes an
undefined/more variable pattern of appearance in image sequences, while this is not the
case or might be at least reduced in the remaining equipment (socks and clothes) covering
the leg and foot segments. In addition to being wider, by the under-17 age, the hips and
thighs are also longer [21] as compared to the lower leg, thereby involving image processing
of a greater number of pixels, perhaps increasing the complexity in keypoint detection of
the former. In the case of kicking assessed using only lateral cameras, given the common
path of players in the approach run and subsequent ball flight, issues in markerless tracking
can be also attributed to a longer mutual occlusion of hip joints as compared to the knee
and ankle—in particular, the overlapped proximal region of both thighs in the image
sequences across a substantial trial duration. Taken collectively, it can make the process to
precisely detect and track the hip joint more challenging in some instances. Therefore, hip
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kinematic outcomes of kicking should be interpreted with caution when using OpenPose.
The possible advantages of including a camera behind the player trajectory (i.e., posterior
view) in addition to a higher sampling frequency should be tested in future research.

Additional limitations are also recognised to this study, which collectively indicate
taking caution in any generalisations made. Firstly, given the practical difficulties in
conducting repeated measurements within soccer clubs, the cross-sectional design of the
present comparative analysis prevents the calculation of minimal detectable differences.
Secondly, re-training based on our own dataset characteristics may contribute to further
reducing errors arising from possible algorithm false detections [62]. Thirdly, a relatively
small sample size was used here to evaluate the performance of a markerless algorithm,
despite this not being uncommon, as some published pilot or validation studies have
included, for example, only two [36,56], six [63], or a maximum of nine participants [64].
Fourthly, assessment outcomes may fail to replicate actual soccer match demands, possibly
limiting the results to only testing routines. Finally, as soccer kicking performance is age
dependent, a priori extrapolation of results to senior players may not be warranted.

5. Conclusions

In short, empirical evidence provided by the current experiment indicates that the
OpenPose tracking method may be a reliable tool with which to evaluate soccer kicking
kinematics in youth soccer under grassy pitch conditions, providing compatible data to
those obtained from traditional frame-by-frame manual digitisation. In particular, we were
more confident in knee and ankle joint preliminary outcomes, whilst hip detections should
still be improved to reduce between-methods differences. Markerless motion tracking
systems such as OpenPose seem to be a pertinent option to help fill a critical gap currently
existing between research and soccer practice, mainly in the analysis of ball kicking skills,
since it reduces the time spent in processing the data dramatically, while its precision in
computing position and velocity is generally not compromised. Future work is recom-
mended to further check the validity of the proposed method against microtechnology
devices or ‘gold-standard’ marker-based (semi)automatic tracking measures provided by
infrared cameras, despite the difficulties in implementing the latter in the “real-world”
rather than within a laboratory or indoor artificial turf soccer pitch.
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10.3390/ijerph19031179/s1, Supplementary online material S1: Figures illustrating time series of
all marker’s absolute position computed across the whole kick movement cycle for both tracking
methods, Supplementary online material S2: Figure containing resultant three-dimensional velocity of
the ankle computed across the whole kick movement cycle for both tracking methods, Supplementary
online material S3: Matfile containing all effect sizes derived from the comparisons made in the
current study.
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