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Abstract: For the agricultural development of dumps, increase in land use efficiency and protection of
food security, to verify the safety, efficacy and sustainability of field-applied arbuscular mycorrhizal
fungi (AMF) inoculum, and to exclude the risk of potential biological invasion, in this study, we de-
termined the effect of AMF inoculation and intercropping patterns (maize–soybean) on the temporal
dynamics of soil parameters, native AMF communities and crop yields. AMF communities were
analyzed using Illumina MiSeq. A total of 448 AMF operational taxonomic units (OTUs) belonging to
six genera and nine families were identified. AMF inoculation treatment significantly improved the
yield of intercropping maize and increased the content of available phosphorus. AMF diversity was
significantly influenced by cropping pattern and growth stage, but not by the inoculation treatment.
Inoculation altered the AMF community composition in the early growth stage and facilitated a
more complex AMF network in the early and late growth stages. These results indicate that AMF
inoculation affects native AMF only in the early stage, and its impact on yield may be the consequence
of cumulative effects due to the advantages of plant growth and nutrient uptake in the early stage.

Keywords: AMF community composition; intercropping; coal mining dump; bioinvasive risk;
crop yields

1. Introduction

The Anthropocene, the present geological epoch defined by human footprints, has
wreaked havoc on the ecosystem and jeopardized the global food supply [1]. Coal mining
results in an abundance of ecological and environmental problems. Due to excessive coal
mining, vast areas of land and flora have been destroyed, resulting in changes to the soil
structure and physicochemical qualities of the soil, as well as the construction of large dump
sites [2,3]. However, during the process of dump formation, the original topography was
reshaped to form a flat platform, e.g., a “terraced field”, which is suitable for agricultural
development and increases in grain production. In our previous studies, we showed that
soil nutrients and microbial communities were restored to a greater extent in dumps with
more than 10 years of reclamation [4,5]. Therefore, these areas may meet the conditions
for agricultural development. However, extensive use of chemical fertilizers and water in
traditional agriculture is likely to cause secondary damage to the reclaimed land. Thus,
it is important to use more efficient fertilization programs and agricultural management
models for agricultural development in these areas.

Given the economic and environmental expenses associated with irrigation and chem-
ical fertilization, contemporary agriculture should use microbiomes to optimize production
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while minimizing input in the case of future environmental upheavals [6,7]. Traditional
large-scale agricultural operations place a heavy emphasis on water and chemical fertilizer,
while microbiomes play an important role in boosting plant absorption of soil water and
nutrients [6,8]. As well as contributing to increased crop yields, Arbuscular mycorrhizal
fungi (AMF) play a significant role in ecosystems (e.g., soil structure, nutrient conservation,
and plant stability in changing environments) and may lower the quantity of fertilizer
necessary for cost effectiveness [9].

AMF are a significant group of root-associated mutualists in the plant microbiome, and
they may develop mutualistic partnerships with over 80% of terrestrial plant species [10].
AMF exchange soil-derived nutrients for photosynthates from the host plant in this re-
lationship [10]. AMF relationships have been found in both field and laboratory studies
to improve soil nutrient status and plant growth in post-mining environments [11,12].
Because mycorrhizal associations can range from mutualism to parasitism depending
on environmental and species-specific factors [13], AMF could help to encourage more
mutualistic or parasitic partnerships. Currently, there is considerable controversy among
researchers about how native AMF communities respond to the addition of exogenous
AMF inoculum [14,15] and whether the application of AMF inoculum poses a bioinvasive
risk to the regional ecology [16,17]. Some studies have shown that AMF inoculation has
little or no effect on native fungal communities [18,19], whereas others have shown that
exogenous AMF inoculum can displace dominant native microbial taxa and cause distur-
bance to native microbial communities [20,21]. Scholars are more concerned about the
negative impact on plant productivity due to the reduction of soil biodiversity caused by
the spread of inoculated AMF to non-target areas [22,23]. Therefore, it is necessary to assess
the changes in native AMF communities after the application of AMF inoculum.

Intercropping, often known as polyculture or mixed cropping, is a common farming
strategy used across the world to prevent soil-borne plant pathogens from accumulat-
ing [24]. Intercropping strategies can improve the ecosystem’s agro-quality while also
assisting in the management of diseases, weeds, and pests [25,26]. This is mostly accom-
plished by antagonistic secondary metabolites produced by one plant root that successfully
inhibits the pathogen of another plant [27]. Increased yield, production sustainability,
ecosystem development, and environmental safety are all benefits of the intercropping
system. In an intercropping system, two or more crop species are cultivated at the same
time; they cohabit and interact with one another and with the agro-ecosystems [26].

