
����������
�������

Citation: Chow, T.-H.; Chen, Y.-S.;

Hsu, C.-C.; Hsu, C.-H. Characteristics

of Plantar Pressure with Foot

Postures and Lower Limb Pain

Profiles in Taiwanese College Elite

Rugby League Athletes. Int. J.

Environ. Res. Public Health 2022, 19,

1158. https://doi.org/10.3390/

ijerph19031158

Academic Editors: Sae Yong Lee and

Paul B. Tchounwou

Received: 5 December 2021

Accepted: 19 January 2022

Published: 20 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Characteristics of Plantar Pressure with Foot Postures and
Lower Limb Pain Profiles in Taiwanese College Elite Rugby
League Athletes
Tong-Hsien Chow 1 , Yih-Shyuan Chen 2, Chin-Chia Hsu 1 and Chin-Hsien Hsu 3,*

1 Department of Leisure Sport and Health Management, St. John’s University, New Taipei 25135, Taiwan;
thchow1122@mail.sju.edu.tw (T.-H.C.); hill@mail.sju.edu.tw (C.-C.H.)

2 Department of Education, National Pingtung University, Pingtung 900391, Taiwan; katy@mail.nptu.edu.tw
3 Department of Leisure Industry Management, National Chin-Yi University of Technology,

Taichung 41170, Taiwan
* Correspondence: hsu6292000@yahoo.com.tw; Tel.: +886-4-23924505 (ext. 8306/8300)

Abstract: Background: This study aimed to explore the differences in the distributions of plantar
pressure in static and dynamic states and assess the possible pain profiles in the lower limb between
elite rugby league athletes and recreational rugby players. Methods: A cross-sectional study of
51 college elite rugby athletes and 57 recreational rugby players was undertaken. The arch index (AI)
and plantar pressure distributions (PPDs) with footprint characteristics were evaluated via the JC Mat.
Rearfoot alignment was examined to evaluate the static foot posture. The elite group’s lower-limb
pain profiles were examined for evaluating the common musculoskeletal pain areas. Results: The
recreational group’s AI values fell into the normal range, whereas the elite group’s arch type fell
into the category of the low arch. Results from the elite group were: (1) the PPDs mainly exerted
on the entire forefoot and lateral midfoot regions in static standing, and transferred to the forefoot
region during the midstance phase of walking; (2) the static rearfoot alignment matched the varus
posture pattern; (3) the footprint characteristics illustrated the features of low-arched, supinated,
dropped metatarsal heads and dropped cuboid feet; and (4) the phalanx and metatarsophalangeal
joints, and the abductor hallucis and abductor digiti minimi of the plantar plate were common
musculoskeletal pain areas. Conclusions: Characteristics of higher plantar loads beneath forefoot
and midfoot associated with low-arched supinated feet in bipedal static stance could be the traceable
features for the foot diagram of elite rugby league athletes. The limb pain profiles of the elite rugby
league athletes within this study echoed the literature on rugby injuries, and reflected the features
of metatarsophalangeal joint pains and dropped cuboids. The relationships among the low-arched
supinated feet, metatarsophalangeal joint pains and cuboid syndrome are worth further studies.

Keywords: elite rugby league athletes; arch index (AI); plantar pressure distributions (PPDs);
low-arched supinated feet; cuboid syndrome

1. Introduction

Overload of plantar pressure may lead to soft tissue degeneration, such as fat pads of
the foot during exercise [1]. This may increase the risk of foot disease development in adults
and children [2]. There is a potential link among the foot structure, lower-limb function,
balance ability and obesity, due in particular to functional overload [3]. Biomechanical or
anatomical changes and abnormalities of the skeletal joints represent risk factors that may
be beneficial to accidents in many sport disciplines [4]. Specifically, the fifth metatarsal
fractures are podiatric problematic for professional soccer athletes [5]. Muscle fatigue in
footballers is believed to be at the core of developing metatarsal stress fractures because
of the increased load on the forefoot of runners in a state of fatigue [6]. Proximal fifth
metatarsal fractures, commonly referred to a ‘Jones Fracture’, is a common podiatric
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disease in basketball [7] and soccer [8] players, and usually occurs when the proximal
fifth metatarsal suffers from the forces caused by the specific repetitious jumping and
cutting [8,9].

In addition, cuboid syndrome is most likely to happen in people who participate in
particular sports such as running, tennis, basketball, and ballet [10,11]. These sports exert
a lot of force through the foot and rapid movement where players are quickly changing
direction [11]. This, in turn, increases the pressure on the joints and attachments of the
cuboid bone. Repeated pressure on the cuboid bone may cause the support around the
cuboid bone to loosen, resulting in displacement and dislocation of the cuboid bone. [11].
Cuboid syndrome usually results from a flat foot when the foot arch is lowered. Abnormal
foot arches may exert disproportionate stress to the cuboid bone and increase pressure
through the muscles of the lower extremities [11]. Rugby is unavoidably one of the
disciplines at risk of such problems [4].

