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Abstract: We studied the health effects of economic development in heavily urbanized areas, where
congestion poses a challenge to environmental conditions. We employed detailed data from air
pollution and birth records around the metropolitan area of São Paulo, Brazil, between 2002 and
2009. During this period, the megacity experienced sustained growth marked by the increases in
employment rates and ownership of durable goods, including automobiles. While better economic
conditions are expected to improve infant health, air pollution that accompanies it is expected to
do the opposite. To untangle these two effects, we focused on episodes of thermal inversion—
meteorological phenomena that exogenously lock pollutants closer to the ground—to estimate the
causal effects of in utero exposure to air pollution. Auxiliary results confirmed a positive relationship
between thermal inversions and several air pollutants, and we ultimately found that exposure to
inversion episodes during the last three months of pregnancy led to sizable reductions in birth weight
and increases in the incidence of preterm births. Increased pollution exposure induced by inversions
also has a significant impact over fetal survival as measured by the size of live-birth cohorts.

Keywords: air pollution; inversions; birth outcomes; environmental health; semiparametric estimation;
Brazil

1. Introduction

Congestion of urbanized centers is a trademark of economic development across the
globe. These economic forces pose a challenge with respect to environmental conditions,
highlighting a trade-off between economic and physical well-being. While empirical
evidence has helped shape environmental regulation in developed nations, there is a
scarcity of evidence to inform policy-makers in the developing world [1–3]. We aim at
filling this gap in the literature.

In this paper, we undertook a causal inference study of urban air pollution’s impact
on the health of infants in utero in a metropolitan area of Brazil. The identification of this
effect is challenging for many well known reasons, such as families’ self-selection into resi-
dential locations, and the direct link between economic activity and pollution. To address
these concerns, we took advantage of the high-frequency meteorological phenomenon of
thermal inversion, which, in urban areas arguably exogenously locks pollutants closer
to the ground—increasing exposure among urban dwellers. Relevant for our identifi-
cation strategy, the formation of thermal inversions does not have any direct effect on
health conditional on weather conditions, nor is it easy to predict or anticipate (beyond
seasonal patterns).

Our empirical analysis has two parts. We focus first on understanding the effect of
thermal inversion on air pollution. Using unbalanced panel data on concentrations of five
pollutants and weather conditions between the years 2001 and 2009, we explore how the
concentration of pollutants increases with the frequency of inversion episodes. We find that
an additional thermal inversion during a seven-day period (mean 2.8; standard deviation
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[S.D.] 2.0) increases the average concentration of particulate matter under 10 micrometers
(PM10), carbon monoxide (CO), and sulfur dioxide (SO2) by 1.5 to 2.0% of their average
weekly concentration. Our data also reveal that these pollution effects from a thermal
inversion are equivalent to the effect of an increase of about 30% in vehicular traffic
sluggishness within the area. Finally, we show that when considering dynamic effects of
inversions, these impacts last up to three weeks and can be more than twice as large as the
contemporaneous effects.

Our second set of estimations examine the reduced-form link between inversion
episodes and health at birth. By employing detailed data from vital records for the universe
of mothers residing within the São Paulo metropolitan area (SPMA), we estimate cumulative
effects of air pollution on infants’ health at birth. Our model flexibly accounts for potential
effects of weather and seasonality on health. We find that exposure to thermal inversion
episodes harms health at birth. Specifically, one additional inversion per week within
the last 13 weeks of gestation leads to a decrease in birth weight of 23.3 grams, and an
increase of 0.6 percentage point in the incidence of low birth weight (or 7.3% relative to
the average). These effects are partially explained by a reduction in gestational length: the
incidence of preterm and very preterm births increases significantly with the number of
inversion episodes. We also find that the same increase in the frequency of inversions leads
to a sizable 18.5% reduction in birth cohort size that affects both male and female fetuses.
Because of the latter, we expect that our main effects in terms of birth outcomes represent
a lower-bound for the impact of pollution on infant health, since pregnancies of stronger
fetuses are likely the ones which end up being captured in observed live births.

Our work builds on [1,4], who studied the contemporaneous effect of pollution on
infant mortality in Mexico City and infants’ respiratory problems in Sweden, respectively.
We complement these studies by examining the effects of prenatal exposure to inversion
episodes on birth outcomes. Because health early in life is a predictor of future outcomes,
such as health, earnings, and education [5,6], our results suggest lasting negative con-
sequences of air pollution on new generations and call attention to improved policies
oriented to reduce pollution as well as those oriented to provide quality prenatal care
within the megacity.

2. Background: Air Pollution in the SPMA
2.1. Sources of Air Pollution

The SPMA is one of the largest urban conglomerates in the world; its 39 municipalities
extend over 8000 square kilometers (km2) and house more than 20 million people. The
municipality of São Paulo, with 11 million people, is in the center of this dynamic urban
area. Two main sources of pollution contribute to the deterioration in air quality in the
SPMA: the large fleet of vehicles and industries with high polluting potential [7]. Studies
commissioned by the state’s environmental authority indicate that by 2009 motor vehicles
were responsible for 97% of the emissions of carbon monoxide (CO), 96% of nitrogen
oxides (NOx), 40% of particles matter under 10 micrometers (PM10), 97% of hydrocarbons
(HC), and 32% of sulfur dioxide (SO2) [7]. Then, by reacting with sunlight, HC, NOx, and
other volatile organic compounds contribute to the formation of ozone (O3) [8]. Industrial
processes account for most of the rest of these pollutants’ emissions [7]. The SPMA is a
large industrial area containing about 2000 pollutant industries (mainly food, chemical,
and oil industries) [9]. We studied the period immediately preceding the one from which
these pollution sources’ breakdowns are computed.

The trajectories observed between 2001 and 2009 are particularly interesting for our
empirical exercise. Fueled by a nationwide economic expansion that increased average
income and expanded access to credit, the number of vehicles in the area augmented
significantly, from 6 to 9.7 million, or from 331 to 492 vehicles per 1000 inhabitants (see
Panel A in Figure A1). Because this expansion was unmatched by infrastructure invest-
ments within the SPMA [7,9], such a large number of private vehicles translated into a
mobility crisis—the daily average traffic jams during rush hours in the city of São Paulo
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reached 118 km (112 miles), with cars circulating with an average speed of 19.3 kilometers
per hour (km/h). On average, paulistanos wasted almost one month per year trapped in
traffic [10]. Panel B in Figure A1 displays the time evolution of traffic sluggishness as
well as total fuel consumption. Therefore, economic improvements, which likely foster
better birth outcomes, were accompanied by environmental risks in the form of urban
congestion (i.e., vehicular fuel burning-related emissions) that create well known challenges
for fetal development. We reproduce the same relation between economic activity and
traffic sluggishness with higher-frequency data from the SPMA in Panel C of Figure A1.

Interestingly, the secular trend in increased traffic and potential increased emissions
from the larger fleet was accompanied by a change in the quality of the fleet. While new
cars are expected to pollute less than the older ones they substitute, in the SPMA there
was also an increase on the adoption of flex-fuel cars that can also run on sugarcane-based
ethanol (which is a cleaner option). International prices of oil and sugar together with
domestic subsides for the production of ethanol have promoted this pattern. Figure A2
(Panel A) reproduces fuel utilization patterns throughout the state of São Paulo (mostly
driven by SPMA consumption patterns) over the period studied. We capture the transition
from more than 80% of the fuel consumption being based on gasoline in 2001 to around
40% by 2009. Overall, these trends co-existed with a slight reduction in pollution levels,
PM10 (Panel B, Figure A2), suggesting that the fleet volume effects were counterbalanced
by the fleet composition effects. Panel C in Figure A2 shows that the seasonal pattern of
weekly thermal inversion formation that accompanied these changes over time remained
relatively stable between 2001 and 2009.

2.2. (Lack of) Dispersion of Pollutants: The Role of Thermal Inversions

The concentration of pollutants in the atmosphere depends on the amount of pollutants
emitted by the sources (as discussed in Section 2.1) and on the prevailing weather conditions.
In the SPMA, meteorological conditions are unfavorable to the dispersion of pollutant:
during winters, there are frequent low altitude thermal inversions, and during other
seasons, strong solar radiation occurs. The topography of the SPMA contributes to the
deterioration of air quality since the area is formed by floodplain surrounded by mountains
in the north and northwest, receiving predominant winds from the ocean at southeast [11].

The formation of low-level thermal inversions is a key condition in hinder the disper-
sion of pollutants. Normally, temperature in the troposphere decreases with height; thermal
inversion layers occur when temperature increases with altitude, resulting in a mass of
hot air on top of a mass of cold air. During an inversion, the coldest, densest air is at the
surface, and its density steadily decreases with increasing height. The stable stratification
of air resists uplifting of the particles from surface to atmosphere because thermal inversion
layers act like a cap in which vertical air movement remains almost nil and pollutants are
trapped close to the ground [4,12].