Microbes’ temporal dynamics have been exploited to identify elements that influence
community organization and ecological functions [28–30]. Shifts in the diversity and com-
munity structure of AMF assemblages across time and space are linked to plant community
succession, anthropogenic activities, and changes in environmental conditions [31–35].

Current understanding of the effects of AMF inoculation is mainly based on short-term
greenhouse experiments, with more research on plant performance before and after AMF
inoculation [16], and less research on the sustainability of AMF inoculants under field
application conditions. To determine the safety, sustainability and effectiveness of using
AMF as biofertilizer in the agricultural development of open-pit coal mine dumps and to
exclude potential environmental risks and hazards, this study investigated the effects of
AMF inoculum on the community of native AMF and its coupling with soil factors under
different cropping patterns (monocrop and intercrop) during three periods of crop growth.
This study aims to improve crop yields and soil fertility by using biofertilizers that are
beneficial to the environment. The economic, ecological, and social benefits of coal mine
dumps can be achieved through the production of green, organic, and healthy products for
human consumption.

2. Materials and Methods
2.1. Study Area

The soil sampled for this research came from an opencast coal mine dump in the
Heidaigou mining region, Jungar Banner, Ordos City, Inner Mongolia, northern China
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(N 39◦43′–39◦49′, E 111◦13′–111◦20′). The soil texture is loess and covers the whole coal
field. The region is characterized by a typical medium-temperate semi-arid continental
climate, with an annual mean temperature of 7.2 ◦C, a maximum temperature of 38.3 ◦C,
and a minimum temperature of−30.9 ◦C. The four seasons have unique climatic conditions.
Annual precipitation totals 231−460 mm, with a mean of 404 mm. July through September
receives most of the precipitation, accounting for around 60% to 70% of the total annual
precipitation. The yearly mean evaporation is 2082 mm, and the annual mean sunlight
hours are 3119.3 h. The range of soil moisture during the crop growth period is 7.2–23.8%,
with a mean value of 13.8%.

2.2. Experimental Design

The experiment was initiated in the growing season of 2018–2019 at Heidaigou mining
area north dump 1260 platform west. The research used a two-factor split-plot design
with three replicates. The first factor was the inoculation treatment, which was designated
as CK treatment (control treatment without AMF inoculants) and AMF treatment (with
AMF inoculants). The AMF inoculants were created by inoculating sandy soils with
Funneliformis mosseae (a type of AMF) spores and extraradical mycelium generated in pot
cultures by maize plants. Extraradical mycelium had a density of 4.66 m·g−1 soil and spores
had a density of 66 spores·g−1 soil. The second factor was the cropping patterns, which
included: (i) monocropping of maize, (ii) monocropping of soybeans, and (iii) intercropping
of maize and soybeans. The plots were randomly arranged under the same inoculation
treatment. In total, there were 6 experimental treatments, including 2 inoculation treatments
and 3 cropping patterns, resulting in a total of 24 plots (four replicates for each plot) in this
study.

Each plot had an area of 10 m (width) × 20 m (length) (some plots had increased in
size due to the topography, Figure 1). Two rows of maize intercropped with four rows
of soybeans formed one strip in the intercropping plots, and each intercropping plot had
two strips. Zea mays L. ‘Chenghai No. 618’, and Glycine max L. ‘Zhonghuang No. 17’ were
selected for the study. Before sowing, a total of 80 kg ha−1 K2O (as K2SO4) and 120 kg ha−1

P2O5 [as Ca(H2PO4)2] was applied to each plot.
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2.3. Soil Sampling

In 2019, soil samples were collected on 15 June (jointing stage), 20 July (flowering
stage), and 3 September (harvesting stage). Five soil cores (3.5 cm in diameter and 20 cm
in depth) were randomly taken from the area immediately next to the plant roots in each
plot and were mixed to create a composite sample for analysis. Soil samples for DNA
analysis were transported from the field to the laboratory on ice, and then stored at −80 ◦C
before being processed for DNA extraction and high-throughput sequencing. All the
other samples were sieved (<2 mm), air dried and stored at 4 ◦C before processing for the
determination of physicochemical soil properties. A total of 96 samples (two inoculation
treatments × four cropping patterns × three sampling growth stages × four replicates)
were collected.