Rugby is a sport of high-intensity contact and frequent strong collisions. Most rugby
injuries were located in the lower extremities [12]. Carl et al. pointed out the fact that
greater vertical forces, impact loading rates and peak plantar pressure occur when running
in football boots compared to running or training shoes [13]. These high peak pressures
are focused on the forefoot (i.e., hallux, medial, central and lateral forefoot) and steadily
reduced at the heel during acceleration [14,15]. However, little rugby-specific research has
been conducted for investigating fatigue-induced alterations in plantar foot-loading [6].

Plantar pressure detection is one of the effective methods for assessing plantar loads,
seriousness of podiatry, abnormal gaits, rehabilitation condition [16] and ambulatory
activities [17]. It could show the function of the feet and ankles in the gait cycle, because
the feet and ankles provide the necessary support and flexibility for weight bearing and
weight transfer during activities [18]. The parameters can be used to reveal the relationship
between the multisegment, fine structure of the foot and the detailed function of the
foot, [19] which is helpful for detecting foot pathology and warning, preventing, treating,
rehabilitating and recurrence of foot deformities [20,21]. In addition, static plantar pressure
measurement is considered to be helpful to solve many problems related to the relationship
between plantar loads and lower-limb posture, thus, measurement techniques of plantar
pressure are beneficial to understanding the biomechanics of the human foot [22].

Plantar pressure is mainly examined during walking and running in adults in current
studies [23–25]. The parameters of plantar pressure and body posture in static state in elite
athletes of different disciplines were discussed in previous studies [4,15]. Nevertheless, few
studies have been undertaken for exploring the causal relationship between the etiology
of the podiatric pain caused by the specific plantar pressure distribution and the special
plantar pressure pattern induced by the rugby discipline. On this basis, the possible link
between plantar pressure profiles and lower limb pain profiles related to rugby discipline
is worth further exploration. This study aimed at establishing the overall reliability of the
relationships among the arch index (AI), the plantar pressure distributions (PPDs) and
the rearfoot postural alignment of college elite rugby athletes during static standing and
walking. Given that the potential pain profiles in the athletes’ performance model are
commonly related to sport per se, the elite rugby athletes’ pain areas and self-reported
health status were assessed with a particular focus on the examination of the possible link
between pressure profiles and lower-limb pain profiles, which were connected directly to
rugby drills.

2. Materials and Methods
2.1. Participants

This cross-sectional study examined the relationships among the AI, the PPDs, the
rearfoot postural alignment and the potential pain profiles of the lower extremity. Research
participants comprised 108 male college and university students in Taiwan, who were
categorized into two groups: 51 elite rugby league athletes (the elite group) and 57 healthy,
age-matched recreational rugby players (the recreational group). The study was conducted
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during the noncompetition period, the inclusion criteria in the elite group were qualified
first-division rugby athletes who had more than five successive years of rugby training
experience in the National Rugby Championship, Taiwan Rugby Championship 7 s and
Taiwan Chung-Cheng Cup-Senior High School Group. The elite rugby league athletes were
between the ages of 19 and 22, and were registered in the Chinese Taipei Rugby Football
Union (CTRFU). They were selected from 75 male elite rugby athletes who were recruited
from St. John’s University, Chang Jung Christian University, Chinese Culture University,
National Taiwan Normal University, National Taiwan Ocean University and Taipei Medical
University in Taiwan. There was a 32% dropout rate in the process of recruiting the eligible
elite rugby athletes for the following reasons: (1) absence rate; (2) a physician’s certificate
of the past fracture or surgery; and (3) having taken or been taking any anti-inflammatory
analgesics in the past one month. Rugby workout schedules (Monday to Friday), including
basic movements and aerobic training, were set from 8 AM to 10 AM. Weight training and
tactical training were set from 3 PM to 5 PM, and 1 to 2 hours of high-intensity interval
sprint training was set for 3 to 5 days a week.

The eligible 57 recreational rugby players (the recreational group) within this study
were selected from 78 rugby players who had more than 4 years of recreational rugby
experience and played rugby at least 2 days per week at a rugby pitch or sports field
within 6 months before this study was initiated. There was approximately a 27% dropout
rate in the process of recruiting the eligible recreational group for the following reasons:
(1) absence rate; (2) having professional training in other sport disciplines; (3) a physician’s
certificate of past fracture or surgery.

The elite and recreational groups were recruited from a relatively homogeneous
population. Two groups were different in their training intensity, training patterns, rigid
workout schedules and competition experiences. The exclusion criteria in both groups were
a history of previous surgery in the lower limbs, traumas or fractures of the lower limbs
in the previous six months, leg length discrepancies and other musculoskeletal disorders,
such as neuropathies, rheumatoid arthritis and calcaneal spurs. During the study, the
age, height, body weight, and body mass index (BMI) of each participant were recorded.
Basic anthropometric characteristics for both groups are presented in Table 1. According
to Table 1, the characteristics of the two groups’ height, mass and BMI are significantly
different after the inspection by a two-group student-t test with a confidence level of 95%.
All experiments in this study followed the guidelines of the research ethics committee of
National Taiwan University and the recommendations of the Declaration of Helsinki.

