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Abstract: Understanding the impact of the urban built environment on taxis’ emissions is crucial for
sustainable transportation. However, the marginal effects and spatial heterogeneity of this impact is
worth noting. To this end, we calculated the taxis’ emissions on weekdays and weekends in Chengdu,
China, and investigated the impact of the built environment on taxis’ emissions by applying multi-
source data and several spatial regression models. The results showed that the taxis’ daily emissions
on weekdays were higher than the emissions on weekends. The time heterogeneity of hourly taxis’
emissions was not significant, while the spatial heterogeneity of taxis’ emissions was significant.
Except the HHI, the selected built environment variables both had a significant positive effect on
taxis’ emissions on the global scale. There was a marginal effect of some built environment variables
on taxis’ emissions, such as the density of bus stops and population density. The former exhibited
an inhibitory effect on taxis’ emissions only when it was greater than 9 stops/km2, while the latter
showed an inhibitory effect only in the range between 16,000 people/km2 and 22,000 people/km2.
There were some spatial variations in the effects of built environment factors on taxis’ emissions,
with HHI, road density, and accommodation service facilities density showing the most significant
variation. The marginal effect and spatial variation of the impact needs to be considered when
developing strategies to reduce taxis’ pollutant emissions.

Keywords: taxis’ emissions; built environment; marginal effect; spatial nonstationary; big data;
spatiotemporal

1. Introduction

With the rapid increase in greenhouse gas emissions, climate change has become an
issue of global concern. China has made active efforts to reduce greenhouse gas emissions
and has set “peak carbon dioxide emissions” and “carbon neutrality” targets. The number
of motor vehicles in China has surged from 16.09 million in 2000 to 302 million in 2021 [1,2].
It goes without saying that the rapidly growing carbon emissions from urban transport are
one of the great challenges for China to achieve peak carbon and carbon neutrality. Studies
on motor vehicle emissions have received the attention of many scholars [3–5]. Nowadays,
GPS devices that can record the real-time location of vehicles have been widely used in
the transportation field. Since GPS data can reflect information such as vehicle travel
speed, travel time, and occupant status, it helped us to analyze urban traffic characteristics
dynamically from both time and space dimensions [6,7]. GPS data on taxis were widely
used in research because of their easy access, various data contents, and high accuracy.
The driving speed recorded by GPS trajectory can reflect the traffic condition of urban
roads to a certain extent, and the trajectory data provide the possibility of the accurate and
convenient measurement of traffic emissions. Therefore, the analysis of the spatiotemporal
characteristics of traffic emissions through taxis’ trajectories has become one of the research
priorities [8].

Transportation emissions reduction is one of the common issues in the global response
to climate change, and it is also a way to achieve the sustainable development of cities
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and transportation. Scholars have explored the issue of transportation emissions mainly
from three perspectives: national energy, urban form, and community scale. Previous
studies at the national and city scales have yielded more consistent findings. In recent
years, traffic emission studies have focused on the impact of the built environment on
traffic emissions, but there are still some shortcomings. For example, differences or even
opposite conclusions from different cases; is there a marginal effect of built environment
factors on traffic emissions?

To this end, we investigated the marginal effects and spatial heterogeneity of the built
environment’s effects on taxicab traffic emissions by applying the least squares regression
(OLS) model, the geographically weighted regression (GWR) model, the random forest (RF)
model, and the partial dependence plot (PDP). Consequently, the results will benefit our
understanding of the mechanism of the built environment’s influence on traffic emissions
and provide guidance for low-carbon-oriented built environment planning.

2. Literature Review

Traffic emissions are one of the classic topics of concern for many scholars. There are
two main methods for measuring traffic emissions that are commonly used internationally.
The first one is the “top-down” approach based on fuel, which calculates the emissions
from energy consumption [9]. The second is a “bottom-up” approach based on the distance
travelled to calculate the emissions generated during vehicle travel [10]. The fuel-based
“top-down” approach is more suitable for national or regional emission measurements.
For taxicab traffic emissions, the distance-based “bottom-up” emission calculation method
is more reasonable. At present, the mainstream approach of taxi traffic emissions mea-
surement is to extract the characteristics of actual vehicle driving conditions based on
trajectory data and estimate them with the help of motor vehicle emission models. Existing
motor vehicle emission models are mainly categorized into models based on average speed
and models based on driving conditions, according to the simulation methods and re-
quired vehicle operating parameters [11]. The former mainly include COPERT (Computer
Programme to Calculate Emissions from Road Transport), EMFAC (Emission Factors),
and MOBILE (Mobile Source Emission Factor Model). The latter mainly include CMEM
(Comprehensive Modal Emission Model), IVE (International Vehicle Emission Model), and
MOVES (Motor Vehicle Emission Simulator). According to a comparison study proposed
by Jin et al. [12], the MOBILE model is more mature, highly applicable, and suitable for
emission measurement at the medium and macro levels; the COPERT model is less perfect
than the MOBILE model and more suitable for Europe and developing countries with a lack
of data; the MOVES model has the most perfect structure and can measure different levels,
but it is not easy to apply locally; the IVE model has strong micro-simulation capability,
good applicability, and high accuracy, but the model application is complicated; and the
CMEM model has strong usability and high accuracy, but has high requirements for the
quality of underlying data. In short, the decision of which emission model to use should be
based on different application scenarios.

