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Abstract: Background: The SARS-CoV-2 pandemic has temporarily decreased black carbon emissions
worldwide. The use of multi-wavelength aethalometers provides a quantitative apportionment of
black carbon (BC) from fossil fuels (BCff) and wood-burning sources (BCwb). However, this apportion-
ment is aggregated: local and non-local BC sources are lumped together in the aethalometer results.
Methods: We propose a spatiotemporal analysis of BC results along with meteorological data, using
a fuzzy clustering approach, to resolve local and non-local BC contributions. We apply this methodol-
ogy to BC measurements taken at an urban site in Santiago, Chile, from March through December
2020, including lockdown periods of different intensities. Results: BCff accounts for 85% of total BC;
there was up to an 80% reduction in total BC during the most restrictive lockdowns (April–June);
the reduction was 40–50% in periods with less restrictive lockdowns. The new methodology can
apportion BCff and BCwb into local and non-local contributions; local traffic (wood burning) sources
account for 66% (86%) of BCff (BCwb). Conclusions: The intensive lockdowns brought down ambient
BC across the city. The proposed fuzzy clustering methodology can resolve local and non-local
contributions to BC in urban zones.

Keywords: black carbon; aethalometer model; spatiotemporal patterns; fuzzy clustering; FUSTA

1. Introduction

Black carbon (BC) is one of the components of fine respirable particle matter (PM2.5);
it comes from the incomplete combustion of fossil fuels and biomass. Exposure to BC
has been linked to short-term [1,2] and long-term [3–7] health effects, but its regulation is
indirect through the regulation of ambient PM2.5. Recently, the World Health Organization
has updated its air quality guidelines [8], setting an annual average of PM2.5 of 5 µg/m3,
which means that long-term BC is implicitly recommended to be well below that guideline
since BC is usually below 20% of the total PM2.5.

BC has been traditionally measured offline using thermal-optical methods applied
to filter samples [9,10]; these results are reported as total BC in PM2.5 [11]. More recently,
continuous instruments based on optical absorption at several wavelengths (from UV to IR)
have been developed. These instruments (aethalometers) can apportion BC coming from
fossil fuel (BCff) and wood burning (BCwb) combustion because the BC emitted from those
sources has a different wavelength dependence for that absorption [12]. This technological
development has led to many studies worldwide that report that BC source apportionment
in urban [13–20] and rural areas [21–23]. Despite this improvement, those apportionment
results—on any given receptor site—report the total BCff (or BCwb) coming from local and
non-local sources; for instance, regional wildfires may contribute to BCwb as much as local
sources, BCff may come from local and regional traffic sources, etc. Additional tools, like air
quality models, have been used to resolve those local and non-local BC contributions [24].
Recently, aethalometers have been used to assess the changes in ambient BCff and BCwb
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associated with urban lockdowns worldwide [25–31]. All these studies report significant
decreases in ambient BC concentrations under those exceptional circumstances, with traffic
sources being the largest contributors to those decreases, while BCwb sometimes has not
changed [29] or has even increased [32].

The purpose of this work is twofold: (a) report ambient BCff and BCwb concentrations
for the very first time in Santiago, Chile, and estimate the reductions in ambient BC
concentrations brought by lockdowns during SARS-CoV-2 pandemics, (b) apply a new
methodology of spatiotemporal pattern recognition for estimating local and non-local
contributions to ambient BCff and BCwb.

The new methodology is based on a fuzzy clustering algorithm applied to ambient
BCff and BCwb concentrations along with surface meteorological variables (wind speed
and direction, air temperature). This methodology—named FUSTA (Fuzzy SpatioTemporal
Apportionment)—splits ambient concentrations into several spatiotemporal patterns, each
one corresponding to a contribution from one of the major emission sources [32]. This
novel method generates a source apportionment for local and non-local BC sources without
the need for air quality modeling applied to the city. The latter would require (a) an
accurate emission inventory for BCff and BCwb, (b) the meteorological input fields should
be accurate and capture the strong mixing layer seasonality over Santiago, and (c) the air
quality model used should not have significant biases.