2.4. Edaphic Variables

Soil electrical conductivity (EC) and pH were determined using a glass electrode in the
[1: 5 (w/w)] suspension with a conductivity meter (DDS-307W; Shanghai Lida Instrument
Factory, Shanghai, China) or in the soil–water suspension [1: 2.5 (w/w)] with a pH meter
(PHS-3C; Shanghai Lida Instrument Factory, Shanghai, China). Alkaline phosphatase (ALP)
was measured using the methods described by Tarafdar and Marschner [36]. Total organic
carbon (TOC) was determined using a Vario Max element analyzer (Vario Max, Elementar,
Langenselbold, Hesse, Germany). Available phosphorus (P) and available potassium (K)
were assessed by inductively coupled plasma–optical emission spectrometry (ICP-OES,
Optima 5300DV; Waltham, MA, USA). NO3

−-N and NH4
+-N were determined using a

Continuous Segmented Flow Analyzer (SEAL, AutoAnalyzer 3; Norderstedt, Germany).
Glomalin was extracted from the soil samples, and the levels of easily extractable glomalin
(EEG) were assessed using a modified version of the Wright and Janos procedure [37,38].

2.5. Molecular Identification of AMF

A MoBio PowerSoil DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, CA, USA)
was used to extract soil microbial DNA from 0.1 g homogenized soil from each sample
according to the manufacturer’s instructions. The universal eukaryotic primer GeoA2
(5′-CCA GTA GTC ATA TGC TTG TCTC-3′) [39] and the specific primer AML2 (5′-GAA
CCC AAA CAC TTT GGT TTC C-3′) [40] were used for the first round of PCR by targeting
a small subunit (SSU) rDNA gene (yielding approximately 1000-bp amplicons), whereas
primer pairs NS31 (5′-TTG GAG GGC AAG TCT GGT GCC-3′) [41] and AMDGR (5′-CCC
AAC TAT CCC TAT TAA TCA T-3′) [42] with barcodes were used for the second round
of PCR (approx. 300-bp amplicons). After mixing the PCR products in similar density
ratios, they were purified. Following that, the library was constructed and the quality and
quantity of the samples were determined using a fluorometer (Qubit 2.0, Thermo Fisher
Scientific, Waltham, MA, USA) and a bioanalyzer system (2100, Agilent Corporation, Santa
Clara, CA, USA). The amplicons were purified and sequenced on an Illumina MiSeq PE300
platform (Illumina Corporation, San Diego, CA, USA).

2.6. Bioinformatics Analysis

The quality of the raw sequences was analyzed by FASTQC, and then sequences were
calculated using QIIME 2 v2019.7 [43]. Firstly, primer sequences were removed from the raw
sequences using the Cutadapt v1.9.1 [44], and low-quality reads were filtered out by excluding
ambiguous bases with an average quality score < 20 or read length < 200 bp. Secondly,
sequences were denoised into operational taxonomic units (OTUs) by DADA2 [45]. Finally,
the representative sequence for each OTU was screened for further annotation using a
custom taxonomic classifier to gather taxonomic information. The sequence was chosen
and compared to MaarjAM’s 18S rRNA gene database [46].
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2.7. Statistical Analysis

We estimated and visualized diversity indices, including the number of observed
species (Sobs), the Shannon–Wiener index, the Simpson index, and phylogenetic diversity
using R software (v.3.5.2, https://www.r-project.org/ (accessed on 10 May 2021)) via the
“phyloseq” package [47]. Histograms created by R software (v.3.5.2) through the “ggallu-
vial” package were used to visualize OTUs [48]. The permutational multivariate analysis
of variance (PERMANOVA) and non-metric multidimensional scaling (NMDS) analyses
were conducted using R software (v.3.5.2) via the “vegan” package [49], and the “adonis”
and “metaMDS” functions from the “vegan” package. The effect of edaphic variables on
the composition of AMF communities was quantified using the “envfit” function from the
“vegan” package. Principal coordinate analysis (PCA) based on Bray–Curtis dissimilarities
and random forest analysis were estimated and visualized by R software via the “microeco”
package [50]. Non-random co-occurrence analysis based on the SParse Inverse Covariance
Estimation for Ecological Association Inference (SPIEC-EASI) method was estimated using
R software via the “SpiecEasi” package [51]. Network analysis was carried out and fea-
ture values were estimated using Gephi software (v.0.9.2, https://gephi.org/ (accessed on
10 June 2021)). Spearman’s correlation coefficients were used to determine relationships
between edaphic variables and AMF diversity indices. The relationship between AMF
community composition, growth stages, inoculation treatments, cropping patterns, and
both edaphic variables and fungal diversity index was analyzed by the Mantel test. Results
from Spearman’s correlation analysis and the Mantel test were visualized using R software
via the “ggcor” package. Significant differences between edaphic variables and fungal di-
versity indices were assessed by three-way analysis of variance (ANOVA) using R software.
If the results from ANOVA were significant, comparisons of the means were examined by
multiple pairwise comparisons using Tukey’s honestly significant difference tests (p < 0.05)
on SPSS (v.20.0; IBM, Armonk, NY, USA).