Many scholars have applied vehicle emission models to estimate traffic emissions. For
example, Luo et al. (2017) analyzed the spatiotemporal characteristics of taxis’ pollutant
emissions in Shanghai, China using taxis’ GPS data [13]. Shang et al. (2014) inferred
vehicle pollutant emissions in Beijing, China by integrating taxis’ trajectory data as well as
geographic information data [14]. Zeng et al. (2007) identified the air pollutant emissions
of taxis based on their trajectory data and the artificial neural network approach [15].
Nyhan et al. (2016) predicted the spatiotemporal distribution of traffic pollutant emissions
in Singapore by utilizing taxis’ GPS data and a microscopic carbon emission model [4].
Liu et al. (2019) reconstructed the spatiotemporal distribution of urban vehicle pollutant
emissions by using multi-source data such as taxis’ GPS data, license plate recognition data,
and geographic information data [16]. In short, numerous studies have proved that taxis’
GPS data can effectively promote the transportation emission measurement by time and
provide auxiliary support for the formulation of urban emission reduction policies.
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The relationship between traffic emissions and the urban built environment has re-
ceived the attention of scholars both at home and abroad. According to the five Ds theory
proposed by Ewing et al. [17,18], built environment elements usually include density, de-
sign, diversity, distance to transit stops, and destination accessibility. Specific evaluation
indicators include population density, land-use mixture, road network density, bus-stop
density, distance to bus stops, distance to downtown, residential density, and metro sta-
tion density [17,19,20]. Some studies have pointed out that population density, land-use
mixture, road network density, and bus-stop density have a suppressive effect on traf-
fic emissions [21–23]. For example, Shim et al. (2006) stated that urban population size,
population density, and road density had a negative effect on urban traffic emissions [24].
Barla et al. (2011) claimed that traffic emissions were 27% higher in less densely populated
suburban areas than in more densely populated urban centers in Quebec, Canada [25].
Chai et al. (2011) found that land-use mixture and metro accessibility had a significant
effect on traffic emission reduction in Beijing, China and general public transport accessi-
bility had a weak contribution to traffic emissions [26]. Modarres et al. (2013) found that
residential commuting traffic emissions were lower in areas with high population density
in Los Angeles, USA [27]. Huang et al. (2014) noted that land-use mixture, road network
density, and bus routes density had a suppressive effect on residential travel emissions at
the community scale in Wuhan, China [28,29]. Zhang et al. (2020) found that the average
service area per school also had a significant negative effect on traffic emissions [30]. A
case study by Wu et al. (2019) for the Minneapolis St. Paul metropolitan area showed
that distance to the nearest transit stop, employment density, and land-use diversity had
a significant effect on traffic emissions [19]. Among the built environment indicators, the
distance of residential areas from work areas (job-dwelling distance) is also a significant
factor influencing traffic emissions. For example, Tong et al. (2012) concluded that reducing
the distance between work and residence was significant for reducing traffic emissions [31].
The imbalance in distance between residential and work areas has led to an increase in
traffic emissions due to increased long-distance commuting [32]. It can be seen that a
lot of research has been conducted on the relationship between the urban built environ-
ment and traffic emissions. However, the findings also varied considerably from region
to region [33,34]. It is generally accepted that traffic emissions are significantly greater in
densely populated settlements than in other settlements [35]. However, Brand et al. (2013)
found that the effect of population density on traffic emissions was relatively weak in UK
regions [34]. Most studies concluded that metro accessibility has a significant inhibitory
effect on traffic emissions, while general public transportation has no significant effect on
traffic emission reduction [36,37]. And yet, some studies have found that general public
transportation has a contributing effect on traffic emissions in Beijing, Guangzhou, and
Shanghai [38–40]. In addition, some scholars have even reached diametrically opposed
conclusions regarding the impact of the built environment of residence and workplace
on traffic emissions [41,42]. Zhu et al. (2019) found a nonlinear relationship between the
urban built environment and traffic emissions, and argued that the effect relationship
only played a significant role in a specific range [20]. In summary, the mechanism of the
built environment’s influence on traffic emissions varies considerably among the cases in
different study areas. In other words, the differences and even contradictions between
findings proposed by scholars were non-negligible.

Therefore, the following questions still urgently need to be answered. For example, is
the relationship between the urban built environment and taxicab emissions non-linear?
What is the marginal effect of the impact of the urban built environment on taxicab emis-
sions? How does the influence of the urban built environment on taxicab emissions vary
spatially? Answering the above questions can help achieve more efficient and accurate
results in low-carbon transportation practices.
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3. Materials and Methods
3.1. Study Area

Chengdu city is the capital of Sichuan Province, China. The total area of Chengdu
city is 14,335 square kilometers. The eastern region of Chengdu is the hinterland of the
Chengdu Plain, with elevations generally above and below 750 m and the lowest elevation
at 359 m. In 2014, the number of passenger trips by taxis in Chengdu was 253.25 million,
the number of passengers carried was 429.62 million, and the mileage operated was
221.505 million kms [43]. The taxis’ trajectory data involved in this paper were mainly
distributed within the area of the Chengdu Belt Expressway (also known as the Fourth
Ring Road). The location of the study area is shown in Figure 1.
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3.2. Data Source and Preprocessing

The data sources are shown in Table 1. The taxis’ GPS record data were provided by the
Intelligent China Cup, 2016 (https://challenge.datacastle.cn/v3/cmptDetail.html?id=175,
accessed on 12 November 2016). The fields of data include vehicle ID, latitude, longitude,
passenger load, date, and time. The raw data provided by the competition included
more than 1.4 billion GPS records of 14 million taxis in Chengdu, from 3 August 2014 to
30 August 2014. Duplicate and abnormal records were removed and the records in the
period 00:00:00~05:59:59 were dropped by the competition organization. The coordinate
system of the longitude and latitude fields is the WGS1984 coordinate system. In this
paper, the taxis’ trajectory data of 3 August 2014 and 4 August 2014 were selected for
taxis’ pollutant emissions calculation, which represent the characteristics on weekends
and weekdays, respectively. Among them, 3 August 2014 is a Sunday and 4 August 2014
is a Monday. The weather of Chengdu city on these two days is no rainfall and will not
affect the taxi-travel behavior of residents. Since the number of taxi trips is very low
between 0:00 and 6:00, the results measured in this paper can be considered approximately
equal to the emissions of the whole day. The administrative boundary vector data were
collected from the road traffic monitoring platform of Chengdu. The collection date was
June 2021, the data format is geojson, and the coordinate system is the WGS1984 coordinate
system. The POI data were obtained programmatically using the AMap Web Service
API (https://lbs.amap.com/, accessed on 7 March 2018), which includes fourteen POI
categories: catering facilities; scenic spots; public service facilities; companies; shopping
facilities; transportation facilities; financial facilities; educational, scientific, and cultural
facilities; residence district; living service facilities; sports and leisure facilities; medical
service facilities; government agencies; and accommodation service facilities. Duplicate

https://challenge.datacastle.cn/v3/cmptDetail.html?id=175
https://lbs.amap.com/
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and abnormal records were removed and a total of 274,175 records were left for subsequent
processing. The 100 m resolution population data were downloaded from the website of
WorldPop project (https://www.worldpop.org/, accessed on 17 July 2021). The bus station
data were extracted from the POIs. Finally, the coordinate systems of all spatial data were
unified as the WGS1984 UTM Zone 48N coordinate system.