We find a reduction in total BC in Santiago during the lockdowns in 2020, from 40%
to 80%, as compared with previous measurements in 2015; we also find that the FUSTA
approach is a useful tool to resolve local and non-local sources of BCff and BCwb.

2. Materials and Methods

The methodology follows a sequential process, as shown in Figure 1. Below, we
describe each of the methodological steps.
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Figure 1. Workflow of the methodology.

2.1. Ambient Measurement Campaign

The measurement campaign was carried out between 16 March 2020 and 2 January
2021. Lockdowns started on 27 March in the NE part of the city, and on 23 April, the SW
sector of the city was added. Later on 15 May, a total lockdown was enacted until 27 July,
followed by less restrictive lockdowns in the city until 30 November, when another rise in
people infected forced the government to increase mobility restrictions again [33].

The monitoring was conducted using a multiwavelength aethalometer (MA200, San
Francisco, CA, USA) measuring at five wavelengths: 375, 470, 538, 625, and 880 nm, cor-
responding to ultraviolet, blue, green, red and infrared, respectively. The monitoring site
was chosen in a residential area located on the east border of the city (33.406◦ S, 70.512◦ W).
Surface meteorological data were taken from a nearby site (33.377◦ S, 70.523◦ W), which cor-
responds to an air quality station (Las Condes) run by the Ministry of the Environment [34].
The location of the monitoring site was chosen on the east border of the city to capture the
city’s pollution plume arriving at that site when daylight anabatic winds develop. That
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zone of the city has been studied before with ambient BC campaigns [24], so there was a
baseline available to make comparisons with/without lockdowns.

The total BC signal recorded from the instrument was calibrated against the thermal
optical transmittance method (TOT) NIOSH 5050 results applied to co-located PM2.5 sam-
ples taken on 47 mm quartz filters (Pallflex Tissuquartz 2500QAT-UP, Pall Life Sciences,
Portsmouth, UK) using a minivol sampler (Super SASS, MetOne Instruments, Grants Pass,
OR, USA); the BC TOT analysis was carried out at Chester LabNet (Tigard, OR, USA).

2.2. Aethalometer Data Analysis

Hourly averages of absorption coefficients (babs) measured at 375 and 880 nm reported
by the MA200 are used to compute the Absorption Ångström Exponent (AAE) according
to [12]:

AAE = −ln(babs(375 nm)/babs(880 nm))/ln(375/880) (1)

The histogram of hourly values of AAE is analyzed, and the 1st and 99th percentiles are
identified with the Ångström exponents for fossil fuel (AAEff) and wood burning (AAEwb),
respectively [35]; the estimated values are AAEff = 0.7 and AAEwb = 2.48. Appendix A
shows how this estimation was carried out.

Next, the contributions BCff and BCwb are computed as [12]:

BCff = BCtotal·babs,ff(880 nm)/babs(880 nm) (2)

BCwb = BCtotal·babs,wb(880 nm)/babs(880 nm) (3)

where BCtotal is the total BC reading of the instrument at 880 nm, and the following
expressions are used to estimate the absorption coefficients babs,ff and babs,wb [12]:

babs,ff(880 nm) = {babs(375 nm) − babs(880 nm)·(375/880)−AAEff}/{(375/880)−AAEwb − (375/880)−AAEff} (4)

babs,wb(880 nm) = {babs(375 nm) − babs(880 nm)·(375/880)−AAEwb}/{(375/880)−AAEff − (375/880)−AAEwb} (5)