Table 1. Anthropometric characteristics of the groups.

Characteristic Recreational Group 1 (n = 57) Elite Group 2 (n = 51)

Age (years) 19.6 ± 1.1 20.4 ± 1.3
Height (cm) 172.3 ± 4.4 179.0 ± 4.7 *
Mass (kg) 72.1 ± 3.7 86.0 ± 5.8 *

BMI (m/kg) 24.3 ± 0.8 26.9 ± 1.6 *
Rugby training experience (years) 4.3 ± 1.0 5.3 ± 0.9

Abbreviation: BMI, body mass index (calculated as the weight in kilograms divided by the square of the height in
meters). Note: Values are given as mean ± SD. * p < 0.05 (student-t test, 2-tails). 1 Healthy eligible recreational
rugby players (the recreational group) were age-matched male college and university students. 2 Elite rugby
league athletes (the elite group) were male college and university students who were qualified first-division
rugby athletes and had more than five successive years of rugby training experience in the National Rugby
Championship, Taiwan Rugby Championship 7 s and Taiwan Chung-Cheng Cup-Senior High School Group.

2.2. Instruments

The JC Mat optical plantar pressure analysis device (View Grand International Co.,
Ltd, New Taipei City, Taiwan) integrated with FPDS-Pro software was applied to collect the
arch index (AI) and plantar pressure distributions (PPDs) of both feet [26]. The repeatability
and reproducibility of the device have been confirmed in previous studies, and it has been
applied in exploring the AI and PPDs of athletes in running and basketball disciplines
in static and dynamic states [27,28]. The measuring technology and principle of the JC
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Mat are parallel to the operation principle of the Harris footprint-measuring instrument.
The following are the main features of the JC Mat: (1) foot characteristics are easily and
effectively recognized; (2) the PPD and footprint images match the weight calibration
experimental results; (3) There are 25 sensors per square centimeter for measuring plantar
pressure, therefore, there are 13,600 sensors on each side (32 × 17 cm) of the JC Mat;
(4) the sensitive pressure sensing with a wide working area can display and mark the
delicate plantar pressure image with round dots; (5) the pressure distribution of footprints
and barefoot images can be captured immediately; and (6) the built-in FPDS-Pro software
can be used to analyze the following parameters: the AI and PPD values, the center of
gravity balance, toe angle, and footprint images.

2.3. PPDs Assessment

The time for each experiment was set from 4 PM to 6 PM on the same day. In order
to ensure consistency and trustworthiness of the present research, each experiment was
conducted three days before and after the regular training courses and competitions. All
participants’ anthropometric measurements were conducted to obtain their BMI values
during the experiments.

It was necessary to secure data on static footprints via brief trials of static upright
standing, where participants were required to follow the steps below:

1. Roll the two trouser legs above the knees to avoid clothing restricting the movement
of the limbs.

2. Stand barefoot on the JC Mat sensor mat with specific markings and measuring range.
3. Stand with feet shoulder-width apart and distribute body weight evenly on feet to

control and balance the center of gravity.
4. Stand in a natural posture, with arms hanging vertically at sides.
5. Face the experiment instructor. Look the instructor straight in the eye. Keep the body

still and balanced and relax the whole body until the foot pressure measured by JC
Mat does not change significantly.

When the participant reaches the condition in step 5, the JC Mat directly records the
pressure distribution from the static footprint. In the dynamic measurement experiment,
each participant was instructed to walk barefoot at their self-comfort speed according to
their accustomed pace and gait [29–31] on a 4 m-long JC Mat built-in walkway to its end,
to make a turn, and to return by nature gait. Multiple walking trials were completed until
at least three take-offs for the left and right foot were correctly acquired (i.e., the sensing
cushion with marks of the specific measuring range of the JC Mat was struck with a single
foot). The experiment was terminated by pressing the stop button. Autosaving of the
collected data was completed when the close button was pressed.