The formation of inversions is more common during nights when cold ground tem-
peratures cool the air that is closer to the ground and creates warm air over cold air [13].
Roughly speaking, the diurnal cycle of inversions starts after sunset when sunlight intensity
is negligible, temperature decreases, and ground (or initial elevated) inversions form [14].
During night, when temperature decreases, these inversions strengthen. They are strongest
at sunrise when surface temperature begins to increase from overnight minimum, and they
become weaker once the warmer ground warms the air. By midday inversions are com-
pletely burned off. Wind speed and rain also contribute to weaken inversions [15]. Because
the dynamics of these inversions are driven by the heating of the surface, episodes become
more frequent (and last longer) in winter when day lengths are shorter, sun angles lower,
and surfaces wet or frozen; summer speeds up the process of breaking inversions [16].

The shape of the landscape also has a role in the formation, lifetime, and intensity of
inversions [12]. In valleys, denser and heavier cool air flows down the slopes and settles
under warm air leading to stronger effects. Inversions can be produced when a layer of
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cool air descends through a layer of hot air from vertical air movements or from horizontal
movements of air at different temperatures [13].

There are two factors of the formation of inversions that are worth noting for our study.
First, the formation of thermal inversions is independent of the current economic activity
(including industrial activity and traffic) conditional on weather variables. In the longer
run, urbanization influences the heating of the surface and wind, and it may affect both
formation and breakup of inversion episodes [12]. Yet, these changes take many years. [17]
study urbanization and climate change in the SPMA for the period 1930-2015 and show
that the average of maximum temperature increases up to 1.1 Celsius every 20 years.

Second, the meteorological factors associated with thermal inversions (e.g., tempera-
ture and relative humidity) may directly impact health and spread of airborne diseases,
such as influenza. However, conditional on weather conditions and air pollution, thermal
inversions do not represent a health risk by themselves. In our empirical design, it is the
increased exposure to pollution that occurs when there is an inversion episode that is likely
to be risky for human health.

3. Prenatal Exposure to Air Pollution

Pollution may affect infants’ health while in the womb, since this time constitutes a
state of high level of cell proliferation, organ development, and the changing capabilities
of fetal metabolism [18]. While the exact mechanisms linking exposure to air pollution
and fetal development has not been identified yet, studies suggest that direct and indirect
effects may be at play [19–23]. Direct effects relate to the translocation of particles across the
pulmonary barrier to the blood circulation and then to the placenta, allowing pollutants to
reach the fetus; inflammatory and oxidative responses drive adverse effects. Indirect effects
may arise from translocated particles causing placental dysfunction or the activation of
inflammatory and oxidative responses in maternal lung leading to circulating inflammatory
mediators, which affect the placenta, the fetus or the ability of the mother-to-be to carry a
fully healthy pregnancy.

Controlled animal studies have shown that pulmonary exposure to pollution, and,
in particular, to traffic-related air pollution or diesel exhaust, during pregnancy, leads
to abnormal deliveries (including abortion) and affects gestational length, number of
offspring, fetus weight, and gender ratio [20,24,25]. In the context of this study, São Paulo’s
urban levels of air pollution have been linked to problems in the lung developments of
mice [26,27]. Human epidemiology studies document an association between prenatal
exposure to pollution from traffic and industries and adverse birth outcomes, such as low
birth weight and preterm birth (for a summary of the literature see [28–30]), as well as the
risk of spontaneous abortion and of stillbirth [31–33]. Research focused on São Paulo’s
population arises to similar conclusions (see, for example, [34–37]). After birth, air pollution
may cause several health issues, such as respiratory and cardiac troubles. These later life
effects may be influenced by the consequences of in utero exposure to pollution that make
children more vulnerable, yet there is no clear understanding of the functional form or
magnitude of these interactions [38].

Epidemiology evidence based on cross-sectional, cohort, or control-case studies fails
to account for several sources of confounding effects, including families’ residential sorting
and avoidance behaviors. If those who prefer to live in cleaner places (or adopt averting
behaviors) are also healthier, wealthier, have greater access to healthcare, or make higher
quality investments in their children, study results would be biased upward. These studies
also do not account for the fact that urban air pollution is correlated with economic activity,
and the latter affects infant health directly. Aiming to overcome these challenges, a growing
body of the economic literature has employed quasi-experimental methods to show that
pre- and post-natal exposure to urban air pollution has adverse effect on infants’ health
at birth and after birth (e.g., [39–43]). These authors provide evidence of the effects on
health in developed countries, but their implications for urban air pollution in developing
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countries remain unclear. The differences in air pollution levels and a population’s health
between developed and developing nations restrict the extrapolation of results.

There is a scarcity of studies using applied microeconometric techniques in developing
countries, mainly because of data limitations (see, for example, [1–3]). One of these few pa-
pers instruments air pollution with thermal inversion episodes in Mexico City [1]. Linking
the number of thermal inversions per week, weekly pollution levels, and contemporary
infant mortality, the authors show that increasing PM10 or CO by 1% raises infant mortality
by 0.42% or 0.23%, respectively. Our work builds on this study, and, as an extension,
we explore the effects of pollution on fetal development contributing to understand how
effects after birth differ depending on the level of exposure before birth. Unlike the authors,
we use thermal inversions to address the well known concerns related to estimating the
effects of air pollution on health taking a more conservative approach: to minimize the
difficulties that the lack of data on all pollutants brings, we employ inversion episodes in
an intention-to-treat analysis (a strategy also used by [4] to explore exposure after birth and
children’s respiratory health problems).

4. Data and Summary Statistics

We merged several datasets: air pollution data, weather data, thermal inversion data,
and birth records. The latter corresponds to the SPMA’s universe of births between 2002
and 2009; the others correspond to the period from April 2001 to December 2009, allowing
us to recover the conditions during in utero time for all newborns.

4.1. Pollution

We studued five pollutants: PM10, CO, O3, NOx, and SO2. Data came from air monitor-
ing stations operated by the State of São Paulo’s environmental agency Companhia Ambiental
do Estado de São Paulo (CETESB). For the period, 2001–2009, PM10 data were available for
25 stations; CO was collected in 16 stations; O3 data were recovered in 15 stations; NOx
data were drawn from 12 stations; and SO2 information was available for eight stations.
None of these were provided in an unbalanced panel data format, being subject to miss-
ing data issues. Figures A3 and A4 present the maps of the study area and locations of
pollution/weather stations.

Data are organized in hourly observations of pollution concentrations at the station
level. For all pollutants (except CO), we calculated daily average concentrations of pol-
lutants for every day, with at least eight hours of raw data. For CO, we used the hourly
observations to calculate the maximum daily eight-hour average, which corresponded to
the metric used for the US ambient air quality standard [44,45]. Then, for all pollutants, we
computed “rolling week” averages. That is, for each date t, we computed the average of
the daily measure from t− 6 to t.

The top panel of Table A1 presents descriptive statistics of the concentration of pollu-
tants. Mean levels of PM10, CO, and SO2 in the SPMA are higher than in California and
Sweden, but lower than in Mexico City. The average level of PM10 in our data reached
41 µg/m3 whereas it was below 30 µg/m3 in California and Sweden [4,42] and around
67 µg/m3 in Mexico City [1]. The mean levels of O3 in the SPMA are similar to those in
Mexico City (around 33 µg/m3).

4.2. Weather

Weather conditions are key elements in the analysis because they are directly related
to thermal inversions, economic activity, and health. Temperature, relative humidity, and
wind data are collected by CETESB; rainfall data come from the São Paulo department
of water and energy Departamento de Águas e Energia Elétrica (DAEE). We converted daily
hourly observations of weather variables (except wind) into daily averages if there were at
least eight hours of raw data for that date. For wind, we considered the daily prevailing
wind as the measure of daily summary. From raw data that were coded as angles in degrees
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(i.e., 0 indicates wind from due North, and 180 corresponds to wind from due South), we
defined octants as the sector of the wind rose and compute frequencies.

Not all CETESB stations that collect air pollution data compute weather data, and
some stations that provide weather data do not measure the concentration of pollutants.
For those stations collecting only pollution data, we constructed weighted daily averages
of weather covariates employing data from stations within a radius of 20 miles. We used
the inverse of the distance between stations as weights. Using daily (interpolated) data, we
computed rolling week averages by station. Panel B of Table A1 presents mean and S.D. of
weather covariates based on observations for all stations.