2.3. Spatiotemporal Data Analysis

In a previous publication [36], we used bivariate plots and k-means clustering of
ambient PM2.5 and PM10, along with receptor model results, to estimate major sources
contributing to ambient PM in urban areas; this methodology works best when one or
two sources are the major contributors to ambient concentrations. However, this approach
has two limitations: (i) the bivariate plots accept only pairs of meteorological variables
to analyze ambient PM concentrations, (ii) the clustering technique is hard, that is, each
hourly observation may belong to only one cluster (source). To improve the flexibility
of that analysis, the meteorological input variables were increased to four: wind speed,
wind direction, temperature, and pressure. But the key improvement is to use a fuzzy
clustering algorithm, so each hourly observation may belong to more than one (fuzzy)
cluster, using the probabilistic concept of cluster membership [37]. The proof of the concept
of this new approach (denoted as FUSTA: FUzzy SpatioTemporal Apportionment) was
developed for ambient SO2 in an industrial zone, where it was shown that spatiotemporal
patterns obtained from FUSTA were like the ones obtained by air quality modeling of the
major SO2 emission sources in the study zone [32]. This was the rationale for hypothesizing
that FUSTA could resolve local and non-local sources of BCff and BCwb because these are
inert tracers of combustion sources, so they are only subject to atmospheric transport and
deposition. Below we summarize the major steps needed to carry out such a methodology
for the case of black carbon.

Data of BCff and BCwb are log transformed to approach a normal distribution. Each
of them is combined with air temperature and pressure and the Cartesian components
of wind speed as in the case of bivariate plots [38]. These 5D databases are analyzed to
find spatiotemporal patterns in BCff and BCwb by using the algorithm FKM.ent.noise [39]
available in the library fclust in the R environment [40]. The following optimization is
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carried out to find the centroids {C} and membership values U = {uij} for the case of p fuzzy
clusters sought:

min
U,C

JFKMNE =
n
∑

i=1

p
∑

k=1
uik·‖xi − ck‖2 + t·

n
∑

i=1

p
∑

k=1
uik·log(uik) +

n
∑

i=1
δ2
(

1−
p
∑

k=1
uik

)2

s.t. uik ∈ [0, 1];
p+1
∑

k=1
uik = 1

(6)

where we use the default values t = 1 and δ = 1 in the above equation [39]. The very last
term on the right-hand side of (6) stands for a noise cluster, that is, a subset of data that
does not follow a regular pattern as the other p fuzzy clusters do [41]. This noise cluster
includes outlier values or contributions from intermittent sources like a structural fire or a
wildfire plume reaching the monitoring site, for instance.

Once the solution of (6) is found, the BCff estimated at time ‘i’ from Equations (2) and (4)
is apportioned as follows:

BC f f i =
p+1

∑
k=1

BC f f i·uik =
p

∑
k=1

BC f f i, k + BC f f i, noise (7)

where BC f f i, k stands for the contribution of the k-th cluster (or source) to BC f f i. A similar
equation holds for BCwbi. Note that, by design, all those contributions are non-negative.

Since the results are 5D objects, we project the resulting fuzzy clusters using 3 different
bivariate plots [38,42,43] in which wind direction is combined with wind speed, tempera-
ture, and pressure, respectively, to visualize the spatial distribution of fuzzy clusters found
for each BC fraction. These graphs support the task of identifying each of the fuzzy clusters
resolved by the FUSTA algorithm (6).

The database and all routines used in the data analysis and visualization are provided
as Supplementary Files.

3. Results
3.1. Ambient Monitoring Results

3.1.1. Absorption Ångström Exponents (AAE)

The following table lists the statistics for the estimated absorption Ångström exponents
and estimated concentrations of BCff, BCwb and BC for the whole campaign.

Figure 2 shows the diel profiles of AAE for the austral summer and winter
months. The winter mean value is significantly higher than the summer value (t = 11.9,
p-value < 2.2 × 10−16), which suggests that wood-burning contributions to AAE increase
in winter because of residential space heating in the city, a well-known source of ambient
PM2.5 in Santiago [44].