2.4. PPDs Data Analysis

The values of AI and PPD were analyzed on three anatomical regions and six subre-
gions of both feet. The computer program (FPDS-Pro software, View Grand International
Co, Ltd., New Taipei City, Taiwan) was used for managing digital images of the static and
walking footprints. The software generated the first line (a vertical line) on the footprint
image. The vertical line extends from the tip of the second toe to the center of the heel;
then, it automatically generates tangent lines to the foremost and rearmost end of the
footprint excluding the toes. JC Mat built-in software automatically formed four parallel
lines perpendicular to the vertical line and divided the footprint into three equal regions
(region A, B, and C) and six subregions (subregions 1, 2, 3, 4, 5, and 6). Regions A, B, and
C of a footprint were defined as the forefoot, midfoot, and rearfoot regions, respectively.
The six subregions divided from the three regions were defined in the order as (1) the
lateral metatarsal bone (LM), (2) the lateral longitudinal arch (LLA), (3) the lateral heel
(LH), (4) the medial metatarsal bone (MM), (5) the medial longitudinal arch (MLA) and
(6) the medial heel (MH). The AI ratio method proposed by Cavanagh and Rodgers assumes
that AI is calculated as the ratio of the area of the middle third of the footprint divided by
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the area of the entire footprint excluding the toes, i.e., AI = B/(A + B + C). According to the
definition of Cavanagh and Rodgers, an AI lower than 0.21 is a high arch, an AI between
0.21 and 0.26 is a normal arch, and an AI higher than 0.26 is a flat arch [32].

2.5. Rearfoot Postural Alignment Assessment

After the PPDs assessment, each participant’s posterior view of the rearfoot postural
alignment was examined. All participants were guided to stand over a 30 cm height
platform and keep their feet with natural apart (about 12–15 cm). The posterior view
of each participant’s rearfoot postural alignment image was obtained (with a minimum
size of 754 pixels and 96-ppi screen resolution) with a digital camera. According to the
literature by Ribeiro et al. [33], the method of calculating the rearfoot static angle is as
follows: to confirm that the rearfoot of both feet relaxed stand on the same horizontal
line, and to determine the anatomical points in the lower back area of the legs: (1) the
posterior calcaneal tuberosity; (2) the second point above the center of the calcaneus; and
(3) the lower third of the leg. In the three-point connection, two lines were automatically
generated by the Biomech 2019 postural analysis software (Loran Engineering SrL, Emilia-
Romagna, Italy). The first standard straight of the lower extremity (a solid line) was drawn,
which originated from the lower third of the leg to the calcaneal center. The second flip
angle line of the lower extremity (a dotted line) was drawn, which originated from the
posterior calcaneal tuberosity to the center of the calcaneus (Figure 1). The static rearfoot
alignment was measured from the frontal alignment of a digital image by the software. The
intersection of the extensions of both straight lines resulted in angles, which were classified
as a normal foot (0◦ to 5◦), varus (<0◦), or valgus (>5◦) [34].
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2.6. Pain Assessment and Self-Reported Health Status

The elite rugby athletes’ soft-tissue pain and skeleton arrangement assessments and
the self-reported health-status examination were implemented by a physiotherapist in the
Rehabilitation Department of Taipei General Hospital after the plantar pressure measure-
ment. This was essential for meeting the participant recruitment criteria, assessing physical
symptoms, and identifying pain areas. The statements of the inquiry into the self-reported
health status comprised the participants’ medical history, physical examination and general
personal data.

In the process of the soft-tissue pain and skeleton arrangement assessments, the lower-
limb pain was defined as the musculoskeletal pain which occurred during the past month
and originated from the structures of the foot, ankle, knee, lower leg, and thigh. The
definition excluded intermittent cramps, dermatological conditions, digital calluses, and
nighttime paresthesia from the analysis. A standardized protocol of the questioning and
examination techniques was used for ensuring the precise nature of the complaint. Physical
examinations were conducted to evaluate the elite rugby athletes’ frequent soft-tissue and
bone pains in their lower limbs based on the following steps:

1. The physiotherapist examined the elite rugby athletes’ self-reported health status and
pain complaints, and guided them to stand with bare feet and roll their trouser legs
up to above the knees.

2. The physiotherapist examined the elite rugby athletes’ lower extremities by palpat-
ing and pressing their feet (including navicular bones, cuboid bones, phalanges,
metatarsals, and calcaneus), ankles, patella, knees, hips, tibias, fibulas and femur
according to the participants’ self-reported health status, and re-examined the cor-
responding position on the other side of the pain areas. The physiotherapist then
assessed the skeletal arrangement of the athletes’ lower limbs.

3. In order to confirm the athletes’ pain areas precisely, the physiotherapist examined
the following specific parts of the athletes’ common pain areas: (1) soft tissues,
e.g., the plantar fascia, the Achilles tendon, the gastrocnemius, the tibialis anterior
and posterior, the biceps, the quadriceps femoris, the medial and lateral ankle lig-
aments, the anterior cruciate ligaments, the medial and lateral collateral ligaments,
the abductor hallucis and abductor digiti minimi of plantar plate and the lower back;
(2) bone tissues of both feet, i.e., navicular bones, cuboid bones, phalanges, metatarsals,
and calcaneus; (3) the ankles; (4) the patella; (5) the knees; (6) the hips; and (7) tibias.