3. Results
3.1. Effect of AMF Treatment and Cropping Pattern on the Yield of Maize and Soybean

The average yield of maize in all plots was 7.42 ± 1.88 (t ha−1), ranging from
5.60 ± 0.05 to 9.80± 0.04. The average yield of soybean in all plots was 0.68 ± 0.18 (t ha−1),
ranging from 0.49 ± 0.07 to 0.85± 0.05 (Figure 2, mean ± SD, n = 3). Two-way ANOVA
showed that cropping pattern, inoculation treatment and their interactions significantly
influenced maize yield (p < 0.05); whereas, only cropping pattern significantly influenced
soybean yield (p < 0.05). In the same cropping pattern, the yield of corn and soybean
under AMF treatment was higher than that under CK treatment (p < 0.05). The yield
of intercropping maize under AMF treatment was significantly higher than that under
CK treatment (p < 0.05). Under the same inoculation treatment (with or without AMF
treatment), the yield of maize in the intercropping group was significantly higher than
that in the monocropping group, while the soybean yield in the monocropping group
was significantly higher than that in the intercropping group (p < 0.05). These results
indicate that AMF treatment and cropping pattern affect the yield of maize and soybean
significantly.

https://www.r-project.org/
https://gephi.org/
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Figure 2. Yield under different cropping patterns and inoculation treatments in the harvesting stage.
Mono− and inter−maize were Zea mays L. ‘Chenghai No. 618’ in monocropping and intercropping,
mono− and inter−soybean were Glycine max L. ‘Zhonghuang No. 17’ in monocropping and inter-
cropping. Standard deviation is shown by the deviation bars. Significantly different are bars followed
by lowercase letters (p < 0.05). ns: p > 0.05, ***: p < 0.001.

3.2. Effect of AMF Treatment and Cropping Pattern on Edaphic Variables

Three-way ANOVA showed that the EC and NH4
+-N were significantly affected

by growth stage, cropping pattern, the interaction between growth stage and cropping
patterns, the interaction between growth stage and inoculation treatment, the interaction
between cropping patterns and inoculation treatment, and the interaction between growth
stage, inoculation treatment and cropping patterns (Table 1; p < 0.05). AP and NO3

−-N
were significantly affected by growth stage, inoculation treatment, cropping pattern, and
their interactions (p < 0.05). AP under the AM treatment was significantly higher than
under the CK treatment in the first stage with some cropping patterns (Table S1; p < 0.05).

Table 1. Three-way ANOVA showing the effect of growth stage, inoculation treatment, cropping
pattern, and their interactions on electrical conductivity (EC), pH, easily extractable glomalin (EEG),
Alkaline phosphatase (ALP), Total organic C (TOC), Available P (AP) available K (AK), NO3

−-N and
NH4

+-N.

Source of Variation Growth Stage (G) Inoculation
Treatment (I)

Cropping
Pattern (C) G × I G × C I × C G × I × C

EC <0.001 ≥0.05 <0.001 <0.001 <0.001 <0.001 <0.001
pH <0.01 <0.05 ≥0.05 <0.01 <0.001 ≥0.05 <0.001

EEG <0.001 ≥0.05 <0.001 <0.01 <0.001 ≥0.05 <0.05
ALP <0.001 ≥0.05 <0.001 ≥0.05 <0.001 <0.01 <0.05
TOC <0.05 <0.01 <0.05 ≥0.05 <0.001 <0.001 <0.001
AP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
AK ≥0.05 <0.001 <0.001 ≥0.05 ≥0.05 <0.001 ≥0.05

NO3
−-N <0.001 <0.05 <0.001 <0.01 <0.001 <0.01 <0.001

NH4
+-N <0.001 ≥0.05 <0.001 <0.01 <0.001 <0.001 <0.001

3.3. Effect of AMF Treatment and Cropping Pattern on the Native AMF

A total of 4,581,166 AMF sequences were obtained and matched to 448 AMF OTUs
(MaarjAM database). With bracketed relative abundances, these sequences represented the
following four families: Glomeraceae (83.4%), Claroideoglomeraceae (9.8%), Diversispo-
raceae (3.6%) and Paraglomeraceae (3.2%). These OTUs represented all four genera of the
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Glomeromycota division. Among the 448 OTUs, 3 belonged to Rhizoglomus, 47 belonged
to Claroideoglomus, 62 belonged to Diversispora, 58 belonged to Paraglomus, 70 belonged to
Septoglomus and 208 belonged to the Glomus genus. The frequency distribution histogram
of AMF species is shown in Figure 3.
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Figure 3. Column chart of the proportion of AMF species.