Figure 3 shows a comparison of diel profiles of AAE for workdays and weekends.
During weekends, the AAE mean value is significantly higher than in the case of workdays
(t = 7.64, p-value = 2.8 × 10−14); this suggests a higher consumption of wood burning on
weekends and thus the increase in AAE values.

3.1.2. BCff and BCwb Results

Figure 4 shows the time variability for BCff and BCwb contributions estimated from
the aethalometer model. BCff is the dominant contribution to total BC all year long; this
contribution decreases over weekends, as expected from the traffic activity variability in the
city. From Table 1, it follows that, on average, BCff accounts for 85% of total BC. Regarding
BCwb contribution (see Figure A3), it rises in winter months, as expected, and it does not
decrease over weekends since it comes from residential sources. This contribution does not
vanish in the spring and summer seasons; this is explained by wildfires and agricultural
burning sources at the regional scale; they have been found in Santiago using receptor
modeling of ambient PM2.5 combined with satellite images [45].
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Table 1. Statistical summary of campaign results 1.

Statistic AAE (-) BCff (ng/m3) BCwb (ng/m3) BC (ng/m3)

Minimum 0.002 0.62 0.04 0.11
1st quantile 1.036 294 55 357

Median 1.135 488 90 585
Mean 1.160 690 128 809

3rd quartile 1.237 847 156 988
Maximum 3.322 7812 1604 8679

1 Negative values are excluded from the statistics (see also Appendix A).

3.1.3. Effect of SARS-CoV-2 Lockdowns on BC Concentrations

There is no continuous monitoring of ambient BC in Santiago. However, there was
an ambient monitoring campaign that included BC measurements at nearby Las Condes
station from December 2014 through July 2015, using an aethalometer (Magee Scientific,
Berkeley, CA, USA, model AE33); that campaign results are reported in [24]. Table 2 below
makes a comparison of monthly average BC values between that campaign and present
results. The most intensive city lockdowns led up to an 80% of reduction in total BC
(June 2020), and a 40% reduction has been estimated with fewer intensive lockdowns in
December 2020 [33].

3.2. Spatiotemporal Analysis

The fuzzy clustering algorithm of Equation (6) was applied to both datasets of ambient
BCx and meteorology (x = ff or wb), and the total number of clusters sought was varied
between four and seven clusters—p = 3–6 in Equation (6), respectively. Then, we inspected
the time variability of the resulting spatiotemporal patterns (i.e., fuzzy clusters). Based
on the similarities in temporal and spatial variability, we identified the major sources
contributing to ambient BCx concentrations. Below we discuss the results for both BC
components.
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Table 2. Comparison of ambient BC measurements in east Santiago, monthly averages (ng/m3).

Month 2015 1 2020 3 Ratio 2020/2015

January 1200
February 1063

March 1583 376 ± 50 0.24
April 2233 495 ± 62 0.22
May 2440 627 ± 100 0.26
June 2877 533 ± 97 0.19
July 2430 1207 ± 279 0.50

August 1435 ± 196
September 1137 ± 268

October 682 ± 93
November 706 ± 90
December 1073 2 672 ± 68 0.63

1 Data adapted from [24]. 2 Data correspond to December 2014. 3 Data reported as mean ± 2σ, estimated from
daily averages with at least 75% of valid hourly values.

3.2.1. Results for BCff

Upon inspection of the different FUSTA results for this BC fraction, the contributions
from Santiago’s urban plume arriving at the monitoring site and the noisy cluster contribu-
tions were identified by their distinctive upwind locations—W-SW and SSE, respectively
(see Figures A4, A5 and 6, below). A residential heating and cooking contribution (RHC)
was identified because it is highest overnight when temperatures are lowest—in the winter
season. Then, the rest of the contributions are traffic sources located in different directions
upwind of the monitoring site. Since the only contribution that vanishes in winter is
Santiago’s urban plume, we conclude that all other contributions are local, and they arrive
at the monitoring site from different upwind directions and under different combinations
of air temperature and pressure (Figures A4, A5 and 6). Table 3 summarizes the mean
source contribution estimated in each case. A small variability in major source contribution
estimates is observed in these results.