2.7. Statistical Analysis

Descriptive statistics were used for outlining all participants’ ages, heights, weights
and BMI values. Numerical data within this study are presented as mean and standard
deviation (e.g., mean ± SD). The parameters of AI values, the PPDs of the forefoot, the
midfoot, and the hindfoot three regions, and the PPDs of the six distinct subregions were
compared between the groups using the independent sample t-test. In the study, the
statistical significance was defined as p < 0.05 (marked as *) and p < 0.01 (marked as **).
Statistical software (SPSS version18; SPSS Inc., Chicago, Illinois, USA) was used to manage
the statistical analysis.

3. Results
3.1. Arch Index

Compared with the recreational group, the average bipedal AI value of the elite group
was found to be significantly higher. Findings showed that the elite group’s arch type fell
into the category of low arch (Table 2).
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Table 2. Arch Index of the Foot in Static Standing.

Recreational Group Elite Group p Value 1

Left foot 0.21 ± 0.04 0.30 ± 0.05 0.039
Right foot 0.21 ± 0.04 0.31 ± 0.05 0.033

Note: Data are given as mean ± SD. 1 p values were determined by the independent sample t-test between the
recreational group (n = 57) and the elite group (n = 51).

3.2. PPDs of the Three Regions in Static and Dynamic States

The PPDs were presented as percentages of the relative loads. In static standing,
the relative load on the forefoot and midfoot regions of both feet in the elite group were
significantly higher than that of the recreational group. No significant difference was
observed in the rearfoot region (Table 3).

Table 3. Relative Load of the Forefoot, Midfoot, and Rearfoot Regions in Static Standing.

Region Recreational Group Elite Group p Value 1

Left foot
Forefoot (%) 23.34 ± 6.40 25.91 ± 4.37 <0.01
Midfoot (%) 9.49 ± 8.43 13.16 ± 12.59 <0.01
Rearfoot (%) 17.17 ± 5.39 10.93 ± 4.10 0.058

Right foot
Forefoot (%) 23.50 ± 5.74 26.23 ± 4.84 <0.05
Midfoot (%) 8.34 ± 7.09 12.77 ± 12.31 <0.01
Rearfoot (%) 18.07 ± 5.41 11.00 ± 4.22 0.074

Note: Data are given as mean ± SD. 1 p values were determined by the independent sample t-test between the
recreational group (n = 57) and the elite group (n = 51).

During the midstance phase of walking, the elite group had a significantly higher
relative load in the forefoot region, but lower in the rearfoot region compared with the
recreational group (Table 4).

Table 4. Relative Load of the Forefoot, Midfoot, and Rearfoot Regions During the Midstance Phase
of Walking.

Region Recreational Group Elite Group p Value 1

Left foot
Forefoot (%) 25.98 ± 5.24 30.91 ± 3.65 <0.01
Midfoot (%) 9.82 ± 8.72 9.16 ± 8.28 0.154
Rearfoot (%) 14.22 ± 6.95 9.94 ± 3.25 <0.01

Right foot
Forefoot (%) 26.04 ± 4.05 31.13 ± 3.55 <0.01
Midfoot (%) 10.06 ± 9.03 8.64 ± 7.92 0.200
Rearfoot (%) 13.91 ± 6.47 10.23 ± 3.99 <0.01

Note: Data are given as mean ± SD. 1 p values were determined by the independent sample t-test between the
recreational group (n = 57) and the elite group (n = 51).

3.3. PPDs of the Six Subregions in Static Standing

The relative loads of the six subregions were secured from the data of three equal
regions. Findings showed that the elite group’s relative loads in static standing were mainly
concentrated on the entire forefoot and lateral midfoot regions. Compared with the recreational
group, the elite group’s relative loads of the six subregions were significantly higher at the
lateral metatarsals (left foot: 29.42% ± 2.74%; right foot: 29.43% ± 3.73%; p < 0.01) and the
medial metatarsals (left foot: 22.41% ± 2.44%; right foot: 23.02% ± 3.53%; p < 0.05) of both
feet. In the midfoot region, the elite group had a significantly higher relative load at the lateral
longitudinal arch of both feet (left foot: 25.33% ± 4.22%; right foot: 24.59% ± 4.54%; p < 0.05).
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In the rearfoot region, the relative load at the medial heel of the elite group (left foot: 7.78% ±
1.96%; right foot: 8.74% ± 3.63%; p < 0.05) was significantly lower than that of the recreational
group (Figure 2).
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Figure 2. The plantar pressure distributions of the left (a) and right (b) feet in the six subregions in
static standing. Description of changes in pressure distribution is illustrated in (c) plantar diagram.
Through the independent sample t-test, * p < 0.05 and ** p < 0.01 were significantly different between
both groups. The six subregions and their abbreviations are as follows: LH, lateral heel; LLA, lateral
longitudinal arch; LM lateral metatarsal bone; MH, medial heel; MLA, medial longitudinal arch; and
MM, medial metatarsal bone.