The relative abundance of Septoglomus viscosum VTX00063 was decreased in the growth
stages of monocropping maize, and intercropping soybean under AMF treatment and in
monocropping maize, intercropping soybean and intercropping maize under CK treatment.
The relative abundance of Funneliformis mosseae VTX00067 (inoculated AMF) was increased
in the growth stages of monocropping maize and intercropping maize under CK treatment.
The relative abundance of Diversispora sp. VTX00060 was increased in the growth stages
of the monocropping maize, intercropping soybean and intercropping maize under AM
treatment and in intercropping soybean maize under CK treatment, but it was decreased
in the growth stages of monocropping soybean maize under CK treatment. The relative
abundance of Paraglomus sp. VTX00446 was increased in the growth stages of the inter-
cropping soybean and intercropping maize under CK treatment. The relative abundance of
Claroideoglomus sp. VTX00193 was decreased in three growth stages of intercropping maize
under AM treatment and in monocropping soybean and intercropping soybean under CK
treatment, but it was increased in the growth stages of monocropping maize under CK
treatment.

Random forest analysis was performed to identify the high-dimensional biomark-
ers of AMF communities at the species level at different growth stages, cropping pat-
terns and under different inoculation treatments (Figure 4). The results showed that the
relative abundance of the Septoglomus viscosum VTX00063 was higher in the first stage,
Glomus sp. VTX00156, Glomus sp. VTX00409 and Glomus sp. VTX00195 were more abun-
dant in the second stage, whereas Glomus sp. VTX00060, Diversispora sp. VTX00306 and
Glomus sp. VTX00107 were more abundant in the final stage (Figure 4A). The relative
abundance of the Diversispora sp. VTX00060 and Glomus sp. VTX00156 were higher in
monocropping maize, Diversispora sp. VTX00306 was more abundant in intercropping
maize, Septoglomus viscosum VTX00063 was more abundant in monocropping soybean,
whereas Paraglomus sp. VTX00446 was more abundant in intercropping soybean (Figure 4B).
The relative abundance of Septoglomus viscosum VTX00063, Diversispora sp. VTX00060 and
Glomus sp. VTX00195 under AMF treatment was significantly higher than under CK treatment,
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but the reverse results were observed for Glomus sp. VTX00114, Paraglomus sp. VTX00446
and Glomus sp. VTX00100 (Figure 4C).
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3.4. Effect of AMF Treatment and Cropping Pattern on the Diversity of AMF Communities