Table 3. Mean source contributions to BCff (ng/m3) for a different choice of total clusters sought.

Total Clusters Urban Plume RHC TRF Other (Noise)

4 109 unresolved 505 80
5 98 90 458 48
6 91 78 486 40
7 87 54 528 27

Hence, for simplicity’s sake, we chose the lowest number of fuzzy clusters (5) that
apportion all major BCff sources at play. Figures 5 and 6 display the temporal and spatial
variability of those clusters, respectively, and Table 4 provides a statistical summary of
cluster contributions; additional bivariate plots for BCff are presented in Appendix B
(Figures A4 and A5). Below we discuss the features of this five-cluster solution.

Table 4. Statistical summary of hourly BCff source contributions (ng/m3) for a 5-cluster solution.

Statistic Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Minimum 0.0 0.0 0.0 0.0 0.15
1st quantile 0.0 5.2 4.5 0.7 0.63

Median 0.22 51.5 45.0 24.2 1.86
Mean 98.0 90.4 143 315 47.7

3rd quartile 17.4 150.8 215 313 9.4
Maximum 2313 641 1695 5304 6296
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Cluster 1 contributions rise in the daylight hours and are zero overnight; these con-
tributions increase in the austral summer season and decrease over weekends. Since they
come from W/SW directions, this fuzzy cluster is identified as Santiago’s urban plume
reaching the monitoring site as anabatic winds develop during daylight. Contributions of
this source are highest when temperatures and wind speed increase in the summer season;
this air quality feature of the eastern side of Santiago has been described before [36,46].
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On average, this source contributes 14% of the total BCff. Notice that in Table 4, this
contribution has more than 25% of hours with zero contribution, which corresponds to
overnight conditions.

Cluster 2 contributions increase in the evening hours and reach a maximum before
sunrise (when the mixing layer is lowest), are highest in the winter season and low temper-
atures (Figure A4); they arrive at the monitoring site from different directions (NW–NE)
which agree with the highest population density surrounding this site. We identify this
source contribution as residential heating and cooking (RHC) sources that use compressed
natural gas and liquified petroleum gas as fuels. They contribute on average with 13% of
total BCff.

Clusters 3 and 4 rise in the morning, peak in the evening, and decrease until dawn;
since they also decrease over weekends, we identify those two clusters as local traffic (TRF)
sources. Together they account for 66% of total BCff. These two clusters are resolved by the
algorithm because they have different seasonality; cluster 4 contributions are higher when
temperatures are lower and winds weaker, so this cluster has the highest seasonality of all.

Cluster 5 includes all sources whose spatiotemporal patterns are intermittent, so they
are identified as local combustion sources that peak around 1 pm in winter, most likely
associated with residential cooking and heating. On average, this source contributes the
least to total BCff, with 7%.

3.2.2. Results for BCwb

We applied the same criteria to identify the contributions of different FUSTA solutions
for the BCwb fraction. Thus, we identified Santiago’s urban plume and noise contributions
by their distinctive upwind locations—W-SW and SSE, respectively (Figures A6, A7 and 8,
below). Once again, only the urban plume contribution vanishes in the winter season—when
a low thermal inversion layer blocks air masses from the lower valley from reaching the
monitoring site—so the rest of the sources must be local ones. Table 5 shows the mean
source contribution estimated for each source as the number of clusters increases. Again, a
small variability in major source contribution estimates is observed in these results.

Table 5. Mean source contributions to BCwb (ng/m3) for a different choice of total clusters sought.

Total Clusters Urban Plume Local Wood Burning Other Local (Noise)

4 18 96 14
5 17 103 8
6 15 106 7
7 14 109 5

Again, for simplicity, we have chosen to present the results for four (total) clusters in
this case. The results are shown below in Figures 7 and 8 and Table 6; additional bivariate
plots for BCwb are presented in Appendix B (Figures A6 and A7). Below we discuss the
features of this four-cluster solution.