4.3. Thermal Inversions

To trace thermal inversion episodes we used diurnal vertical temperature profile data
collected by CETESB and the University of Wyoming. Balloons were launched at 12 UTC
(10 am in Brazil), from one central location, to gather temperature, humidity, and wind
data, as they ascended through the troposphere. We coded boundary layer inversions every
time a temperature at a given altitude was warmer than the temperature at an altitude
below it; the opposite non-monotonic temperature gradient allowed us to identify the top
of an inversion.

In 7.2% of the dates in our analysis, thermal inversion data were not collected. That
is, in 29% of the weeks, there was at least one date without inversion data; dates with
missing data represent, on average, less than a date per week (Table A1, Panel C). We took
a conservative approach to deal with these missing values when constructing rolling week
averages: we assigned a zero to each rolling week with at least one date with missing
information, and we controlled semi-parametrically in our specification for the number of
missing values in each week.

More than one inversion can be found each day at different altitudes. We focused
on inversions that occurred closer to the ground; that is, inversions found below 1.331
meters from the sea level. The 1.3 km limit was based on two facts: the station collecting
data was located 731 meters above sea level, and inversions that occurred closer to the
ground generally controlled ground-level pollutant concentrations [46]. We considered
inversion episodes that occurred above the station level and, following previous papers in
the literature, we used 600 meters above the ground to characterize these inversions [4].

4.4. Inversions and Weather

To characterize the thermal inversion episodes in the SPMA, we plotted their relation-
ships with weather conditions. Seasonality patterns associated with thermal inversions are
clearly illustrated in Figure 1. For each calendar month, this figure shows the average num-
ber of inversions that occurs up to 1.3 km from the ground in a week (bars) and the weekly
average of weather variables (solid line). The frequency of thermal inversion episodes and
weather conditions are negatively correlated: during the spring (October to December) and
the summer (January to March), average weekly temperature, humidity, and rainfall were
higher than during the fall (April to June) and the winter (July to September), while the
average number of weekly inversions was lower during warmer seasons than the colder
ones.

4.5. Birth Data

Data came from individual records in the Brazilian Ministry of Health’s Usage In-
formation System (DATASUS). Brazil vital records provide a complete coverage of births:
in the mid-2000s, they had a coverage rate above 98% [47]. They provide information
about newborns’ health, their mothers’ characteristics, and location of residence. We only
included singletons in our analyses.

To link vital records to weather and pollution data, we proceeded in three steps.
First, we defined the mothers’ locations of residence based on the information available in
birth records. For newborns whose mothers resided in the São Paulo city, we recovered
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their districts of residence, and we used contour data from Centro de Estudos da Metropole
(CEM/USP) to identify the district polygon centroid. Second, for infants in the capital with
unidentified districts, we used the weighted polygon centroid employing 2000 census pop-
ulation as weights for each district listed on the CEM/USP data. Third, for newborns who
resided at birth in municipalities outside São Paulo city, we used the population centroid.
We identified 135 locations of residence (97 districts in the capital and 38 municipalities).
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Figure 1. Average number of thermal inversions in a week (bars) and average weather (solid lines) in a
week by calendar month. Inversions indicate those that occurred below 1.3 km. Weather variables are
different in each panel, as follows: (A) ground temperature, (B) relative humidity, (C) rainfall.
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We proceeded to calculate the distance between each population-centroid and a mon-
itor station using latitude and longitude location data. We employed locations that had
weather stations within 20 miles in our analysis; this resulted in 123 locations of residence
with measurable environmental conditions. Finally, we computed a weighted average
of weather variables and pollutant concentrations weighting the data measured in each
station by the inverse of the distance, from the station to the district/municipality centroid.

Outcomes of interest are birth weight and prematurity. Weight at birth was measured
continuously in grams and as indicators for low or very low birth weight (<2500 grams or
<1500 grams, respectively). Gestational age at birth was coded in categories in Brazilian
birth certificates. We defined indicators for preterm (<37 gestational weeks) and very
preterm (<32 gestational weeks) births. To reduce computational demands, we collapsed
observations at the individual level by date of live birth and location of residence. Our final
sample included 313,286 location–date cells (which corresponded to 90% of all possible
date–location cells; 10% of the cells did not have a recorded live birth).

In Table A2, Panel A shows descriptive statistics of health outcomes. Newborn weight
on average was 3.2 kilograms; 8 per 100 infants were low birth weight, and in 1 in 100,
weight at birth was less than 1500 grams. Prematurity was found in almost 7 out of
100 newborns; 1 in 100 infants were very premature. Panel B focuses on covariates that
characterize mother and child sociodemographic characteristics. Mothers in our sample
were on average 25 years old at the time of delivery and gave birth to a white child. In 41%
of the cases, the child was a first born. In terms of maternal education, 18% of mothers in
our sample had more than high school, and the vast majority of them completed between
8 and 11 years of education (53%). Finally, Panel C presents the means and S.D. of the
inversion counts used in the empirical strategy; they coincide with those in Table A1, but
the represented averages are weighted by the incidence of live births in this case.

5. Empirical Specifications

We conducted two sets of estimations. Formally, we first tested the pollution effects of
thermal inversion episodes, which are akin to a first-stage relationship. Our second set of
estimations links thermal inversions to health outcomes and estimates an intention-to-treat
effect. The existence of pollutants not included in our data that are linked to thermal
inversions and the recurrence of missing pollution data, limits the interpretation of the
effects of each particular pollutant using inversions as an instrument of it. Many pollutants
were locked in an inversion episode; these pollutants may be correlated with each other,
and they may also have a direct effect on infants’ health or economic activity. Thus, the
unobservables in a second-stage regression for an instrumental variable estimation would
be correlated to the outcome and to the instrument.

To estimate the connection between inversions and pollution, we used observations at
the station (s)-date (t) level and estimated alternative versions of the following model:

Pollst = β0 + β1 Invt + X′st γ + µws + µy + εst (1)

where Pollst is an average daily pollution concentration from date t− 6 to t measured in
station s location. We explore readings of five pollutants: PM10, CO, O3, NOx, and SO2.
Invt indicates the number of inversion episodes that occurred from date t− 6 to t. In the
auxiliary analysis, we ran non-parametric models, which suggested that the concentration
of pollutants increased linearly with the number of inversions. To ease the interpretation of
the effects across pollutants, we transformed the seven-day averages to be expressed in S.D.
units based on a whole variation in the sample.

The vector Xst includes cubic polynomials in weekly average temperature, weekly
maximum temperature, weekly minimum temperature, weekly average humidity, direction
of wind (fixed octants), and weekly average rainfall; an indicator for having at least one
date between t − 6 and t with missing inversion data; and the count of the number of
dates in the past week without inversion data. This vector also includes measures of traffic
sluggishness/intensity (measured as linear km of stop-and-go traffic, in ln scale) and of
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fuel-type utilization (measured as share of gasoline over all vehicular fuel consumed in
the past three months). µws are station-by-week of the year fixed effects that control for
location-specific seasonality effects; µy are year fixed effects, that account for changes over
time. We use two-way clustering of standard errors at the station and date level to account
for potential spatial correlation and common weather trends. To explore dynamic effects
inversions, we also estimated augmented models, which included lagged moving-week
counts of inversions and lagged moving-week average weather conditions.

Our specification to estimate effects on health at birth is similar to Equation (1), but one
that includes many lags to cover the full duration of a normal pregnancy. This constitutes a
distributed lag model, using data aggregated at the location and date of birth level, and
following [3] to include lags for 38 weeks from the recorded birth date. That is, for births in
location of residence l on date t, we run,

Hlt =
38

∑
s=0

αs Invt−7s +
38

∑
s=0

X′l,t−7s δs + ρwl + ρy + ηlt (2)

where Hlt is an average birth outcome for births in location l on date t. Invt−7s are the
counts of the thermal inversion episodes for the week leading up to date t− 7s, where s is
measured in weeks and t is measured in days. Vectors of covariates for each lagged week
are defined as in Equation (1); they also include location–birth date averages of maternal
characteristics (education, age, and marital status), parity (first born and higher parity),
and infant gender and race. Lastly, we control for location-by-week of the year fixed effects
and year of birth fixed effects. Regressions are weighted by the number of births in each
location–date cell.

From Equation (2), we recover many week-specific estimates that might be individually
imprecise and unwieldy to report [48,49]. Thus, we report 13-week sums of the coefficients
that correspond to the last, second-to-last, and third-to-last periods before birth—alike
trimesters of gestation,

α{T,T̄} ≡
T̄

∑
s=T

αs (3)

where the periods {T, T̄} are {0, 12}, {13, 25}, and {26, 38}. Each of these coefficients
indicates the effect of an increase of one unit in the number of thermal inversions in every
week during periods of approximately three months. Defining exposure backwards from
the date of birth is not ideal: the timing and length of pregnancy are endogenous. For some
premature infants, the 38-weeks period might include weeks before their conception, and
those who are exposed to inversions since early in their time in utero might be positively
selected because they were not born prematurely. As such, estimates from what would
correspond to the first three months of pregnancy should be interpreted with caution.