3.4. PPDs of the Six Subregions during the Midstance Phase of Walking

Findings from the midstance phase of walking indicated that the elite group’s relative
loads were mainly transferred to the forefoot region. Compared with the recreational
group, the elite group’s relative loads of the six subregions were exerted more on the
medial metatarsal bone of both feet (left foot: 30.89% ± 3.17%; right foot: 31.97% ± 2.70%;
p < 0.01) and the lateral metatarsal bone of the right foot (30.29% ± 4.09%; p < 0.05).
Nonetheless, in terms of the medial heel of the left foot, the relative loads of the elite group
(7.44% ± 0.93%; p < 0.01) were significantly lower than those of the recreational group
(Figure 3).
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3.5. Footprint Image Characteristics

Compared with the recreational group, the static footprints of the elite group showed
higher pressure distribution in the forefoot and midfoot regions of the feet (Figure 4).
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3.6. Rearfoot Postural Alignment Assessment

With regard to the changes in the bipedal rearfoot angle, the findings showed that the
values of the static rearfoot alignment in the elite group conformed to the varus posture
pattern (Table 5).

Table 5. Static Rearfoot Postural Alignment.

Recreational Group Elite Group p Value 1

Left foot 2.48 ± 4.57 −1.30 ± 5.45 0.042
Right foot 2.25 ± 3.52 −2.45 ± 5.78 <0.01

Note: Data are given as mean ± SD. 1 p values were determined by the independent sample t-test between the
recreational group (n = 57) and the elite group (n = 51).

3.7. Pain Assessment and Self-Reported Health Status of the Participants

Based on findings from the pain assessment, the top 14 most common bone pain
areas and soft tissue pains of the elite group were listed in descending order of percentage
proportion in Table 6.

Table 6. Pain Assessment and Self-Reported Health Status in the 51 Elite Rugby Athletes.

Pain Area Elite Group (No. [%]) Pain Area Elite Group (No. [%])

Bone pain Soft-tissue pain
Foot (Plantar phalanx 1st) 47 (92.2) Plantar plate (Abductor hallucis) 47 (92.2)

Foot (Metatarsophalangeal joint 1st & 2nd) 46 (90.2) Plantar plate (Abductor digiti minimi) 47 (92.2)
Foot (Plantar metatarsal bone 1st & 2nd) 46 (90.2) Medial collateral ligament (MCL) 36 (70.6)

Foot (Metatarsophalangeal joint 4th & 5th) 43 (84.3) Lateral collateral ligament (LCL) 32 (62.7)
Foot (Plantar metatarsal bone 4th & 5th) 43 (84.3) Anterior cruciate ligament (ACL) 31 (60.8)

Foot (Calcaneus) 37 (72.5) Lateral ankle ligament 27 (52.9)
Medial knee joint 36 (70.6) Medial ankle ligament 25 (49.0)
Lateral knee joint 32 (62.7) Quadriceps femoris 23 (45.1)
Lateral ankle joint 32 (62.7) Biceps femoris 21 (41.2)

Patella 31 (60.8) Tibialis anterior 19 (37.3)
Medial ankle joint 25 (49.0) Gastrocnemius 19 (37.3)

Tibia 19 (37.3) Achilles tendon 18 (35.3)
Hip joint 13 (25.5) Plantar fascia 15 (29.4)
Others 6 (11.8) Lower back 15 (29.4)
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4. Discussion

The present research aimed not only at exploring the characteristics of plantar pressure
with foot posture of elite rugby athletes and recreational rugby players during static
standing and walking, but also at assessing the changes in pressure profiles which may
develop lower-limb pains related to rugby drills. Previous studies maintained that the AI
from footprints could be used for predicting the foot arch height and classifying footprint
morphology [32,35–37]. Notably, the AI value used for defining the foot type category
within this study was based on the literature by Cavanagh and Rodgers which observed that
the AI value of normal arches was in the 0.21–0.26 range [32]. Nevertheless, findings from
the present study were slightly different from those presented by Cavanagh and Rodgers.
In their research, Cavanagh and Rodgers highlighted the critical value of AI (i.e., a mean AI
of 0.23) calculated in the context of 107 young adults (mean age 30 years) without any foot
symptoms. In the present study, the critical value of static AI of both feet in the recreational
group was 0.21, which was calculated from an average of 57 male college and university
students in Taiwan (mean age 20 years) with BMI (24.3 ± 0.5) and without musculoskeletal
disorders of extremities. The difference in the normal range may inevitably exist in the
subjective judgments of researchers, assessing equipment, characteristics of subjects and
sample size; nonetheless, the study was set within the identical research condition. Based
on the findings, the AI values of the feet in static standing were considerably symmetrical
to each other within the respective groups. Recreational rugby players in the present
research appeared to have normal foot arches. The elite rugby athletes’ AI value was higher
than that of the recreational rugby players; therefore, the elite rugby athletes may have
low-arched feet.