Table 6. Statistical summary of BCwb source contributions (ng/m3).

Statistic Cluster 1 Cluster 2 Cluster 3 Cluster 4

Minimum 0.00 0.0 0.00 0.04
1st quantile 0.34 2.37 0.00 0.24

Median 13.1 19.1 0.12 0.73
Mean 64.0 31.8 18.4 14.0

3rd quartile 82.6 49.7 7.9 4.1
Maximum 873 265 387 1506
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Clusters 1 and 2 have similar diel profiles with peaks in the evening hours but have
different seasonality: cluster 1 contributions peak with ambient temperatures lower than
15 ◦C (Figure A6) and have a stronger seasonality, while cluster 2 contributions have no clear
seasonality pattern and are associated to ambient temperatures above 10 ◦C (Figure A6).
We identify these two clusters as local wood-burning sources; the combined contribution is
75% of total BCwb.

Cluster 3 contributions rise in the afternoon and are zero overnight; they peak in
the summer season, with high temperatures (Figure A6) and come from W-SW direc-
tions. Hence, this is Santiago’s urban plume reaching the monitoring site, and this source
contributes 14% of the total BCwb.

Cluster 4 contributions come from S-SE directions and peak in winter around 1 pm,
with no weekly seasonality. These contributions come under different synoptic conditions
of low and high pressure (Figure A7); they likely come from residential cooking and
heating and correspond to 11% of total BCwb. In this regard, this noise cluster has a similar
spatiotemporal pattern as the noise cluster found for BCff; this means the residential sources
S-SE of the monitoring site contributes to both BC fractions.

3.3. Source Apportionment of BCff and BCwb

The fuzzy clustering methodology (FUSTA) generates a source apportionment of BC
at the monitoring site. The following figures show the daily contributions of the different
sources resolved in this work; Appendix C presents results for hourly contributions.

Figures 9 and 10 show the daily source contributions for BCff and BCwb, respec-
tively. Local traffic contributions dominate BCff, and local wood-burning sources dom-
inate BCwb. Nonetheless, the noisy source contributions have the largest hourly spikes
(Figures A8 and A9). Notice that the urban plume contributions are minimum in winter-
time when the mixing layer over the city reaches minimum values [47], blocking air masses
from arriving at the monitoring site. The urban plume contribution shows a rise towards
the end of 2020, associated with less stringent lockdowns therein and a consequent increase
in traffic activity levels [33].
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4. Discussion

This is the first report of BC source apportionment conducted in Santiago, Chile that
includes the effects of lockdowns brought on by the SARS-CoV-2 pandemics. Hence, the
results reported here may be considered a baseline for future studies.

The total BC reductions associated with Santiago 2020 lockdowns—from 40% to
80%—are like the ones estimated for other cities worldwide: Delhi, India [25], up to 78%;
Kigali, Rwanda [29], 59%; Sommerville, MA, USA [28], 22–56%; Wuhan, China [31], 39%.
One limitation of our estimated reduction is that the baseline is not 2019 but 2015; since
ambient PM2.5 has been steadily decreasing in Santiago for the period 2015–2020 [48], this
means our estimates are upper bounds (in magnitude) of 2019–2020 BC reductions.

Regarding BC source apportionment during lockdown conditions, BCff is dominant
all year long, between 82 and 86% of total BC in Santiago. This is higher than in other cities
during lockdowns: 70% in Ahmedabad, India [30], 60–86% in Wuhan, China [31], 51–69%
in Delhi, India [25], 50% in Kiwali, Rwanda [29]. We ascribe this to the mild, Mediterranean
climate of Santiago, the large fleet of motor vehicles therein and the lower proportion of
wood-burning emissions as compared to the above cities.