The key identifying assumption to get consistent estimates of αs is that conditional
on the weather controls and set of time and location fixed effects, no other unobserved
factor influences inversions and health at birth. Our model controls for location-specific
seasonality of birth and inversions, and it yields conservative estimates compared to
controlling for common seasonality across locations.

6. Results
6.1. Effects of Thermal Inversions on Air Pollution

Table 1 presents findings from estimating Equation (1). Panel A shows that one
additional inversion increases contemporaneous concentration of PM10 by 0.05 of one S.D.
(or approximately 0.84 µg/m3). That corresponds to an increase of 2% of the average
weekly concentration of PM10 in the sample. The exposure to CO, NOx, and SO2 also
increases by similar amounts within the 0.02 to 0.04 of one S.D. range. For O3, we observe
a positive, but statistically insignificant effect. These estimates indicate a large impact of
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inversions relative to the pollution generated by increased congestion. For example, the
SO2 reading increases with an additional inversion by the same amount it would increase
with 14% heavier traffic (given by the ratio of the two coefficients in Panel A).

In Panel B, we turn to a distributed lag formulation. These estimates indicate that
thermal inversions have distinct, longer-term impacts on some pollutants. PM10, CO, and
NOx readings in the current seven-day period are shown to be impacted by inversions
occurring up to two weeks before. Meanwhile SO2 and O3 seem to be affected only
contemporaneously. Panel C wraps this analysis by estimating standard errors for the sum
of these impacts over the 28-day window studied. It confirms stronger impacts of inversion
over pollution exposure, with most cumulative effects from the lagged structure being
more than twice as large as in the ones computed in the contemporaneous model (Panel A).

We extend the analysis in Table 2 to illustrate the close relation between the pollution
generated by vehicular traffic and the trapping of pollutants near to the surface promoted
by inversions. We do so in two ways. First, we examine pollution concentrations within
weeks depending on inversions happening on weekend or workdays. The assumption is
that during the workday, inversion traps pollution generated by heavier traffic than during
the weekend (when traffic is lighter). Panel A confirms this logic showing that workday
inversions are systematically more likely to increase pollution exposure (with the exception
of O3). Alternatively, in Panel B, we examine the impact of inversions as a function of
gasoline utilization. We see that inversions have larger impact on pollution exposure in
period in which more pollution is generated by the increased reliance of vehicular usage of
gasoline rather than ethanol.

Table A3 presents robustness checks using specifications with different sets of season-
ality and time fixed effects. We find that estimates are mostly insensitive to the specification
with the only exception being results for O3 readings, which become significant in a few
cases. Overall, our main model seems to yield more conservative estimates than other
specifications presented in Table A3. Compared to estimates of the accumulation of pollu-
tants due to inversion formation in other papers looking at Sweden or Mexico [1,4], our
estimates are on the lower tail of the distribution of effects as well.

To further explore the impact of inversions and pollution by traffic levels, in Table A4,
we show results using our preferred specification and dividing the sample by rolling-weeks
with more than one extreme-traffic day or without these days. An extreme-traffic day
is defined as the top-quartile of the traffic distribution over the 2002–2009 period. Our
findings document some differences in the impact of inversion over pollution between
days with and without extreme traffic, particularly with certain pollutants for which motor-
vehicle combustion engine residues are a bigger contributor. However, given the precision
of the estimates, we cannot rule out these are indeed equal to one another.

Table A5 shows results stratified by periods. The differences across periods for the
impact of inversions are not monotonic likely reflecting the fact that between 2005 and
2007, the volume of cars increases at a faster pace than the switch to ethanol (reinforced by
economic boom), and once ethanol becomes a dominant fuel option (and the increase in
the volume of vehicles stabilizes) the measured effects go down. In Table A6, we run our
main specification using the wild bootstrap test, considering clusters at the station level
and show that conclusions are not changed, and results are practically the same.
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Table 1. Mean daily pollutant concentrations (in S.D. units) across São Paulo Metro and incidence of
thermal inversions, 2002 to 2009.

— Mean Concentrations from Day t to Day t − 6 —
PM10 CO NOx SO2 O3
(1) (2) (3) (4) (5)

Panel A: inversions under 1.3 km of altitude (relative to sea-level)—contemporaneous impacts

Average traffic sluggishness from day t to day t− 6 (Ln
km) 0.176 *** 0.285 *** 0.208 *** 0.278 ** −0.169 ***

(0.034) (0.035) (0.057) (0.083) (0.045)
# Inversion-days from day t to day t− 6 0.050 *** 0.031 *** 0.023 *** 0.040 *** 0.014

(0.007) (0.006) (0.006) (0.010) (0.009)

Panel B: inversions under 1.3 km of altitude (relative to sea-level)—distributed lags

# Inversion-days from day t to day t− 6 0.058 *** 0.028 *** 0.023 *** 0.043 *** 0.026 ***
(0.006) (0.006) (0.007) (0.012) (0.007)

# Inversion-days from day t− 7 to day t− 13 0.049 *** 0.026 *** 0.021 *** 0.017 0.013
(0.007) (0.005) (0.006) (0.012) (0.008)

# Inversion-days from day t− 14 to day t− 20 0.017 ** 0.014 ** 0.012 * 0.008 0.001
(0.006) (0.005) (0.006) (0.008) (0.008)

# Inversion-days from day t− 21 to day t− 27 0.003 0.005 −0.005 0.001 0.011
(0.007) (0.006) (0.006) (0.009) (0.007)

Panel C: inversions under 1.3 km of altitude (relative to sea-level)—cumulative/dynamic impacts (28-days)

Cumulative impact of inversion in seven-day window 0.127 *** 0.073 *** 0.051 ** 0.068 ** 0.051 **
(0.018) (0.015) (0.017) (0.029) (0.021)

Observations (Panel A) 52,147 31,568 19,021 12,604 31,396
Observations (Panels B and C) 51,758 31,337 18,871 12,464 31,162
Reference values (Pollutant S.D.) 16.8 µg/m3 0.57 ppm 57.0 ppb 5.7 µg/m3 12.5 µg/m3

Robust standard errors in parentheses are clustered in two ways: station and day. Coefficients on inversion
indicate the effect of one additional inversion within the seven-day window of time. Traffic sluggishness is
measured as a daily average in past seven-day window; weekends and holidays have values set to zero. Only
inversions under 1.3 km of altitude (relative to sea-level) are accounted for. The average seven-day window has
3.1 inversions (with the sample having a S.D. of 1.8). All regressions include as controls temperature (average,
maximum, and minimum), relative humidity (average, maximum, and minimum), and rainfall (total), all as third-
order polynomials. Share of gasoline consumption over all vehicular fuel consumption in the past three months is
included. Fixed-effects at year and week-of-year station levels are accounted for. Models use observations with
a missing count of inversions (seven-day count of inversions is set to zero) and include a binary flag missing
data as well as a counter of days with missing information. Distributed-lags models include lags for all controls.
*** significant at 1% level, ** significant at 5% level, * significant at 10% level.

Table 2. Mean daily pollutant concentrations (in S.D. units) across São Paulo Metro and incidence of
thermal inversions, contemporaneous impacts, 2002 to 2009.

— Mean Concentrations from Day t to Day t − 6 —
PM10 CO NOx SO2 O3
(1) (2) (3) (4) (5)

Panel A: differential impact by weekday/weekend occurrence

# Inversion-days from day t to day t− 6 0.018 0.011 0.020 * 0.023 0.017
(0.012) (0.010) (0.011) (0.014) (0.014)

# Workday inversion-days from day t to day t− 6 0.044 *** 0.028 ** 0.004 0.023 ** −0.003
(0.013) (0.010) (0.010) (0.010) (0.014)
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Table 2. Cont.