Table 1. Data Source.

Data Source Format Resolution Time

Taxis GPS data Intelligent China Cup
(ICC), 2016 txt / 3 August 2014, 4

August 2014
POI data Amap csv / 2015

Population data WorldPop tiff 100 m 2014

Road data Road traffic monitoring
platform of Chengdu geojson / 17 July 2020

Administrative
boundary

Road traffic monitoring
platform of Chengdu geojson / 17 July 2020

3.3. Methods

The technical flowchart of our study is shown as Figure 2.
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3.3.1. The Setting of Traffic Analysis Zone (TAZ) Unit

The common traffic analysis units mainly include regular grid and road network units.
The 1000 m regular grid was chosen as the traffic analysis unit in our study. Compared
with the traffic analysis units obtained by using the road network, the regular grid can
reveal the spatial variation of transportation emission patterns more clearly. Moreover, the
number of traffic analysis units is larger, and the sample size is more adequate for regression
analysis. We created a 1000 m square grid using the create fishnet tool of ArcGIS software
(Esri, Redlands). Moreover, we used the toolsets in ArcGIS software (Esri, Redlands) such
as zoning statistics, spatial join, and field calculator to calculate the built environment
indicator values for each TAZ unit.

3.3.2. The Calculation Method for Taxis’ Traffic Emissions

First, the taxis’ GPS data were connected into the trajectory line of each vehicle accord-
ing to the vehicle license plate and time order. Then, the traffic emissions of trajectories
were calculated using a motor vehicle emission model. As mentioned above, the taxi GPS
data used in this paper were collected in August 2014. At that time, China’s motor vehicle

https://www.worldpop.org/
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emission standard was the China’s Stage IV emission standard (National IV standard),
which was almost the same as the European emission standard [44]. Therefore, the COP-
ERT model [45], which is applicable to the European emission standards, was applied to
calculate taxis’ traffic emissions in our study. In addition, many scholars have applied the
COPERT model to the study of urban motor vehicle emissions in China, confirming the high
accuracy of the model [40,46]. The COPERT model categorizes motor vehicle emissions
into thermal emissions and cold-start emissions according to the operating state of the
engine [47]. Since the cold-start emissions accounted for a relatively small percentage, only
the hot emissions of taxis were considered in this paper. The COPERT model calculates the
hot emissions for each trajectory segment based on the distance and emission factors [47].
The emissions of each trajectory line segment were calculated as follows:

Ek
j = Ck

j × lj (1)

where Ek
j denotes the emission of pollutant k on trajectory line segment j; lj is the distance

traveled by the vehicle on trajectory line segment j; and Ck
j is the emission factor of pollutant

k on trajectory line segment j, which is usually expressed as g·km−1. In the COPERT model,
the emission factor is closely related to the average speed, and its general formula is shown
as follows:

Ck
j =

ak × vj
2 + bk × vj + ck + dk/vj

ek × vj
2 + fk × vj + gk

(2)

where vj is the average speed (km·h−1) of a motor vehicle on trajectory line segment j, and
ak, bk, ck, dk, ek, fk, and gk are model parameters determined by vehicle type, emission
standard, fuel type and engine type, respectively. The COPERT model has calibrated these
parameters based on experimental data. Since the vast majority of taxis in our study were
gasoline vehicles that meet the limits of China’s Stage IV emission standard, the vehicle
type in the COPERT model was set to be a small passenger car, the fuel type to be gasoline,
and the emission standard to be Euro IV (comparable to China’s National IV standard).
The emissions analyzed in our paper include carbon dioxide (CO2), carbon monoxide (CO),
nitrogen oxides (NOX), and hydrocarbons (HC). The detailed model parameters are shown
in Table 2.

Table 2. COPERT emission model parameter table [46,47].

Emission Factor CO NOx HC CO2 *

ak 5.497 × 10−12 3.856 × 10−5 3.549 × 10−6 3.32 × 10−1

bk −3.342 × 10−2 −8.580 × 10−3 −1.393 × 10−4 −1.76 × 10
ck 5.110 5.773 × 10−1 4.738 × 10−2 1.45 × 103

dk −1.044 × 10−7 1.307 × 10−12 −9.098 × 10−14 1.76 × 10−11

ek 1.872 × 10−3 2.702 × 10−18 −6.442 × 10−15 8.01 × 10−4

fk −5.288 × 10−1 −1.308 × 10−13 7.726 × 10−13 9.13 × 10−2

gk 3.751 × 10 5.431 4.015 3.51
* The model parameters for the CO2 emission factor were obtained by transforming the energy consumption
factor (MJ·km−1) with a conversion factor of 69.3 g CO2·MJ−1.

3.3.3. Evaluation Indicators of the Built Environment

The popular “5Ds” model, which was proposed by Ewing and Cervero in 2010 [18],
was applied to evaluate the urban built environment. The 5Ds theory measures the urban
built environment from five aspects: design, diversity, density, distance to transit, and
destination accessibility. The specific indicators system is shown in Table 3.



Int. J. Environ. Res. Public Health 2022, 19, 16962 7 of 19

Table 3. The indicators of urban built environment based on “5Ds” principle.