The non-local contributions coming from the greater Santiago metropolitan area are
associated with the development of anabatic winds during daylight hours, so these contri-
butions are zero overnight; the spatial and temporal plots (Figures 5–8) show that FUSTA
methodology separates this contribution from the local sources. This novel approach cir-
cumvents the use of an air quality model to estimate how much BCff (or BCwb) originates
locally or is transported from upwind urban sources. In addition, the noisy fuzzy clus-
ter concept handles intermittent sources arriving at the monitoring site, which are local
emissions from residential cooking and heating; these are resolved from the other local
sources because their spatiotemporal patterns are different. This split of local, non-local and
intermittent contributions to ambient BCff and BCwb concentrations will facilitate further
air quality modeling studies for these ambient combustion tracer particles.

5. Conclusions

A 2020 baseline of ambient BCff and BCwb concentrations has been compiled for
Santiago, Chile, during the SARS-CoV-2 lockdown periods, at an urban site located on
the east border of the city. BCff is the dominant contribution all year long, accounting for
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more than 80% of total BC. During the more restrictive lockdowns, total BC decreased
by ~80% compared with a 2015 ambient BC campaign in the same part of the city; like-
wise, when lockdowns were relaxed, the decrease in total BC reached ~40% on the same
comparison basis.

A new methodology to resolve local and non-local BC sources has been developed.
This new methodology is based on a fuzzy clustering of ambient observations of BC and
four meteorological variables: wind speed and direction, temperature, and pressure. This
new methodology (named FUSTA) can resolve different spatiotemporal patterns (i.e., fuzzy
clusters) of ambient BC, which arise from different BC sources contributing to ambient
BC concentrations at the monitoring site. The methodology resolves, for instance, the
arrival of Santiago’s urban plume to the monitoring site due to the daylight anabatic wind
regime in Santiago’s basin. Besides, the methodology also handles intermittent sources like
residential heating and cooking, especially in the winter season.

The application of FUSTA methodology to ambient BCff and BCwb concentrations has
led to the result that local sources are dominant in both BC fractions: traffic and wood
burning sources, respectively, with 66% and 75%, respectively. The contributions from
Santiago’s urban plume arriving at the monitoring site increased towards the end of the year
when lockdowns were relaxed; on average, this contribution reached 14% of BCff and BCwb
concentrations. Intermittent residential heating and cooking sources contribute to 7% and
11% of BCff and BCwb concentrations, respectively. When these intermittent contributions
are added to the regular spatiotemporal patterns (clusters), the total contribution of local
residential heating and cooking sources reaches up to 20% and 86% for BCff and BCwb
concentrations, respectively.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijerph192417064/s1, Table S1: Database.csv, a database of ambient
BCff, BCwb, and meteorological variables. Macro S1: R_macros.zip, R-software macros to process
data and make the fuzzy clustering and post-processing results.
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Figure A1. Histogram of AAE values computed using Equation (1).

From this analysis, it follows that the estimated AAE for fossil fuel and wood burning
are: AAEff = 0.7 and AAEwb = 2.28, respectively. Using these exponents and applying
Equations (2)–(5), the hourly estimates of BCff and BCwb contributions are readily computed
for the whole campaign. Figure A2 shows a time plot of those hourly estimates. There is
a small number of negative values, which is caused by the extreme values in the above
histogram of AAE; when daily averages are computed, no negative BC contributions occur,
as shown below in Table A1.

Table A1. Statistical summary of daily average campaign results.

Statistic AAE (-) BCff (ng/m3) BCwb (ng/m3) BC (ng/m3)

Minimum 0.888 92 20 112
1st quantile 1.073 383 70 470

Median 1.148 565 95 668
Mean 1.151 671 123 794

3rd quartile 1.228 807 150 972
Maximum 1.598 2938 522 3257
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To help visualize the time variability of BCwb contributions, Figure A3 below shows
only BCwb at different time scales.
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