After analyzing the plantar loadings from barefoot static standing and the midstance
phase of walking, three regional PPDs of the elite rugby athletes’ feet in static standing were
found to be particularly focused on the forefoot and midfoot regions. However, during
the midstance phase of walking, the plantar loads were mainly transferred to the forefoot
region of both feet. This may be due to the fact that elite rugby league athletes tended to
have posteriorly unbalanced posture under static conditions to conform to the balance of
the foot and coordination of the whole body. However, in terms of the dynamic state, the
results of this study appeared to support the studies by Gobbi et al. who found that rugby
athletes kept forward-moving and that their heel loads were steadily reduced [15]. In their
studies, Wong et al. observed that when performing four soccer-related movements, the
athletes received higher pressure in their hallux, medial and the center of the forefoot [38].

In addition, a detailed evaluation of six subregional PPDs extended from the three
regional PPDs were summarized as follows: in static standing, the plantar load of both
feet of the elite rugby league athletes were mainly exerted on the medial and lateral
metatarsals, and the lateral longitudinal arch. The plantar load on the medial heel was
found to be relatively low. However, the plantar loads of elite rugby league athletes were
dominantly transferred to the medial metatarsals of both feet and the lateral metatarsals
of the right foot during the midstance phase of walking. In the aspect of the rearfoot
postural alignment measurement, elite rugby league athletes’ bipedal rearfoot angle in
static state were conformed to the rearfoot varus posture. The pattern of the results
seemed to constitute a supination foot feature. The findings seem to be consistent with
previous research by Ripani et al., who noted that rugby athletes’ right foot appeared to
be supinated in static conditions, and the plantar pressure on the lateral area of the right
foot was obviously higher [4]. The higher plantar load on the lateral foot may be related
to difficulties in controlling the stability of the foot, or may be due to an increase in body
weight resulting in an increase in triceps surae muscle tension to conform to the special
requirements of the discipline. Differences in plantar load on the lateral metatarsals of
both feet in the dynamic state may be attributed to the training tasks for their dominant
leg. From the literature on similar exercises, Queen et al. argued that compared with other
athletic tasks, soccer players have higher pressure peaks in the hallux, medial and middle
forefoot regions, and that the highest pressure occurred in the middle forefoot region when
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performing acceleration tasks [39]. Findings from this study echoed the research by Sims
et al. who noted that the plantar loads, maximum force and force–time integral in male
soccer players were mainly beneath the middle portion of the forefoot as well as there being
an increase in the contact area in lateral forefoot and midfoot regions during the cross-over
cut task [40]. In studies by Sims et al., the medial portion of the foot (medial forefoot
and midfoot) of female soccer players experience increased loading during acceleration
and lateral cutting tasks. The increase in plantar loading on the lateral portion of the
forefoot and midfoot regions in male soccer players could be associated with the increased
incidence of fifth metatarsal injuries [40]. Research evidence by Lee et al. showed that
under weight-bearing conditions, athletes with a history of stress fractures on the fifth
metatarsal tended to have inverted rearfoot alignment [41]. An increased inversion of
the rearfoot in basketball players is a common accident during cutting maneuvers [42]. A
further explanation for the foot varus tendency of rugby players is that due to the special
requirements of the athletes—muscle tension and tropism: as we all know, the action
of the triceps surae muscle determines the rearfoot varus with the stiffness of the tarsal
joints, and supination of the entire foot [43]. Excessive supination of the foot is considered
to be due to an increase in calcaneal varus, which usually helps to reduce contact time
during running [44]. Hasegawa et al. noted that runners suffered from a great degree of
heel inversion when their feet were allowed to have a short contact time on the ground,
and that a shorter contact time and a higher frequency of inversion during foot contact
usually resulted in a higher running economy [44]. Therefore, the deformation of the foot
arches seems to be inevitable for mechanical energy stored and released, force transmission,
shock absorption, and, in particular, high impact sports, e.g., jumping and sprinting [45].
Similar results were observed in the studies by Ripani et al., who stressed that the dynamic
conditions during the sports’ specific drills made rugby athletes exert considerably high
pressure on the ground [4]. Rugby has a particular performance model, which, in turn,
may make the lower extremities bear heavy loads which are placed on the feet. Owing
to their high body weight together with the need to fix their feet on the ground and the
press involving jumping and moving, rugby athletes generally have high pressures on their
feet and a large foot–ground impact under dynamic conditions during the sports’ drills [4].
These researchers’ statements may explain the fact that findings from the elite rugby league
athletes’ BMI in this study exceeded the normal healthy weight range of 18.5 to 22.9 defined
by the World Health Organization (WHO) and the Asia-Pacific Guidelines.