— Mean Concentrations from Day t to Day t − 6 —
PM10 CO NOx SO2 O3
(1) (2) (3) (4) (5)

Panel B: differential impact by fuel type utilization

# Inversion-days from day t to day t− 6 0.051 *** 0.033 *** 0.022 *** 0.037 *** 0.015 *
(0.007) (0.007) (0.006) (0.008) (0.008)

Monthly share of gasoline on total vehicular fuel consumption × ...
# Inversion-days from day t to day t− 6 0.157 *** 0.103 * −0.012 0.211 *** 0.054

(0.052) (0.049) (0.039) (0.054) (0.069)

Panel C: differential impact by fuel type utilization (holding constant interaction with traffic sluggishness)

# Inversion-days from day t to day t− 6 0.053 *** 0.034 *** 0.022 *** 0.038 *** 0.019 **
(0.007) (0.007) (0.006) (0.009) (0.009)

Monthly share of gasoline on total vehicular fuel consumption × ...
# Inversion-days from day t to day t− 6 0.124 ** 0.096 * −0.009 0.233 *** −0.047

(0.053) (0.052) (0.045) (0.046) (0.066)
Observations 52,147 31,568 19,021 12,604 31,396

Robust standard errors in parentheses clustered in two ways: station and day. Coefficients on inversion indicate
the effect of one additional inversion within the seven-day window of time. Traffic sluggishness is measured as a
daily average in past seven-day window; weekends and holidays have values set to zero. Only inversions under
1.3 km of altitude (relative to sea-level) are accounted for. The average seven-day window has 3.1 inversions
(with the sample having a S.D. of 1.8). All regressions include as controls temperature (average, maximum,
and minimum), relative humidity (average, maximum, and minimum), and rainfall (total), all as third-order
polynomials. Share of gasoline consumption over all vehicular fuel consumption in the past three months is
included. Fixed-effects at year and week-of-year station levels are accounted for. Models use observations with a
missing count of inversions (seven-day count of inversions is set to zero) and include a binary flag missing data as
well as a counter of days with missing information. Interaction with fuel composition and total fuel consumption
are included centered at the sample mean. *** significant at 1% level, ** significant at 5% level, * significant at 10%
level.

6.2. Effects of Thermal Inversions on Infant Health

Panel A in Table 3 presents estimates from Equation (2). We report full-sample esti-
mates of the 13-week sums of coefficients for each of the birth outcomes. We find that an
increase of one additional thermal inversion per week during the last 13 weeks of gestation
leads to a reduction in birth weight of 23.3 grams (column 1). For 13–25 and 26–38 weeks
before birth, an increase in the number of inversions have negative, but statistically insignif-
icant and economically small effects, although their differential effects might be related to
concerns about selection from prematurity.

The impact on birth weight is felt at the lower tail of the birth weight distribution:
recurrent inversions in the last period of gestation increase the incidence of low birth
weight by 7.3% (an effect of 0.60 per 100 on a base risk of 8.2 per 100) and raise the
incidence of very low birth weight by 22.5% (an effect of 0.27 per 100 on a base level of
1.2 per 100). Columns 4 and 5 show that the effect of inversions on birth weight might
be explained, at least in part, by their influence on the length of gestation. Rates of
preterm birth and very preterm births increase by 1.0 and 0.36 per 100 on a risk base of 7.3
and 1.2 per 100, respectively. Interestingly, for prematurity rates, inversions happening
earlier in the gestation are also found to have significant impacts. Overall, these negative
effects highlight that the concentration of pollutant caused by the formation of inversions
deteriorates newborns’ health. In Panel B of Table 3, we examine the robustness of these
findings to the exclusion of covariates. Estimates show that our main results are robust to
not controlling for location–birth date averages of maternal characteristics (education, age,
and marital status), parity (first born and higher parity), and infants’ gender and race.
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Table 3. Birth outcomes and inversion exposure.

Birth Weight Low Birth
Weight

Very Low
Birth Weight Premature Very Premature

(grams) (per 100) (per 100) (per 100) (per 100)
(1) (2) (3) (4) (5)

Panel A: base model—controls for child and mother covariates

# Inversion-days/week in week 0–12 before birth −23.345 *** 0.596 ** 0.271 ** 1.004 *** 0.357 ***
(6.980) (0.283) (0.136) (0.317) (0.111)

# Inversion-days/week in week 13-25 before birth −1.500 −0.426 0.104 0.858 *** 0.182 **
(5.391) (0.309) (0.114) (0.295) (0.084)

# Inversion-days/week in week 26-38 before birth 1.086 −0.314 0.058 −0.050 −0.029
(5.382) (0.319) (0.107) (0.315) (0.105)

Panel B: model without child and mother covariates

# Inversion-days/week in week 0–12 before birth −25.541 *** 0.608 ** 0.270 * 1.005 *** 0.362 ***
(7.345) (0.282) (0.136) (0.314) (0.111)

# Inversion-days/week in week 13-25 before birth −2.047 −0.415 0.113 0.851 *** 0.181 **
(5.704) (0.318) (0.112) (0.302) (0.086)

# Inversion-days/week in week 26-38 before birth −0.828 −0.271 0.072 −0.058 −0.027
(5.395) (0.317) (0.109) (0.307) (0.106)

Observations 313,286 313,286 313,286 313,286 313,286

Robust standard errors in parentheses clustered in two ways: location and day. Observations are at location–date
level and are weighted by the size of the local birth cohort in that location–day. Coefficients indicate the effect
of one additional inversion in each seven-day count of inversions during the interval of weeks indicated. Only
inversions under 1.3 km of altitude (relative to sea-level) are accounted for. The average seven-day window has
3.1 inversions (with the sample having a S.D. of 1.8). All regressions include as controls temperature (average,
maximum, and minimum), relative humidity (average, maximum, and minimum), and rainfall (total), all as
third-order polynomials. Share of gasoline consumption over all vehicular fuel consumption in the past three
months is included, as well as a measure of traffic sluggishness/intensity. Traffic sluggishness is measured as
a daily average in past seven-day windows; weekends and holidays have values set to zero. Fixed-effects at
year of birth and week-of-year location levels are accounted for. Models use observations with a missing count
of inversions (seven-day count of inversions is set to zero) and include a binary flag missing data as well as a
counter of days with missing information. Regressions in Panel A include control for location–birth date averages
of maternal characteristics (education, age, and marital status), parity (first born and higher parity), and infants’
gender and race. *** significant at 1% level, ** significant at 5% level, * significant at 10% level.

Does thermal inversion formation affect fetal survival? We answer this question by
studying the effect on the number of live births. This approach provides a proxy for survival
in utero and has been used in previous studies (for example, [3,50]). Using the number of
births as a broader proxy for survival relies on the assumption that the formation of thermal
inversions (conditional on weather conditions) is unrelated to the number of conceptions.
It allows to overcome two drawbacks related to using reported stillbirths. First, only fetal
death at 20 or more weeks of gestation are required to be reported as fetal death. Losses
prior to 20 weeks are classified as miscarriages, and reliable data on miscarriages are rarely
available. A change in fetal health would be underestimated because stillbirths may be
underreported and, even if all occurrences are correctly observed, it would only account
for losses later in a pregnancy. Second, a shock may move the distribution of fetal losses
to cross the 20 weeks threshold [51]. Then, a negative health shock may be followed by a
decrease in the number of reported fetal deaths because some of previously reported fetal
deaths do not survive until the reporting threshold, even though this would not indicate
an improvement in fetal health. A negative shock may also raise the occurrence of fetal
deaths by influencing fetal health and in utero surviving. Disentangling the magnitude of
these effects seems implausible making the sign of the bias unknown.

Column 1 of Table 4 presents estimates for the total number of live births. Because
there are zero births for some location–date cells (in around 10% of them), we transform
this outcome with the inverse hyperbolic sine. This allows us to interpret coefficients in
exactly the same way as a standard logarithmic transformation (i.e., approximating percent
changes). We find that a sustained increase of one thermal inversion per week occurring in
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any of the 13 weeks periods decreases significantly the number of live births. Specifically, for
the last gestational period, there is a 24.8% reduction in the number of live births. Compared
to the average number of births, this estimate indicates that one less infant is being born per
municipality-date. The respective reduction from inversions in earlier periods of potential
pregnancies are 14.6 and 12.4%. Overall, we find evidence that thermal inversions likely
increase fetal death or difficult pregnancy viability. The estimate may also be capturing
families’ avoidance responses by migrating outside the SPMA during pregnancy. While we
cannot account for these responses on our administrative data, the effect is likely negligible
considering that the composition of births does not change dramatically. We show that
in the other columns of Table 4. Fetal mortality is likely impacting older mothers more
strongly, which would explain the reduction in mothers’ average age when inversions
increase (and early parity births as a consequence). Socioeconomic differences in the form
of racial or maternal education are not observed, indicating that increased pollution affects
all groups of mothers. We also see no difference in the function of the child’s gender (live
births of boys and girls are equally less likely to occur).

Table A7 presents results stratified by periods. Similarly to the impact of inversions on
pollution (Table A5), we observe that differences across periods are not monotonic for birth
outcomes. The impact of thermal inversions on health at birth seem larger between 2005
and 2007 when the SPMA faced a faster increase in the volume of cars that the switch to
ethanol.