Features Indicators Abbreviations

density population density DENpop

diversity land-use mixture HHI

design road density DENroad

distance to transit bus-stop density DENbus

different land use
types

different POIs
density

Catering POIs density: DENcat
Scenic spot POIs density: DENsce

Public service POIs density: DENpub
Company POIs density: DENcom
Shopping POIs density: DENsho

Transportation POIs density: DENtra
Financial POIs density: DENfin

Educational, scientific, and cultural POIs density:
DENedu

Residential district POIs density: DENres
Living service POIs density: DENliv

Sports and leisure POIs density: DENspo
Medical service POIs density: DENmed

Government agency POIs density: DENgov
Accommodation service POIs density: DENacc

Except for the land-use mixture, the remaining indicators were obtained using the
number divided by the area of the TAZ unit. The land-use mixture was measured by the
Herfindahl Hirschman Index [48], which can be calculated as follows:

HHIi =
k

∑
j=1

(
Aij

Ai
)

2

, (3)

where HHIi denotes the land-use mixture of unit i, Ai is the number of POIs in unit i, Aij is
the amount of POIs type j in unit i, and k is the categories of POIs. For ease of description,
a simplified name was given for each metric (see Table 3).

3.3.4. The Global Regression Model for the Impact of the Built Environment on Taxis’ Emissions

The OLS model is usually the initial step of regression between the independent
and dependent variables. The first step in the use of OLS models is the multicollinearity
test of the independent variables. The correlation coefficient was utilized to perform a
multicollinearity test with a threshold value of 0.8. The OLS regression model can be
described as follows:

yi =
n

∑
i=1

βixi + εi, (4)

where yi is the value of the dependent variable; xi(i = 1, 2, . . . , n) is the value of the
independent variable; βi(i = 1, 2, . . . , n) is the coefficient of regression model; and εi is
the error term of the model. The OLS model is a global regression model, which is usually
used to identify the significant built environment variables. In our study, the Python mod-
ule named statsmodels (https://www.statsmodels.org/stable/index.html, accessed on
16 January 2022) was applied to perform the OLS regression analysis. Compared with week-
days, people’s travel behavior is more random during weekends, and the corresponding
spatiotemporal characteristics of taxis’ traffic emissions are more unpredictable. Therefore,
we chose the taxis’ emissions during weekends as the dependent variable and performed
spatial regression analysis (including the global and local regression models) in our study.

https://www.statsmodels.org/stable/index.html
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3.3.5. The Marginal Effect Model for the Impact of the Built Environment on Taxis’ Emissions

The marginal effect is derived from economics and refers to the new output or benefit
from successively increasing the input of a factor when other inputs remain constant. In
economics, there is generally a law of diminishing marginal utility, which means that the
marginal utility decreases as the input is continuously increased. Marginal effects respond
to nonlinear relationships between variables and are found in a wide range of fields. In our
study, we applied the random forest (RF) algorithm to explore the nonlinear relationship
between the built environment and taxis’ traffic emissions, and analyzed the marginal
effects of the built environment’s impact on traffic emissions using partial dependency
plots (PDP). The PDP is a global approach to inferring relationships between independent
and dependent variables using the dataset. The PDP shows whether the relationship
between labels and features is linear, monotonic, or more complex. The Python machine
learning module Scikit-learn (https://scikit-learn.org/stable/, accessed on 12 April 2022)
was applied to perform RF regression analysis and illustrate partial dependency plots.

3.3.6. The Local Regression Model for the Impact of the Built Environment on Taxis’ Emissions

As we know, the value of the regression coefficient estimated by the OLS model is
the average value of the entire study area, which cannot reflect spatial variation in the
regression parameters. Spatial variation will lead to the spatial nonstationary relationship
that affects the accuracy of regression results [49]. Therefore, the spatial nonstationary
relationship needs to be addressed by applying local regression techniques such as the
GWR model [50–52]. The basic GWR model can be expressed as follows:

yi = β0(ui, vi) +
m

∑
k=1

βk(ui, vi)xik + εi, (5)

where yi is the value of the dependent variable at position i; xik (k = 1, 2, . . . , m) is the
value of the independent variable at position i; (ui, vi) are the coordinates of position i;
β0(ui, vi) is the intercept term; βk(ui, vi)(k = 1, 2, . . . , m) is the coefficient of regression
model; and εi is the error term of the model. The software developed by Oshan T.M et al. [53]
(https://sgsup.asu.edu/sparc/multiscale-gwr, accessed on 8 February 2022) was applied
to perform the GWR regression analysis. The spatial kernel of GWR regression was
Fixed Gaussian, bandwidth search criterion was Golden section, the model type was
Gaussian model, and the optimization criterion was AICc. The map of GWR coefficients
was illustrated using the GeoPandas library, which was an open-source project to make
working with geospatial data in python easier (https://geopandas.org/en/stable/).

3.3.7. Evaluation Metrics of Regression Model

The adjusted R2 (adj. R2), residual sum of squares (RSS), Akaike information criterion,
and corrected (AICc) [54] were applied to evaluate the regression results. The adj. R2 can
be interpreted as the proportion of the variance of the dependent variable covered by the
regression model. The closer its value is to 1, the better fitting the performance of the model.
The RSS measures the level of variance of the error term or residuals of the regression
model. The lower the RSS value, the better the regression model is at fitting the observed
data. The AICc can be used to measure the practicality and complexity of the model. The
AICc is not an absolute measure of goodness of fit, but is useful for comparing models that
apply to the same dependent variable and have different explanatory variables. Once the
difference between the AICc values of two models is greater than 3, the model with the
lower AICc value will be considered the better model [52].

4. Results and Discussion
4.1. Spatiotemporal Characteristics of Taxis’ Pollutant Emissions

The total taxis’ emissions between 06:00 am and 23:00 pm on weekdays were 193,729.82 kg,
of which CO pollutant emissions were 123.53 kg, NOX pollutant emissions were 51.40 kg,

https://scikit-learn.org/stable/
https://sgsup.asu.edu/sparc/multiscale-gwr
https://geopandas.org/en/stable/
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HC pollutant emissions were 8.37 kg, and CO2 pollutant emissions were 193,546.52 kg. The
total taxis’ emissions between 06:00 am and 23:00 pm on weekends were 172,721.87 kg, of
which CO pollutant emissions were 117.06 kg, NOX pollutant emissions were 44.86 kg, HC
pollutant emissions were 7.72 kg, and CO2 pollutant emissions were 172,552.22 kg. It can
be seen that the emissions of four pollutants were greater during weekdays than during
weekends. We speculated that the reason may be mainly due to the more random travel
behavior and higher average taxi travel speed during weekends. As we know, compared
to weekdays, residents’ travel behavior on weekends is not constrained by commuting,
the destinations of travel are more diverse, and the distribution of travel behavior over
time is characterized by more randomness. Of course, the results in this paper are only
based on sample data collected in two days, which may have the problem of small sample
size. However, our finding about the temporal characteristic of taxis’ pollutant emissions
is similar with a study performed by Liu et al. over a period of 9 days (22–30 June 2015)
in Hangzhou, China [16]. The estimated hourly pollutant emissions from taxis during
weekends and weekdays (represented by 3 and 4 August 2014, respectively) are shown in
Figure 3.
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Figure 3. Hourly emission characteristics between 6:00 am and 23:00 pm.