The average Chao1 index was 58.05 ± 14.00, ranging from 46.25 ± 4.11 to 77.75 ± 9.07
(Figure 5). The average Shannon–Wiener index was 2.46 ± 0.43, ranging from 1.69 ± 0.35
to 3.16 ± 0.10. The average Simpson index was 0.82 ± 0.08, ranging from 0.64 ± 0.10 to
0.92 ± 0.01. The average phylogenetic diversity was 3.30± 0.45, ranging from 2.59± 0.33 to
4.04 ± 0.14. Three-way ANOVA showed that the AMF Chao1 index and Shannon–Wiener
index were significantly influenced by cropping pattern and growth stage (p < 0.05). The
Simpson index was significantly influenced by cropping pattern, growth stage and the
interaction between cropping patterns and growth stage (p < 0.05). Phylogenetic diversity
was significantly affected by the interaction between growth stage and cropping patterns
(p < 0.05, Figure 5). The AMF Chao1 index, Shannon–Wiener index, Simpson index and
phylogenetic diversity were not significantly different at different growth stages under
both cropping patterns. The AMF Chao1 index in intercropping maize was significantly
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higher than that in the monocropping soybean in the second stage under CK treatment.
The AMF Chao1 index in the second stage was significantly higher than that in the first and
final stages in monocropping and intercropping maize under both CK and AMF treatments.
The AMF Shannon–Wiener index was significantly higher in the second stage than in the
final stage in intercropping maize and soybean under both CK and AMF treatment. The
AMF Shannon–Wiener index in the second stage was significantly higher than in the first
and final stages in monocropping maize under AMF treatment. The Simpson index in the
second stage was significantly higher than that in the final stage in intercropping soybean
under AMF treatment. The temporal analysis showed that the AMF Chao1 index, the
Shannon–Wiener index and the Simpson index increased in the second stage and decreased
in the final stage under different cropping patterns and inoculation treatments (Figure 5).
However, phylogenetic diversity did not differ significantly between different growth
stages. These results indicate that the temporal dynamics of the AMF Chao1, Shannon–
Wiener and Simpson indices were not influenced by inoculation treatments or cropping
patterns.
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PERMANOVA analysis showed that the AMF community composition was signifi-
cantly affected by the growth stage (pseudo-F = 10.271, R2 = 0.092, p < 0.001), inoculation
treatment (pseudo-F = 2.035, R2 = 0.018, p < 0.05), cropping patterns (pseudo-F = 3.989,
R2 = 0.036, p < 0.01), the interaction between growth stage and inoculation treatment
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(pseudo-F = 2.113, R2 = 0.019, p < 0.05), and the interaction between growth stage and
cropping patterns (pseudo-F = 2.878, R2 = 0.026, p < 0.01). Similarly, PCoA revealed that the
composition of the AMF community was significantly different among different growth
stages, inoculation treatments and cropping patterns (Figure 6). Furthermore, the AMF
community composition in the first stage was significantly affected by inoculation treat-
ment. AMF community composition was similar in intercropping maize and monocropping
maize under CK treatment. It was also similar in intercropping maize and intercropping
soybean under AMF treatment. By contrast, AMF community composition in the second
stage was not significantly affected by inoculation treatment. AMF community composi-
tion differed significantly between the two cropping patterns under CK treatment. AMF
community composition was similar in intercropping soybean and monocropping maize
under AMF treatment. AMF community composition in final stage was not significantly
affected by inoculation treatment.
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3.5. Network Analyses

Glomus, Septoglomus, Diversispora, Claroideoglomus and Paraglomus were the main
groups of the AMF network, accounting for 31.83–46.23%, 8.89–21.36%, 4.85–20.39%,
9.52–17.92% and 2.22–10.13%, respectively (Figure 7). In AMF treatment, the nodes per-
centage of Diversispora was increased with the growth stages, with the maximum nodes
percentage observed in the first stage. The minimum value of AMF network nodes, edges,
average degrees (avgK), average path distances (GD) and network diameter (90–103, 72–83,
1.59–1.61, 2.24–2.69, 6–10, respectively) in the AMF treatment occurred in the second stages.
The maximum value of AMF network average clustering coefficient (avgCC) and het-
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erogeneity (0.09–0.23, 0.38–0.47, respectively) in the AMF treatment occurred in the final
stages and decreased with the growth stages. The AMF network modularity (0.79–0.91)
in AM treatment had a maximum value in the final stage and increased with the growth
stages. In CK treatment, the nodes percentage of Claroideoglomus was increased with the
growth stages, with the maximum observed in the first stage. The maximum value of AMF
network nodes, edges and heterogeneity (79–106, 59–87, 0.399–0.446, respectively) in CK
treatment occurred in the second stage and the first stage, which was higher than those in
the final stage. However, the AMF network avgK, GD, network diameter and centralization
(1.45–1.64, 1.69–3.20, 4–9, 0.019–0.022, respectively) in CK treatment had minimum values
at the second stage and the final stage, which was higher than those in the first stage.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 12 of 18 
 

 

1.59–1.61, 2.24–2.69, 6–10, respectively) in the AMF treatment occurred in the second 
stages. The maximum value of AMF network average clustering coefficient (avgCC) and 
heterogeneity (0.09–0.23, 0.38–0.47, respectively) in the AMF treatment occurred in the 
final stages and decreased with the growth stages. The AMF network modularity (0.79–
0.91) in AM treatment had a maximum value in the final stage and increased with the 
growth stages. In CK treatment, the nodes percentage of Claroideoglomus was increased 
with the growth stages, with the maximum observed in the first stage. The maximum 
value of AMF network nodes, edges and heterogeneity (79–106, 59–87, 0.399–0.446, re-
spectively) in CK treatment occurred in the second stage and the first stage, which was 
higher than those in the final stage. However, the AMF network avgK, GD, network di-
ameter and centralization (1.45–1.64, 1.69–3.20, 4–9, 0.019–0.022, respectively) in CK treat-
ment had minimum values at the second stage and the final stage, which was higher than 
those in the first stage. 

 
Figure 7. Overview of the networks under different growth stages and inoculation with node sizes 
being proportional to node degrees. 