To place the magnitude of our estimates in the literature, we translate our results into
the effect of increasing one unit of a pollutant on birth weight. Because thermal inversion
episodes affect the concentration of different pollutants and they correlate with each other,
we refrain form referring to this quantity as the effect of each pollutant on health at birth.
Adding lags in Equation (1), we estimate that, in a period of 13 weeks, an additional thermal
inversion per week increases PM10 by up to 2.1 µg/m3 and CO by up to 0.04 ppm in that
week. Combining this with our main results on Table 3, we calculate a 0.80 (44) grams
reduction in birth weight per exposure to a week with one additional unit of PM10 (CO)
during the final three months of pregnancy.

While the evidence on the effect of pollution on health at birth is growing, many of
these studies focus on infant mortality, and only a few papers that look at health at birth
offer a measure of the effect in terms of unit of pollutants. For instance, [40] study the
influence of pollution in health at birth for mothers in New Jersey over the 1990s using a
model that controls for place-by-season and family characteristics constant over time. They
find a reduction of birth weight of 0.40 grams per unit of PM10 during the last trimester of
gestation. Ref. [2] use mother fixed effects models and control for air quality alerts in Chile
to estimate reductions of 16 grams per unit of CO ppm.

In all, our estimates are large compared to the literature. These differences may be
explained by the fact that our estimates measure the effect of an additional thermal inversion
on health at birth. Inversions trap many pollutants and likely result in a larger effect than
in contexts without inversions, so attributing it all to PM10 is likely overestimating its
impacts. Moreover, previous studies employed models that eliminate confounding from
seasonality and composition, but they do not address confounding concerns from economic
activity. Thus, the economic confounding may explain the differences in our estimates with
previous studies. Lastly, given the heterogeneity of the effects we estimate (see Section 6.3),
with Blacks being more strongly affected, there is room to conceive that in our context,
access to care (based on socioeconomic status (SES)) may also magnify impacts.
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Table 4. Birth cohorts size and composition in relation to inversion exposure.

Nr births ——————————— Average Composition ———————————
(Inv. Hip.

Sine)
Mom
Age White Black-

Brown Male Mom
College+

Mom
Married First Born

(1) (2) (3) (4) (5) (6) (7) (8)

# Inversion-days/week in week 0–12
before birth −0.248 *** −0.380 ** −0.017 0.010 −0.002 −0.001 −0.025 0.016 *

(0.056) (0.150) (0.017) (0.015) (0.006) (0.012) (0.016) (0.010)
# Inversion-days/week in week 13–25

before birth −0.146 ** 0.073 −0.018 0.014 −0.004 0.015 −0.018 −0.011

(0.069) (0.147) (0.017) (0.011) (0.006) (0.016) (0.015) (0.010)
# Inversion-days/week in week 26–38

before birth −0.124 * −0.425 *** −0.023 0.008 0.000 −0.005 −0.007 −0.010

(0.064) (0.150) (0.015) (0.011) (0.004) (0.015) (0.012) (0.010)
Observations 341,145 313,286 313,286 313,286 313,286 313,286 313,286 313,286

Robust standard errors in parentheses clustered in two ways: location and day. Observations are at location–date
level and are weighted by the size of the local birth cohort in that location–day. Coefficients indicate the effect
of one additional inversion in each seven-day count of inversions during the interval of weeks indicated. Only
inversions under 1.3 km of altitude (relative to sea-level) are accounted for. The average seven-day window has
3.1 inversions (with the sample having a S.D. of 1.8). All regressions include as controls temperature (average,
maximum, and minimum), relative humidity (average, maximum, and minimum), and rainfall (total), all as
third-order polynomials. Share of gasoline consumption over all vehicular fuel consumption in the past three
months is included as well as a measure of traffic sluggishness/intensity. Traffic sluggishness is measured as a
daily average in past seven-day windows; weekends and holidays have values set to zero. Fixed-effects at year
of birth and week-of-year location levels are accounted for. Models use observations with a missing count of
inversions (seven-day count of inversions is set to zero) and include a binary flag missing data as well as a counter
of days with missing information. *** significant at 1% level, ** significant at 5% level, * significant at 10% level.

6.3. Heterogeneity of impacts

Because health at birth differ by mothers’ and infants’ characteristics, and the accu-
mulation of pollution may differ by the SES of different locations, we explore the effect
of thermal inversion formation in the last 13 weeks of pregnancy across subgroups of
population. Table 5 presents our results for male and female babies. Overall, males expe-
rienced worse effects on their health at birth compared to females, which is compatible
with extensive medical literature on the fetal development trajectories and male sensitivity
to external factors. In particular, we find that thermal inversions during the last period
of gestation lead to a reduction on birth weight for males that almost double the effect on
females (i.e., an additional inversion per week reduces birth weight by 35 grams in males
and by 16 grams for girls). When using the child’s race (as a proxy for SES), we find that
inversion formation has larger effects for black babies (Table 6, Panel B) than for white ones
(Panel A). These findings suggest that SES may play an additional role in insulating fetal
development from additional pollution exposure promoted by inversions.

Table 5. Outcomes from the last 13 weeks of exposure by the child’s sex.

Birth Weight Low Birth
Weight

Very Low
Birth Weight Premature Very Premature

(grams) (per 100) (per 100) (per 100) (per 100)
(1) (2) (3) (4) (5)

Panel A: boys only

# Inversion-days/week in week 0–12 before birth −34.951 *** 0.443 0.307 * 1.025 *** 0.319 *
(9.507) (0.423) (0.184) (0.371) (0.182)

Observations 275,589 275,589 275,589 275,589 275,589
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Table 5. Cont.

Birth Weight Low Birth
Weight

Very Low
Birth Weight Premature Very Premature

(grams) (per 100) (per 100) (per 100) (per 100)
(1) (2) (3) (4) (5)

Panel B: girls only

# Inversion-days/week in week 0–12 before birth −16.161 * 0.780 * 0.247 1.041 * 0.417 **
(9.541) (0.460) (0.194) (0.531) (0.179)

Observations 271,866 271,866 271,866 271,866 271,866

Robust standard errors in parentheses clustered in two ways: location and day. Observations are at location–date
level and are weighted by the size of the local birth cohort in that location–day. Coefficients indicate the effect
of one additional inversion in each seven-day count of inversions during the interval of weeks indicated. Only
inversions under 1.3 km of altitude (relative to sea-level) are accounted for. The average seven-day window has
3.1 inversions (with the sample having a S.D. of 1.8). All regressions include as controls temperature (average,
maximum, and minimum), relative humidity (average, maximum, and minimum), and rainfall (total), all as
third-order polynomials. Share of gasoline consumption over all vehicular fuel consumption in the past 3-months
is included as well as a measure of traffic sluggishness/intensity. Traffic sluggishness is measured as a daily
average in past seven-day windows; weekends and holidays have values set to zero. Fixed-effects at year of birth
and week-of-year location levels are accounted for. Models use observations with a missing count of inversions
(seven-day count of inversions is set to zero) and include a binary flag missing data as well as a counter of days
with missing information. Regressions include control for location–birth date averages of maternal characteristics
(education, age, and marital status), parity (first born and higher parity), and infants’ race. *** significant at 1%
level, ** significant at 5% level, * significant at 10% level.

Table 6. Outcomes from last 13 weeks exposure by child’s race.

Birth Weight Low Birth
Weight

Very Low
Birth Weight Premature Very Premature

(grams) (per 100) (per 100) (per 100) (per 100)
(1) (2) (3) (4) (5)

Panel A: white children only

# Inversion-days/week in week 0–12 before birth −18.176 * 0.148 0.225 1.007 ** 0.366 **
(10.143) (0.470) (0.210) (0.504) (0.149)

Observations 281,026 281,026 281,026 281,026 281,026

Panel B: black children only

# Inversion-days/week in week 0–12 before birth −32.730 ** 0.620 0.409 * 1.057 0.863 ***
(13.794) (0.720) (0.238) (1.028) (0.324)

Observations 181,971 181,971 181,971 181,971 181,971

Robust standard errors in parentheses clustered in two ways: location and day. Observations are at location–date
level and are weighted by the size of the local birth cohort in that location–day. Coefficients indicate the effect
of one additional inversion in each seven-day count of inversions during the interval of weeks indicated. Only
inversions under 1.3 km of altitude (relative to sea-level) are accounted for. The average seven-day window has
3.1 inversions (with the sample having a S.D. of 1.8). All regressions include as controls temperature (average,
maximum, and minimum), relative humidity (average, maximum, and minimum), and rainfall (total), all as
third-order polynomials. Share of gasoline consumption over all vehicular fuel consumption in the past three
months is included as well as a measure of traffic sluggishness/intensity. Traffic sluggishness is measured as
a daily average in past seven-day windows; weekends and holidays have values set to zero. Fixed-effects at
year of birth and week-of-year location levels are accounted for. Models use observations with a missing count
of inversions (seven-day count of inversions is set to zero) and include a binary flag missing data as well as
a counter of days with missing information. Regressions include control for location–birth date averages of
maternal characteristics (education, age, and marital status), parity (first born and higher parity), and infants’
gender. *** significant at 1% level, ** significant at 5% level, * significant at 10% level.