As can be seen from Figure 3, taxis’ emissions exhibited very similar characteristics
on weekdays and weekends. In order to avoid redundancy, the time characteristics of
emissions will be analyzed using weekends as an example. First, emissions from taxis
increased rapidly between 06:00 am and 10:00 am, peaking at 10:00 am. Then, it decreased
between 10:00 am and 12:00 am. Moreover, emissions remained relatively stable between
13:00 pm and 18:00 pm, with a peak at 16:00 pm during this period. Finally, emissions
continued to rise slightly between 19:00 pm and 22:00 pm, and then dropped sharply at
23:00 pm. To facilitate the analysis, 06:00 am to 23:00 pm was divided into three time
periods: morning (06:00 am to 12:00 am), afternoon (12:00 am to 18:00 pm), and evening
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(18 pm to 23:00 pm). The emissions in the three periods were calculated and the resulting
violin diagrams are illustrated in Figure 4.
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Figure 4. The violin diagram of taxis’ emissions.

As can be seen from Figure 4, there were similarities and differences in the statistical
distribution of emissions in the three time periods during weekends and weekdays. The
total taxis’ pollutant emissions of more than 50% of TAZ units in the study area were less
than 100 kg and more than 75% of TAZ units were less than 700 kg. Among the three time
periods, the emission distribution was the most discrete in the afternoon period and the
emission peak value was the largest among the three time periods. During the weekend,
the peak emissions in the morning period were the smallest among the three time periods.
During weekdays, the peak emissions during the evening period were the smallest among
the three time periods. Taxis’ pollutant emissions were significantly lower during weekend
mornings compared to weekdays. These results revealed the characteristics of taxi traffic
behavior of Chengdu residents at different time periods during weekdays and weekends.
In addition, these results are similar with Zhang’s study in Beijing, China. In detail,
Zhang et al. found that the spatiotemporal carbon emissions and travel patterns in Beijing,
China differ between weekdays and weekends, especially during morning rush hours [39].
In order to further reveal the differences in taxis’ pollutant emissions throughout the day
for each TAZ unit, the spatial distribution of taxis emissions on weekday and weekend are
illustrated in Figure 5.

As can be seen from Figure 5, the emissions of four pollutants in the study area ex-
hibited a similar distribution. The high-emission areas were mainly concentrated in the
proximity of the Chengdu second Ring Road and the Chengdu second Elevated Ring Road,
and Shudu Avenue. Among them, the taxis’ pollutant emissions in the areas including
Fuqing Road interchange, the third section of the east of the second Ring Road, the inter-
section of Yusha Road and a section of Hongxing Road, and the intersection of the third
section of the west of the first Ring Road and Yingmen Road were relatively high. The
actual traffic conditions in the study area showed that the Chengdu second Ring Road and
the Chengdu second Elevated Ring Road, as an important traffic ring road in Chengdu city,
has a very high daily traffic flow, with congestion in the morning and evening peaks being
more serious. There are a large number of residential areas, schools, hospitals, and traffic
hubs along the Chengdu second Ring Road and the Chengdu second Elevated Ring Road,
such as the Chengdu Railway Station and Southwest Jiaotong University (Jiuli Campus) in
the northern section of the second Ring Road, and the Chengdu Sixth People’s Hospital and
the University of Electronic Science and Technology (Shahe Campus) in the eastern section
of the second Ring Road. The taxi flow in these locations is usually great, resulting in higher
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taxis’ pollutant emissions in this section. The pattern of higher taxis’ pollutant emissions
is similar with the pattern in the research by Han et al. [55]. Han et al. illustrated the
pattern of online car-hailing pollutant emissions in Chengdu, China in a 500 m grid scale
by using the Didi on online car-hailing trip data in 2016. This result indicates a high degree
of similarity between the cold hotspot areas for traditional taxi and online car-hailing
trips in Chengdu. Shudu Avenue, which runs through the central city of Chengdu, has
a large number of commercial centers and tourist attractions along its route, including
Tianfu Square, Sichuan Science and Technology Museum, MaoYe Department Store, Jin-
Guancheng Department Store, Chengdu Museum, and Chunxi Road. These commercial
centers and tourist attractions attracted a large number of tourists and local residents,
resulting in the increase of taxi pollutant emissions near Shudu Avenue. Some sections
of intersections (interchanges), which act as important nodes connecting traffic flow in all
directions, will inevitably bring huge taxi pollutant emissions in this area. In terms of the
overall pattern, the spatial heterogeneity of taxis’ pollutant emissions in the study area was
relatively significant.

Int. J. Environ. Res. Public Health 2022, 19, 16962 11 of 20 
 

 

Figure 4. The violin diagram of taxis’ emissions. 

As can be seen from Figure 4, there were similarities and differences in the statistical 

distribution of emissions in the three time periods during weekends and weekdays. The 

total taxis’ pollutant emissions of more than 50% of TAZ units in the study area were less 

than 100 kg and more than 75% of TAZ units were less than 700 kg. Among the three time 

periods, the emission distribution was the most discrete in the afternoon period and the 

emission peak value was the largest among the three time periods. During the weekend, 

the peak emissions in the morning period were the smallest among the three time periods. 