Rugby players are reported to be at high risk of trauma and pathology associated
with musculoskeletal training [46,47]. In this study, the most common bone pains of the
elite rugby league athletes mainly occurred in the foot, including the plantar phalanx 1st,
the metatarsophalangeal joint 1st and 2nd and 4th and 5th, the plantar metatarsal bone
1st and 2nd and 4th and 5th, and the calcaneus, etc. In addition, soft tissue pain most
often occurs in the plantar plate (abductor hallucis and abductor digiti minimi), the medial
and lateral collateral ligaments, the anterior cruciate ligaments, etc. The results seemed to
support studies on exercises of similar nature, such as highly repetitive cutting maneuvers
in basketball competition which may cause soft tissue injuries, such as ACL injuries [48],
ankle sprains [49] and foot problems [50]. Extensive stop-and-go movements and cutting
maneuvers in basketball games seem to be at the core of putting the knee ligaments and
meniscus in danger [51]. Related studies have observed that male college basketball and
soccer players have a high rate of ACL injury, which is the most common ligament rupture
in the knee joint. Noncontact ACL injuries were common in basketball competition with
rapid deceleration and rotational movements [52]. In some cases, basketball players usually
land on another athlete’s foot, which can cause plantar flexion and varus, and can stretch
the lateral ankle ligaments beyond their capacity. This, in turn, may result in an ankle
sprain [53]. Exploring the elite rugby athletes’ plantar load distributions, Stovitz and
Coetzee found that the forefoot abducts through medial rays and increases strength, which
may cause problems with the first metatarsal bone (such as hallux valgus) and the second
metatarsal bone (such as metatarsalgia) [54]. The pressure load applied to the forefoot area
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may cause Achilles tendinitis [23]. In addition, lateral ankle sprain to a certain degree is a
distinct incidence involving the rearfoot supination and the lower leg’s external rotation.
This mechanism is often described as a plantar flexion–inversion which frequently involves
internal rotation (adduction) of the foot [55].

From the result of static footprints of both feet in elite rugby players, their plantar
loadings were mainly applied to the forefoot region and the lateral longitudinal arch, but
lower on the medial heel. Ankle inversion sprain may be attributed to the footprint pattern
which can result in cuboid syndrome. More specifically, the pathological mechanism of the
cuboid syndrome may originate from the cuboid valgus from the inverted foot position,
such as the injury mechanism of the lateral ankle sprain, and the pain on the lateral column
of the foot [56]. As evidenced in many studies, cuboid syndrome to a certain degree is
related to other injuries that have signs and symptoms of the lateral aspect of the foot.

The limitation of this study may lie in the particular focus on plantar loading patterns
of 51 elite and 57 recreational rugby players who were 19- to 22-year-old college or univer-
sity athletes in Taiwan. Results from this research may inevitably limit the possibilities for
generalization. It is widely acknowledged that strong athletes who specialize in collision
sports generally have high body weight, and that body weight is usually considered to be
one of the main factors related to changes in the shape of the arch [57]. All participants’
BMI within this study exceeded the normal range. Notably, however, the study was set in a
relatively homogeneous population and under identical research condition. Considering
the research setting and design, it can be argued that the participants’ BMI did not take a
significant role in affecting the results from this study. Moreover, the issues of whether the
participants had preferred/nonpreferred legs were not included within this research, due
to the research design. However, it is worth further study to understand whether rugby
athletes have a dominant leg based on a considerably larger number of research samples,
and to explore how dominant legs may affect plantar pressure distribution, in particular.
Given that findings of the walking plantar loads in the dynamic experiments were gained
in the circumstances under which the participants were walking at their self-comfort speed
on the device, differences in the participants’ walking speed may inevitably exist in the
process of the experiments. This, in turn, could affect the data collected by the researchers
to a certain extent. Furthermore, it is important to consider the use of an algometer for
further study to quantify the threshold of musculoskeletal pain assessment by replacing
general physical examination. Notably, however, few studies currently explore the plantar
load characteristics of recreational and elite rugby athletes by centering on the difference
between static standing and dynamic states. Findings from this research could shed light
on the static and dynamic plantar pressure distribution and lower-limb pain profiles of the
Taiwanese college and university elite rugby athletes. It is expected that the results may
reinforce the possible link between plantar pressure distribution and pain characteristics.
Arguably, the results concerning the elite rugby athletes’ plantar pressure characteristics
can be constructive and useful for the related specialists in medical practices and the field
of plantar healthcare in the process of developing rugby boots and orthopedic insoles for
buffering uneven plantar loading, improving footwear comfort and reducing sports-related
injuries of rugby athletes.

5. Conclusions

Elite rugby league athletes in this study were generally classified as having low arches.
The elite rugby league athletes’ characteristics of plantar pressure distributions and foot
posture revealed that the higher plantar loads mainly distributed on the forefoot and
midfoot, accompanied by rearfoot varus in bipedal static stance. The higher plantar load
mainly exerted on the forefoot during the midstance phase of walking. The lower-limb
pain profiles echoed the literature on rugby injuries, and this could serve as the traceable
beginning for the possible links among low-arched supinated feet, metatarsophalangeal
joint pains and cuboid syndrome of elite rugby league athletes.
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