3.6. Correlation Analyses 

The envfit on the NMDS plot indicated that AMF community composition was sig-
nificantly correlated with soil pH (R2 = 0.076), electrical conductivity (EC, R2 = 0.116), NH4+–
N (R2 = 0.262), NO3−–N (R2 = 0.451), available phosphorus (AP, R2 = 0.181), available potas-
sium (AK, R2 = 0.176), total organic carbon (TOC, R2 = 0.065), easily extractable glomalin 
(EEG, R2 = 0.216) and alkaline phosphatase (ALP, R2 = 0.111) (Figure 8a). The Mantel test 
and Spearman’s correlation test showed significant correlations among stages of edaphic 
variables, AMF diversity indices, AMF community composition, growth stages, inocula-
tion treatment, and cropping patterns (Figure 8b). The results also showed that AMF com-
munity composition had significant effects on EC, pH and EEG (p < 0.05). Growth stage 
had significant effects on all edaphic variables (p < 0.05) and AMF diversity indices (p < 

0.05) except for the phylogenetic diversity (PD). AMF treatment had significant effects on 
TOC, AP and AK (p < 0.05). Cropping patterns affected AK, NH4 + –N and NO3-–N signif-
icantly (p < 0.05). AMF treatment and cropping pattern had no significant effects on the 
AMF diversity index (p ≥ 0.05). The AMF Chao1 index was positively correlated with soil 
EC and pH (p < 0.05), and negatively correlated with NH4+–N and NO3-–N (p < 0.05). Soil 
pH positively influenced the AM fungal Shannon–Wiener index and Simpson index (p < 

0.05), whereas soil EEG was negatively correlated with the AMF Shannon–Wiener index 
and Simpson index (p < 0.05). 

Figure 7. Overview of the networks under different growth stages and inoculation with node sizes
being proportional to node degrees.

3.6. Correlation Analyses

The envfit on the NMDS plot indicated that AMF community composition was sig-
nificantly correlated with soil pH (R2 = 0.076), electrical conductivity (EC, R2 = 0.116),
NH4

+–N (R2 = 0.262), NO3
−–N (R2 = 0.451), available phosphorus (AP, R2 = 0.181), avail-

able potassium (AK, R2 = 0.176), total organic carbon (TOC, R2 = 0.065), easily extractable
glomalin (EEG, R2 = 0.216) and alkaline phosphatase (ALP, R2 = 0.111) (Figure 8a). The
Mantel test and Spearman’s correlation test showed significant correlations among stages
of edaphic variables, AMF diversity indices, AMF community composition, growth stages,
inoculation treatment, and cropping patterns (Figure 8b). The results also showed that
AMF community composition had significant effects on EC, pH and EEG (p < 0.05). Growth
stage had significant effects on all edaphic variables (p < 0.05) and AMF diversity indices
(p < 0.05) except for the phylogenetic diversity (PD). AMF treatment had significant effects
on TOC, AP and AK (p < 0.05). Cropping patterns affected AK, NH4

+ –N and NO3
−–N

significantly (p < 0.05). AMF treatment and cropping pattern had no significant effects on
the AMF diversity index (p ≥ 0.05). The AMF Chao1 index was positively correlated with
soil EC and pH (p < 0.05), and negatively correlated with NH4

+–N and NO3
−–N (p < 0.05).

Soil pH positively influenced the AM fungal Shannon–Wiener index and Simpson index
(p < 0.05), whereas soil EEG was negatively correlated with the AMF Shannon–Wiener
index and Simpson index (p < 0.05).
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Figure 8. (a) Nonmetric multidimensional scaling (NMDS) of fungal community. The arrows
represent fitted vectors of edaphic variables with distributions that are significantly correlated with
AMF community composition (* p < 0.05, ** p < 0.01, *** p < 0.001). (b) Relationships among growth
stage, inoculation treatment, cropping pattern, edaphic variables, AMF diversity indices and AMF
community composition. Pairwise comparisons of fungal diversity indices and edaphic variables,
with a gradient of colors denoting Pearson’s correlation coefficient. (* p < 0.05, ** p < 0.01, *** p < 0.001).
Growth stage, AMF community composition, cropping pattern and inoculation treatment were related
to fungal diversity indices and edaphic variables by the Mantel test. TOC: soil total organic, AP:
available phosphorus, AK: available potassium, EEG: easily extractable glomalin, PD: phylogenetic
diversity, Shannon: Shannon–Wiener index.