During weekdays, the peak emissions during the evening period were the smallest among 

the three time periods. Taxis’ pollutant emissions were significantly lower during week-

end mornings compared to weekdays. These results revealed the characteristics of taxi 

traffic behavior of Chengdu residents at different time periods during weekdays and 

weekends. In addition, these results are similar with Zhang’s study in Beijing, China. In 

detail, Zhang et al. found that the spatiotemporal carbon emissions and travel patterns in 

Beijing, China differ between weekdays and weekends, especially during morning rush 

hours [39]. In order to further reveal the differences in taxis’ pollutant emissions through-

out the day for each TAZ unit, the spatial distribution of taxis emissions on weekday and 

weekend are illustrated in Figure 5. 

 

Figure 5. The emission distribution map (unit: kg). 

As can be seen from Figure 5, the emissions of four pollutants in the study area ex-

hibited a similar distribution. The high-emission areas were mainly concentrated in the 

proximity of the Chengdu second Ring Road and the Chengdu second Elevated Ring 

Road, and Shudu Avenue. Among them, the taxis’ pollutant emissions in the areas includ-

ing Fuqing Road interchange, the third section of the east of the second Ring Road, the 

intersection of Yusha Road and a section of Hongxing Road, and the intersection of the 

third section of the west of the first Ring Road and Yingmen Road were relatively high. 

The actual traffic conditions in the study area showed that the Chengdu second Ring Road 

and the Chengdu second Elevated Ring Road, as an important traffic ring road in 

Figure 5. The emission distribution map (unit: kg).

4.2. Global Impact of the Built Environment on Taxis’ Emissions and Its Marginal Effect

First, the initial independent variables with a correlation coefficient greater than
0.8 were excluded. The remaining variables for modelling were DENbus, HHI, DENpop,
DENroad, DENcom, DENsce, DENacc, and DENmed. Then, eight variables were subjected to
OLS regression analysis. The adjusted R2 for OLS regression model was 0.673, indicating
that the goodness of fit was satisfactory. The regression results (see Table 4) showed that
the effects of these eight variables were significant, at least in the 0.05 level. The AICc value
and RSS value of the regression model were 1023.397 and 189.551, respectively. This result
is consistent with some previous studies. For example, Wu et al. found that three built
environment factors have the strongest influences on CO2 emissions in the Minneapolis-
St Paul twin cities area: distance to the nearest transit stop, job density, and land-use
diversity [19]. However, there are also inconsistencies. For example, Yang et al. indicated
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that for different trip purposes, the effects of built environment elements on travel-related
CO2 emissions were not consistent in Guangzhou, China. In particular, the role of distance
to city public centers, residential density, and bus-stop density for commuting trips were
likely to be different from trips taken for other purposes [33]. The detailed regression
results are shown in Table 4.

Table 4. The OLS regression result of independent variables.

Variable Coefficient Std.Error t-Statistic Probability

CONSTANT 0.000 0.024 0.000 1.000
DENbus 0.080 0.037 2.166 0.031 **

HHI −0.080 0.030 −2.676 0.008 *
DENpop 0.167 0.028 6.079 0.000 *
DENroad 0.154 0.028 5.547 0.000 *
DENcom 0.147 0.029 5.036 0.000 *
DENsce 0.116 0.028 4.138 0.000 *
DENacc 0.228 0.030 7.662 0.000 *
DENmed 0.262 0.033 7.992 0.000 *

* Significant in the 0.01 level; ** significant in the 0.05 level.

The RF regression analysis was performed using eight significant variables to obtain
importance rankings of independent variables and plot PDPs. First, all sample data were
divided into a training set and a test set in the ratio of 9:1. Then, the GridSearchCV function
was applied to the training set to obtain the best model estimation. The specific parameters
of the best model estimation were as follows: number of estimators was 700, max_depth
was 10, oob_score was false, and bootstrap was true. Finally, the best model estimation
was applied to the sample set for regression analysis. The adjusted R2 of the regression
result was 0.884, which was significantly higher than the result of the OLS model. The
ranking of the importance of eight independent variables was consistent with the ranking
of coefficients (absolute values) in the OLS model results. The PDP diagrams of the effects
of eight built environment indicators on traffic emissions are shown in Figure 6.
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The subplots in Figure 6 represent the changes in taxis’ emissions when only one
variable is changed while holding the other variables constant. From Figure 6, it can
be seen that there was a non-linear relationship between built environment factors and
taxis’ emissions. This finding is consistent with some previous studies, such as that of
Wu et al. which claimed that people should examine threshold effects of built environment
elements on travel-related carbon dioxide emissions in the Minneapolis-St Paul Twin Cities
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area [19]. In detail, the densities of bus stops, companies, accommodation facilities, and
the population have both promotion and inhibitory effects on traffic emissions. When the
density of bus stops was less than 9 stations per square kilometer, taxis’ traffic emissions
showed a rapid increase. The taxis’ pollutant emissions dropped slightly when the density
of bus stops was greater than 9 stations per square kilometer. We speculated that mitigation
of taxis’ pollutant emissions would only be possible if the density of bus stops was more
than 9 stops per square kilometer. This pattern is not consistent with Wu’s study in
the Minneapolis-St Paul twin cities area. In detail, Wu et al. found that when there are
fewer than 20 stops within a half-mile buffer of a residence, the number of stops shows a
weak association with CO2 emissions. Beyond this range, CO2 emissions begin to show a
substantial decrease as the number of stops increases [19].

Taxis’ pollutant emissions showed a rapid decrease as the HHI was in the range from
0.2 to 0.3. However, taxis’ emissions remained almost constant when the HHI exceeded
0.3. Therefore, we believe that the aim of reducing taxis’ pollutant emissions cannot be
achieved by simply pursuing an increase in land-use mixture. This negative relationship
is consistent with many studies, such as from Wang [56]. However, the threshold of
HHI in our study is different from the threshold (from 0.4 to 0.7) of HHI in the study by
Wu et al. [19]. The inhibitory effect of population density on taxis’ pollutant emissions was
mainly found in three density intervals. The most significant inhibitory effect was found
in the range of 16,000 people/km2 to 22,000 people/km2. This pattern is not consistent
with studies performed by Stevens and Wu [19,57]. For example, Wu et al. found that
the effect of population density reaches a low point at about ten people/acre and then
slowly increases [19]. Accordingly, we suggested that this marginal effect should be taken
into account when adjusting the regional population density for taxi pollutant emission
reduction purposes.