7. Conclusions

Urban air pollution is one of the most critical issues worldwide. Growth in urban
transportation and congestion are key elements behind that. A growing number of studies
focused on developed countries have shown that prenatal exposure to air pollution harms
health at birth and increases infant mortality. Central differences between developed and
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developing countries limit the understanding of consequences of air pollution in the latter
based on results from richer countries. Thus, the magnitude and scope of the impact of
exposure to air pollution on infants’ health in less-developed countries still remain unclear.

In this paper, we used data from one of the largest urban conglomerates, the metropoli-
tan area of São Paulo. To avoid multiple confounders embedded on variations in pollution
generation activities, we took advantage of the meteorological phenomenon of thermal
inversion, which arguably exogenously locks pollutants closer to the ground. Therefore, we
examined the increased exposure to commonly generated pollution over birth outcomes.
We find that exposure to inversion episodes during the last three months of gestation
decreases birth weight, increases the chances of prematurity, and greatly affects fetal sur-
vival. These results are strongly "robust" in regard to multiple specification checks, and
they are statistically significant. Overall, the suggestion is that air pollution harms human
capital in its earliest stage, in utero, and it may have lasting negative consequences on new
generations, requiring local authorities to create environmental regulations and public
health initiatives focused on improving prenatal care services.
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Appendix A

(A)
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(C)

Figure A1. (A) Trends in fleet, (B) traffic and fuel consumption, and (C) economic activity–SPMA.
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Figure A2. (A) Trends in gasoline consumption, (B) particulate matter concentrations, and (C) weekly
thermal inversions–SPMA.
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Table A1. Descriptive statistics by station/rolling-week, 2002 to 2009.

Mean SD Obs.
(1) (2) (3)

Panel A: Pollutants (average within seven-day period)

PM10 µg/m3 41.18 16.76 52,147
CO ppm 1.23 0.57 31,568
NOx ppb 77.47 56.99 19,022
SO2 µg/m3 10.89 5.72 12,608
O3 µg/m3 33.64 12.53 31,396

Panel B: Weather (average within seven-day period)

Average temperature (Celsius) 20.45 2.66 102,270
Max temperature (Celsius) 25.85 3.16 102,270
Min temperature (Celsius) 16.62 2.68 102,270
Average relative humidity (%) 76.03 7.88 102,270
Max relative humidity (%) 92.25 5.64 102,270
Min relative humidity (%) 52.32 11.04 102,270
Average precipitation (milimeters) 4.10 4.65 102,270
Missing wind direction (share) 0.06 0.10 102,270
NNE wind (share) 0.10 0.07 102,270
ENE wind (share) 0.13 0.07 102,270
ESE wind (share) 0.15 0.10 102,270
SSE wind (share) 0.29 0.14 102,270
SSW wind (share) 0.07 0.05 102,270
WSW wind (share) 0.02 0.02 102,270
WNW wind (share) 0.08 0.07 102,270
NNW wind (share) 0.10 0.08 102,270

Panel C: Inversions (counts within seven-day period)

Inversions 2.80 1.95 2,922
Weekday inversions 2.03 1.55 2,922

Panel D: Metro-area-level conditions (average within seven-day period)

Traffic sluggishness (km) 61.88 15.26 2922
Share of gasoline on fuel consumption 0.66 0.14 2922

Observations (Obs.) correspond to the period 2002-2009 for the SPMA. Pollutants are measured by station-date,
in an unbalanced panel (different pollutants have different panel structures, leading to different observations).
Weather variables are based on interpolations for missing values, producing a balanced panel of stations and days.
Inversions are based on one observation per day covering the entire metropolitan area. The same applies to traffic
observations and fuel consumption.

Table A2. Descriptive statistics by live-birth/date, 2002 to 2009.

Mean SD Obs.
(1) (2) (3)

Panel A: Birth outcomes

Birth weight (grams) 3153.2 202.49 313,286
Low birth weight (per 100) 8.20 10.43 313,286
Very low birth weight (per 100) 1.22 4.18 313,286
Premature (per 100) 7.26 10.10 313,286
Very premature (per 100) 1.16 4.10 313,286

Panel B: Demographic characteristics

Maternal age at birth 26.49 2.66 313,286
Child white 0.56 0.24 313,286
Child black or brown 0.24 0.20 313,286
Child male 0.51 0.19 313,286
Maternal education more than high-school 0.18 0.19 313,286
Maternal education complete primary, high-school dropouts and graduates 0.53 0.22 313,286
Maternal education incomplete primary 0.23 0.17 313,286
Maternal education incomplete elementary 0.04 0.08 313,286
Married at time of birth 0.43 0.22 313,286
First born child 0.41 0.21 313,286

Panel C: Inversion exposure

Inversions in past 7 days 2.91 1.92 313,286

Observations (Obs.) are number of location–date cells, and correspond to 2,140,984 unique births. All statistics are
weighted by the size of the location–date live-birth cohort.
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Appendix B

Figure A3. City of São Paulo districts (polygons) and pollution/whether stations (points)–darker
shades represent districts with denser populations.

Figure A4. Metropolitan Region of São Paulo municipalities (polygons) and pollution/whether
stations (points).
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Table A3. Mean daily pollutant concentrations (in S.D. units) across São Paulo Metro and incidence
of thermal inversions, 2002 to 2009—alternative specifications.

— Mean Concentrations from Day t to Day t − 6 —
PM10 CO NOx SO2 O3
(1) (2) (3) (4) (5)

Panel A: Year and week-of-year × location FE’s (main model in text)

Average traffic sluggishness from day t to day t− 6 (Ln
km) 0.176 *** 0.285 *** 0.208 *** 0.278 ** −0.169 ***

(0.034) (0.035) (0.057) (0.083) (0.045)
# Inversion-days from day t to day t− 6 0.050 *** 0.031 *** 0.023 *** 0.040 *** 0.014

(0.007) (0.006) (0.006) (0.010) (0.009)

Panel B: Year, week-of-year, and location FE’s

Average traffic sluggishness from day t to day t− 6 (Ln
km) 0.179 *** 0.285 *** 0.225 *** 0.270 ** −0.171 ***

(0.034) (0.036) (0.058) (0.078) (0.045)
# Inversion-days from day t to day t− 6 0.050 *** 0.032 *** 0.025 *** 0.038 *** 0.015 *

(0.007) (0.006) (0.006) (0.010) (0.008)

Panel C: Week-of-year and year × location FE’s

Average traffic sluggishness from day t to day t− 6 (Ln
km) 0.191 *** 0.302 *** 0.235 *** 0.271 *** −0.184 ***

(0.034) (0.036) (0.056) (0.069) (0.044)
# Inversion-days from day t to day t− 6 0.044 *** 0.027 *** 0.021 *** 0.037 ** 0.012

(0.006) (0.005) (0.006) (0.012) (0.007)

Panel D: Bi-month × location FE’s and location-specific linear month-level trends

Average traffic sluggishness from day t to day t− 6 (Ln
km) 0.133 *** 0.241 *** 0.222 *** 0.267 *** −0.279 ***

(0.031) (0.034) (0.056) (0.056) (0.042)
# Inversion-days from day t to day t− 6 0.069 *** 0.053 *** 0.032 *** 0.048 *** 0.000

(0.007) (0.006) (0.007) (0.011) (0.007)

Panel E: Week-of-year, and Month-year × location FE’s

Average traffic sluggishness from day t to day t− 6 (Ln
km) 0.227 *** 0.326 *** 0.272 *** 0.267 *** −0.277 ***

(0.037) (0.043) (0.067) (0.067) (0.036)
# Inversion-days from day t to day t− 6 0.041 *** 0.030 *** 0.017 ** 0.044 *** 0.028 ***

(0.006) (0.006) (0.006) (0.008) (0.006)

Panel F: Month-year, and Week-of-year × location FE’s

Average traffic sluggishness from day t to day t− 6 (Ln
km) 0.200 *** 0.314 *** 0.256 *** 0.265 *** −0.277 ***

(0.037) (0.039) (0.066) (0.075) (0.036)
# Inversion-days from day t to day t− 6 0.049 *** 0.036 *** 0.024 *** 0.043 *** 0.028 ***

(0.008) (0.007) (0.006) (0.007) (0.008)
Observations 52,147 31,568 19,021 12,604 31,396

Panel A replicates results on Table 1. Regressions in other panels include fixed-effects at different levels as
indicated on the table. *** significant at 1% level, ** significant at 5% level, * significant at 10% level.
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Table A4. Mean daily pollutant concentrations (in S.D. units) across São Paulo Metro and incidence
of thermal inversions, 2002 to 2009—strata by traffic intensity.