4. Discussion

In this study, we showed that AMF treatment increased the yield of maize and soybean,
which is consistent with previous results showing that seed inoculation with selected
isolates can increase plant root colonization and crop productivity [52–54]. The impact
of AMF inoculation on soil microbial biodiversity has recently become a hot issue of
discussion [15,55]. We showed that AMF treatment changed the native AMF community
composition in the early stage of growth but had no significant effect in the middle and
late stages of growth and did not affect AMF alpha diversity. These results indicate that
the exogenous inoculants used in this study did not significantly affect the native AMF
community. The interactions of various AMF isolates have been shown to be synergistic,
neutral, or antagonistic [56–58]. Moreover, indigenous AMF, which is better adapted to the
local conditions, can outcompete some of the inoculated fungi [59].

The dynamic link between plant dependency on mycorrhizal associations and nutrient
availability, eutrophication, or growth-limiting circumstances is largely responsible for the
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influence of edaphic variables on AMF community structure [60]. Physical and chemical
characteristics of the soil may also have a significant effect on the symbiotic connection
between plants and fungus [61]. We found that the AMF inoculation significantly affected
the soil total organic carbon, available P and available K, especially the content of avail-
able P. The establishment of mycorrhizal symbioses is helpful for the mobilization and
absorption of phosphorus by plants in AP-limited soils [10]. In general, the synergy and
complementarity of diverse modes of action might give additional advantages when soil
microorganisms with different properties are used together [62]. It is also conceivable that
the observed favorable benefits are attributable to the expansion of the mycorrhizal niche
in the environment [56,63].

The temporal patterns of AMF alpha diversity and community composition were
not affected by inoculation treatment or cropping patterns. This might be due to AMF’s
reproductive phenology being strongly constrained by evolutionary limitations [64]. Ad-
ditionally, AMF diversity increased significantly in the second stage, which could be due
to the soil nutrient depletion caused by plant consumption during this period. Traits that
allow for early colonization of host plants, such as the generation of more AMF spores,
may have significant tradeoffs with the reserved competitive ability [65]. Alternatively,
host plants may preferentially transfer incentives (in the form of increased photosynthate
allocation) to more advantageous partners, resulting in changes in AMF community tempo-
ral dynamics over time [66]. We found that neither cropping pattern nor AMF inoculation
disrupts the temporal dynamics of AMF community composition. The findings indicate
that AMF inoculation has no effect on the native AMF community composition and that the
manner of regulation of soil AMF community composition may be influenced by complex
environmental conditions that promote orderly succession through several growth stages.

In the network analysis, we observed that the nodes of some AMF taxa, e.g., Diversispora
and Claroideoglomus in the inoculation and control treatments, respectively, increased
throughout the growth stage. Glomus species’ dominance might be attributed to their
environmental adaptability, host specificity, functional significance, or ease of reproduction
in the soil environment [31,67,68].

Intercropping is a practice for improving soil fertility and crop yield. When maize
and soybeans are intercropped, maize has a substantial competitive advantage for soil
nutrition over soybeans, resulting in changes in soil parameters [69]. Subterranean root–
root interactions between intercropped crops might result in a heterogeneous distribution
of nitrogen in the soil profile, hence increasing N input into the cropping system through
symbiotic N fixation [70]. However, our investigation found that cropping pattern had a
substantial effect on the NH4

+–N and NO3
−–N content, which is consistent with earlier

research [71]. Changes in aboveground plant diversity can modify soil characteristics,
hence affecting microbial diversity in intercropping systems [72,73]. Numerous studies
have shown that intercropping may enhance the N, K, and TOC levels of the soil [74,75].
Furthermore, several variables, such as soil type, soil condition, plant species and nutrition,
have been observed to influence soil fungus diversity [76]. As a result, intercropping
systems have an effect on soil fungal diversity, which may alter in response to variations in
plant variety and soil fertility [77].

5. Conclusions

To explore the feasibility and sustainability of agricultural development on coal mine
dump land, we determined whether AMF inoculation and cropping patterns could affect
native AMF communities and the yield of maize and soybean. Our results demonstrated
that AMF diversity was significantly influenced by cropping pattern and growth stage, but
not by AMF inoculation. Notably, AMF inoculation altered the native AMF community
composition in the early growth stage, leading to a more complex AMF network structure
in the early and late growth stages. These results indicate that the effect of AMF inoculation
on native AMF may only exist in the early stage, and its impact on crop yield may be the
consequence of cumulative effects due to the advantages of plant growth and nutrient
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uptake in the early stage. Future research will focus on the impact of biofertilizers on the
nutritional quality of crops and their microbiochemical processes in the soil.

Supplementary Materials: The following supporting information can be downloaded at: https:
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