The taxis’ pollutant emissions remained almost constant as the road density was less
than 5 km/km2, and it increased exponentially when the road density exceeds 5 km/km2.
The slight inhibitory effect of company density on taxis’ pollutant emissions were only
found in two intervals. The former was less than 20 companies per square kilometer, and
the latter was from 55 companies/km2 to 75 companies/km2. A slight inhibitory effect of
accommodation facilities density on taxis’ pollutant emissions was only found in the range
of 18 per km2 to 28 per km2. In the range of sample values, the density of medical service
facilities had a predominantly facilitative effect on taxi emissions. The growth rate of taxis’
pollutant emissions decreases significantly when the density of medical facilities exceeds
55 per square kilometer. In summary, the effects of the built environment indicators on taxis’
pollutant emissions were complex, and the marginal effects should not be ignored. The
inconsistencies between our findings and other studies may be due to differences in study
area, data type, nonlinear regression models, unit of measurement, and so on. For example,
we applied the RF algorithm, while Wu et al. applied the gradient boosting decision tree
algorithm. However, understanding the laws of the built environment’s effects on taxis’
pollutant emissions can provide more accurate references for local authorities to develop
traffic emission reduction measures.

4.3. Spatial Variation in the Impact of the Urban Built Environment on Taxis’ Emissions

The diagnostic information of OLS model and GWR model is shown in Table 5.

Table 5. The diagnostic information of two models.

Model Adj.R2 RSS AICc Moran’s I of Residual Z normal p Value

OLS 0.673 189.551 1023.397 0.282 13.758 0.000 *
GWR 0.854 67.677 711.946 −0.004 −0.118 0.905

* Significant in the 0.01 level.

As shown in Table 5, the residual distributions of OLS regression results have sig-
nificant spatial autocorrelation, indicating the existence of spatial nonstationarity in the
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relationship between the urban built environment and taxis’ pollutant emissions. Therefore,
the GWR model needs to be applied to deal with this spatial nonstationarity. In short,
the fitting result of the GWR model was more reliable and robust than the result of the
OLS model. The spatial kernel bandwidth of the GWR model results was 2217.87 m. The
summary statistics for GWR parameter estimation results is shown in Table 6.

Table 6. Summary statistics for GWR parameter estimates.

Variable Mean STD Min Median Max

DENbus 0.023 0.134 −0.277 0.016 0.314
HHI −0.167 0.299 −1.517 −0.026 0.065

DENpop 0.140 0.142 −0.040 0.101 0.717
DENroad 0.214 0.222 −0.063 0.125 0.829
DENcom 0.105 0.156 −0.226 0.081 0.706
DENsce 0.060 0.096 −0.197 0.039 0.398
DENacc 0.244 0.244 −0.072 0.155 1.147
DENmed 0.099 0.156 −0.286 0.101 0.450

As can be seen from Table 6, the standard deviation of estimated coefficients for
eight built environment indicators were higher than 0.1, besides the DENsce. It can be
inferred that the estimated coefficient values of indicators are statistically discrete. In other
words, the spatial variations in the effect of the urban built environment on taxis’ pollutant
emissions were significant. The indicator with the greatest degree of spatial variation in its
effect was HHI, and the smallest was DENsce. The estimated coefficients map of eight built
environment indicators is shown in Figure 7.
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The bus-stop density’s effect on taxis’ emissions showed an overall pattern that shifts
from an inhibition effect in the central region to promotion effect in the peripheral region.
In the central part of the study area and the areas along the northern part of the fourth
ring road, the effect of bus-stop density on taxis’ pollutant emissions was negative. Due to
the high density of bus stops in this region, there was a competitive relationship between
bus and taxi that suppressed the traffic emissions from taxi trips. In the remaining areas
along the fourth ring road, the effects of bus-stop density were mainly positive. It can
be speculated that taxi travel is usually generated near the bus stations in this area, thus
leading to an increase in taxis’ pollutant emissions.

Land-use mixture has a predominantly inhibitory effect on taxis’ pollutant emissions,
showing a circling pattern with a gradual decrease in inhibitory effect from the inside out.
Except for the area along the western part of the fourth ring road, the effect of population
density on taxis’ pollutant emissions showed a general pattern of gradual increase from the
inside to the outside. The promoting effect was most obvious in the southwestern part of
the study area. The effect of road network density on taxis’ pollutant emissions showed an
overall pattern of decreasing from the inside out. The promotion effect of road network
density was most significant in the region within the second ring road. The area within
the second ring road belongs to the downtown area of Chengdu, which has dense roads,
convenient transportation facilities, and bustling business, thus bringing a strong demand
for taxi trips.

The effect of company density on taxis’ pollutant emissions was both positive and
negative. The promoting effect was mainly found in the central and southeastern parts of
the study area, and the inhibiting effect was mainly found in the region along the western
and eastern parts of the fourth ring road. To facilitate the analysis, we use company density
to represent employment density in our study. The central and southeastern part of the
study area is the preferred employment area due to its developed economy, high land-use
mixture, and excellent transportation infrastructure. The increase in employment density in
this region will attract more employed people, resulting in higher taxi pollutant emissions.
In the southwest and east of the study area, the employment density was relatively low,
and residents in this region may have long distances to commute. It can be speculated that
there was some separation of jobs and residences in the study area.

The effect of scenic spots density on taxis’ pollutant emissions was both positive and
negative. In the area along the southern and eastern parts of the fourth ring road, the public
transportation is more developed than other regions. The transportation mode of tourists
visiting these places tends to be public transport, thus leading to an inhibiting effect on
taxis’ travel emissions. The transportation mode of tourists visiting the scenic spots in the
western and southern regions of the study area tends to be private cars or taxis due to the
insufficient public transportation facilities. Therefore, the higher density of scenic spots in
this area will lead to the increase of pollutant emissions from taxi trips. Accommodation
service facilities, which include hotels, apartments, and so on, serve mainly tourists of
Chengdu. The most significant contribution of accommodation service facilities to taxis’
pollutant emissions was found in the north, northeast, and southwest of the study area. In
addition, the area shape with the most significant promoting effect looked like the letter
C. The higher density of accommodation service facilities in these areas will bring more
temporary residential population, thus resulting in higher taxi pollutant emissions.