— Mean Concentrations from Day t to Day t − 6 —
PM10 CO NOx SO2 O3
(1) (2) (3) (4) (5)

Panel A: Rolling-weeks with more than one extreme-traffic day

# Inversion-days from day t to day t− 6 0.048 *** 0.032 *** 0.031 *** 0.040 *** 0.014
(0.008) (0.008) (0.007) (0.009) (0.011)

Observations 20,690 13,893 8285 4606 13,181

Panel B: Rolling-weeks without extreme-traffic days

# Inversion-days from day t to day t− 6 0.037 *** 0.024 * 0.005 0.033 ** 0.027 **
(0.012) (0.014) (0.011) (0.013) (0.011)

Observations 19,366 10,304 6394 5117 10,941

Robust standard errors in parentheses clustered in two ways: station and day. Coefficients on inversion indicate
the effect of one additional inversion within the seven-day window of time. Only inversions under 1.3 km of
altitude (relative to sea-level) are accounted for. The average seven-day window has 3.1 inversions (with the
sample having a S.D. of 1.8). All regressions include as controls temperature (average, maximum, and minimum),
relative humidity (average, maximum, and minimum), and rainfall (total), all as third-order polynomials. Share of
gasoline consumption over all vehicular fuel consumption in the past 3-months is included. Fixed-effects at year
and week-of-year station levels are accounted for. Models use observations with a missing count of inversions
(seven-day count of inversions is set to zero) and include a binary flag missing data as well as a counter of
days with missing information. Traffic sluggishness is measured as a daily average in past seven-day window;
weekends and holidays have values set to zero. Regressions in Panel A include rolling-weeks with more than in
extreme-traffic day (defined as top-quartile of traffic distribution over the 2002-2009 period); Panel B show regressions
for the remaining rolling weeks. *** significant at 1% level, ** significant at 5% level, * significant at 10% level.

Table A5. Mean Daily Pollutant Concentrations (in S.D. Units) across São Paulo Metro and Incidence
of Thermal Inversions, 2002 to 2009—strata by periods.

— Mean Concentrations from Day t to Day t − 6 —
PM10 CO NOx SO2 O3
(1) (2) (3) (4) (5)

Panel A: 2002-2004

# Inversion-days from day t to day t− 6 0.053 *** 0.027 ** 0.007 0.043 ** 0.005
(0.012) (0.011) (0.010) (0.013) (0.012)

Observations 20,854 10,545 6634 5648 11,699

Panel B: 2005-2007

# Inversion-days from day t to day t− 6 0.070 *** 0.043 *** 0.028 ** 0.029 0.044 ***
(0.011) (0.010) (0.010) (0.021) (0.014)

Observations 18,537 11,865 6543 4256 10,851

Panel C: 2008-2009

# Inversion-days from day t to day t− 6 0.025 ** 0.026 ** 0.022 *** 0.033 ** −0.007
(0.011) (0.009) (0.007) (0.011) (0.018)

Observations 12,752 9153 5844 2696 8842

Robust standard errors in parentheses clustered in two ways: station and day. Coefficients on inversion indicate
the effect of one additional inversion within the seven-day window of time. Traffic sluggishness is measured as a
daily average in past seven-day window; weekends and holidays have values set to zero. Only inversions under
1.3 km of altitude (relative to sea-level) are accounted for. The average seven-day window has 3.1 inversions
(with the sample having a S.D. of 1.8). All regressions include as controls temperature (average, maximum,
and minimum), relative humidity (average, maximum, and minimum), and rainfall (total), all as third-order
polynomials. Share of gasoline consumption over all vehicular fuel consumption in the past 3-months is included.
Fixed-effects at year and week-of-year station levels are accounted for. Models use observations with a missing
count of inversions (seven-day count of inversions is set to zero) and include a binary flag missing data as well as
a counter of days with missing information. In Panel A includes observations for the period 2002–2004, Panel B
for 2005–2007, and Panel C for 2008-2009. *** significant at 1% level, ** significant at 5% level.
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Table A6. Mean Daily Pollutant Concentrations (in S.D. Units) across São Paulo Metro and Incidence
of Thermal Inversions, 2002 to 2009—Wild-Boostrap p-values.

— Mean Concentrations from Day t to Day t − 6 —
PM10 CO NOx SO2 O3
(1) (2) (3) (4) (5)

Average traffic sluggishness from day t to day t− 6 (Ln km) 0.179 0.285 0.225 0.271 −0.171
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

# Inversion-days from day t to day t− 6 0.050 0.032 0.025 0.038 0.015
[<.001] [<.001] [<.001] [.024] [.072]

Observations 52,147 31,568 19,021 12,604 31,396

Wild-Bootstrap p-values (based in 249 replications) in brackets under estimates are based on station-level clusters.
Coefficients on inversion indicate the effect of one additional inversion within the seven-day window of time.
Traffic sluggishness is measured as a daily average in past seven-day window; weekends and holidays have
values set to zero. Only inversions under 1.3 km of altitude (relative to sea-level) are accounted for. The average
seven-day window has 3.1 inversions (with the sample having a S.D. of 1.8). All regressions include as controls
temperature (average, maximum, and minimum), relative humidity (average, maximum, and minimum), and rainfall
(total), all as third-order polynomials. Share of gasoline consumption over all vehicular fuel consumption in the past
3-months is included. Fixed-effects at year and week-of-year station levels are accounted for. Models use observations
with a missing count of inversions (seven-day count of inversions is set to zero) and include a binary flag missing
data as well as a counter of days with missing information. Distributed-lags models include lags for all controls.

Table A7. Inversions and Birth Outcomes—strata by periods.

— Mean Concentrations from Day t to Day t − 6 —
PM10 CO NOx SO2 O3
(1) (2) (3) (4) (5)

Panel A: 2002–2004

# Inversion-days/week in week 0–12 before birth 47.010 0.478 −0.185 2.209 −0.228
(36.766) (1.430) (0.364) (1.576) (0.476)

# Inversion-days/week in week 13-25 before birth −78.725 ** 2.547 * 0.292 2.450 0.012
(28.211) (1.246) (0.453) (1.628) (0.477)

# Inversion-days/week in week 26-38 before birth −80.051 *** 2.937 ** 0.314 3.942 ** −0.416
(21.506) (1.287) (0.491) (1.437) (0.524)

Observations 90,596 90,596 90,596 90,596 90,596

Panel B: 2005-2007

# Inversion-days/week in week 0–12 before birth −63.550 *** 0.712 0.456 1.869 0.903 **
(16.470) (0.868) (0.373) (1.115) (0.374)

# Inversion-days/week in week 13-25 before birth −44.677 *** −0.115 0.403 * 2.064 ** 0.440
(15.125) (0.750) (0.236) (0.762) (0.293)

# Inversion-days/week in week 26-38 before birth −6.997 −0.799 −0.279 1.612 ** −0.000
(14.049) (0.728) (0.257) (0.704) (0.237)

Observations 133,462 133,462 133,462 133,462 133,462

Panel C: 2008-2009

# Inversion-days/week in week 0–12 before birth −33.337 3.495 0.874 5.811 ** 1.416 *
(45.532) (2.441) (0.732) (2.444) (0.745)

# Inversion-days/week in week 13-25 before birth −25.735 −0.841 −0.080 2.499 0.714
(51.192) (2.290) (0.971) (3.380) (1.072)

# Inversion-days/week in week 26-38 before birth 74.706 −2.638 −0.953 −2.340 −0.233
(46.828) (2.803) (1.016) (2.784) (0.911)

Observations 89,228 89,228 89,228 89,228 89,228

Robust standard errors in parentheses clustered in two ways: location and day. Observations are at location–date
level and are weighted by the size of the local birth cohort in that location–day. Coefficients indicate the effect
of one additional inversion in each seven-day count of inversions during the interval of weeks indicated. Only
inversions under 1.3 km of altitude (relative to sea-level) are accounted for. The average seven-day window has
3.1 inversions (with the sample having a S.D. of 1.8). All regressions include as controls temperature (average,
maximum, and minimum), relative humidity (average, maximum, and minimum), and rainfall (total), all as
third-order polynomials. Share of gasoline consumption over all vehicular fuel consumption in the past 3-months
is included as well as a measure of traffic sluggishness/intensity. Traffic sluggishness is measured as a daily
average in past seven-day windows; weekends and holidays have values set to zero. Fixed-effects at year of birth
and week-of-year location levels are accounted for. Models use observations with a missing count of inversions
(seven-day count of inversions is set to zero) and include a binary flag missing data as well as a counter of days
with missing information. *** significant at 1% level, ** significant at 5% level, * significant at 10% level.
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