The effect of medical service facilities density on taxis’ emissions was also both positive
and negative. The inhibitory effect was mainly found in the northern and southeastern
regions, and the promoting effect was mainly found in the central and southern regions.
The area shape with the most significant promoting effect was similar with the Greek
alphabet gamma. We speculated that since high-grade hospitals in Chengdu were mainly
located in these areas, they were more irreplaceable in the candidates of residents’ travel
destinations [58], thus bringing higher taxi pollutant emissions. Our findings confirmed
again that the spatial variations in the effect of the urban built environment on taxis’
pollutant emissions should not be ignored.
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4.4. Policy Recommendations for Reducing Taxis’ Emissions

Based on the influence law of bus-stop density on taxis pollutant emissions, it is
recommended to optimize the layout of bus routes and stops. Especially in the west and
southeast of the study area, priority should be given to improving the density of bus stops.

1. According to the influence law of the density of employment areas on taxis’ pollutant
emissions, we propose to enhance the proximity configuration of residential areas to
employment areas, especially in the eastern and southeastern regions of the study
area. By controlling the average employment-dwelling distance to a distance suitable
for public transportation travel (5 km–15 km), the proportion of long-distance travel
is reduced, thus reducing taxis’ pollutant emissions.

2. According to the influence law of scenic spots density on taxis’ pollutant emissions,
we recommend increasing the number of bus and metro stations in the eastern and
southwestern regions of the study area to reduce the long-distance traffic emissions
caused by citizens living in the peripheral areas who visit such places by taxi. Accord-
ing to previous research results, the metro lines can effectively reduce the pollutant
emissions caused by taxis [59]. Therefore, we recommend that priority should be
given to improving the coverage level of metro stations.

3. The marginal effect of the impact of the built environment on taxis’ pollutant emissions
needs to be considered when developing a low-carbon strategy. For example, the
density of bus stops has a suppressive effect on taxis’ pollutant emissions only when
it is greater than 9 stops/km2. Similarly, land-use mixture has a suppressive effect
on taxis’ pollutant emissions only when it is lower than 0.3. Therefore, we argue
that it may not be possible to reduce taxis’ pollutant emissions by simply seeking
to increase the land-use mixture. The threshold of land-use mixture should not be
ignored. In addition, the suppressive effect of population density on taxis’ pollutant
emissions was only observed as the density value was from 16,000 person/km2 to
22,000 person/km2 in our study. Therefore, we suggested that the population density
should be controlled within the range where the suppressive effect occurs when
optimizing the regional population size.

5. Conclusions and Prospects
5.1. Conclusions

First, the total taxis’ pollutant emissions between 06:00 am and 23:00 pm on week-
days were 193,729.82 kg, while the total taxis’ pollutant emissions on weekends were
172,721.87 kg. Whether on weekdays or weekends, more than 75% of all TAZ units have
less than 700 kg of taxi emissions. Among the three time periods, the taxi pollutant emission
distribution was the most discrete in the afternoon time period and the emission peak
was the largest among the three time periods. In terms of the overall pattern, the spatial
heterogeneity of taxis’ pollutant emissions in the study area was relatively significant.

Second, the results of the global regression analysis showed that there were eight built
environment variables that had a significant effect on the total pollutant emissions from
taxis. The variables with positive effects in global scale were DENmed, DENacc, DENpop,
DENroad, DENcom, DENsce, and DENbus in descending order of magnitude. The variable
with negative effects on the global scale was HHI.

Third, the results of the partial dependency analysis indicated that there was a
marginal effect of some built environment variables on the total pollutant emissions from
taxis. For example, the density of bus stops exhibited some inhibitory effects on taxis’
pollutant emissions when it was greater than 9 stops/km2. Population density has a sup-
pressive effect on taxis’ pollutant emissions when it is in the range of 16,000 people/km2 to
22,000 people/km2.

Finally, the local regression analysis results revealed that there was a certain degree
of spatial variation in the effects of the built environment on taxis’ pollutant emissions,
with HHI, road density, and accommodation service facilities density showing the most
significant variation characteristics. The effect of HHI on taxis’ pollutant emissions showed
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a circling pattern with a gradual decrease in inhibitory effect from the inside out. The
promoting effect of road network density on taxis’ pollutant emissions showed a pattern of
decreasing from the inside out. The promoting effect of accommodation service facilities
density on taxis’ pollutant emissions was observed mainly in the north, northeast and
southwest of the study area, and the inhibiting effect was observed in the eastern and
southern parts of the study area.

5.2. Shortcomings and Prospects

First, the time of taxi GPS data used in this paper was relatively old, and some of the
built environment indicator data did not coincide with the time of taxi GPS data. Our study
ignored the possible changes in the indicator data during the period, which may lead to
some errors in the results. In future studies, we should try to use the latest and consistent
data sources to reveal the characteristics of urban traffic emissions more precisely.

Second, the impact of metro stations on taxi trips was not considered in the built
environment indicators in our study. Urban rail transit is a green and low-carbon trans-
portation mode, and has become a preferred transportation mode with its advantages of
high punctuality, reduced delays, avoidance of ground congestion, and low travel costs.
Since there is some competition between metro trips and taxis trips, it may have some
impact on taxis traffic emissions. However, there was only one metro line (including
16 metro stations) in operation in Chengdu in August 2014. Therefore, it was not included
in the built environment index system of our study.

Third, only traditional cruising taxis’ traffic emissions were investigated in this paper.
However, urban public transportation systems are composed of various types, especially
noting the new taxicab system represented by online-car hailing which has become main-
stream. A comprehensive study on the traffic emissions of multiple public transportation
types should be considered in the future, in order to develop more practical and feasible
emission reduction measures.
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