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Abstract: The emerging novel variants and re-merging old variants of SARS-CoV-2 make it critical to
study the transmission probability in mixed-mode ventilated office environments. Artificial neural
network (ANN) and curve fitting (CF) models were created to forecast the R-Event. The R-Event is
defined as the anticipated number of new infections that develop in particular events occurring over
the course of time in any defined space. In the spring and summer of 2022, real-time data for an office
environment were collected in India in a mixed-mode ventilated office space in a composite climate.
The performances of the proposed CF and ANN models were compared with respect to traditional
statistical indicators, such as the correlation coefficient, RMSE, MAE, MAPE, NS index, and a20-index,
in order to determine the merit of the two approaches. Thirteen input features, namely the indoor
temperature (TIn), indoor relative humidity (RHIn), area of opening (AO), number of occupants (O),
area per person (AP), volume per person (VP), CO2 concentration (CO2), air quality index (AQI),
outer wind speed (WS), outdoor temperature (TOut), outdoor humidity (RHOut), fan air speed (FS),
and air conditioning (AC), were selected to forecast the R-Event as the target. The main objective was
to determine the relationship between the CO2 level and R-Event, ultimately producing a model for
forecasting infections in office building environments. The correlation coefficients for the CF and
ANN models in this case study were 0.7439 and 0.9999, respectively. This demonstrates that the ANN
model is more accurate in R-Event prediction than the curve fitting model. The results show that
the proposed ANN model is reliable and significantly accurate in forecasting the R-Event values for
mixed-mode ventilated offices.

Keywords: artificial neural network; SARS-CoV-2; carbon dioxide concentration; public health;
real-time monitoring; mixed-mode ventilation; office environment; air-conditioned buildings

1. Introduction

Since prehistoric times, infectious illnesses have impacted several civilizations. There
have been several devastating viral outbreaks throughout the past century. Severe acute
respiratory syndrome coronavirus” (SARS-CoV) (2002), influenza A virus subtype H1N1
(A/H1N1) (2009), Middle East respiratory syndrome coronavirus (MERS-CoV) (2012),
Ebola virus (2013), and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are
a few of the deadliest viral pandemics that have had widespread effects in the past 20 years
(2002–present) [1]. Millions of people have lost their lives as a result of these pandemics in
the last two decades, and many more are currently suffering. Many more viral outbreaks
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are anticipated in the not too distant future as well. Coronavirus disease is referred to as
COVID-19, and the two numeric characters at the end stand for the genesis year of this
virus, which is 2019. The coronavirus has been spreading quickly over the globe since the
start of 2020. Several countries are anticipating the emergence of a new wave of COVID-19,
even though many of them have already suffered the severe consequences of previous
waves. Throughout this study, SARS-CoV-2 is referred to as “SC-2”. Every country has
suffered significant omnidirectional losses as a result of this SC-2 pandemic. The loss of
human life is without a doubt the greatest loss. According to the World Health Organization
(WHO) [2], as of October 2022, COVID-19 has infected over 600 million people globally,
causing over 6.5 million deaths.

Currently, there are three identified SC-2 transmission modes. Contact transmission
and droplet transmission are the two most well-known of the three modes. Later research
studies performed on rapid transmission revealed the third mode of infectious transmission,
namely through inhaling microscopic airborne droplet nuclei (aerosols) [3]. Different sized
droplets are produced when an infected individual breathes, speaks, sneezes, and coughs;
the bigger droplets quickly settle in the 1–2 m distance, according to a number of recent
studies. Droplets with a smaller diameter can travel far and land more than two meters
from the source of the virus. Greater viral concentrations are carried by the smaller particles,
which may move up to 6 m owing to air flow and the lack of gravitational pull [4–6]. The
primary reason for the unprecedented infectious spread rate is airborne transmission,
and this is backed up by several research studies conducted throughout the world. Viral
transmission issues have received more attention in closed structures, such as hospitals,
hotels, commercial buildings, schools, offices, as well as other buildings and structures,
in order to maintain health, productivity, and economic growth. It is generally known
that the majority of “super-spreading” incidents, in which multiple persons are discovered
to be infected, take place in closed structures, including workplaces, restaurants, schools,
houses, apartment buildings, hospitals, and meeting rooms [7–13]. Most of time is spent
indoors by the majority of the population, and the status of their indoor environment
directly affects how they perceive comfort. Pathogen transmission inside closed structures
is also nudged by IEQ. It has been established that SC-2 can be transmitted through the
air, which accounts for the sharp rise of COVID-19 cases in buildings with inadequate
ventilation [14–17]. Additionally, anthropogenic respiratory activities have an impact on
the transmission rate, since there are fluctuations in the number, speed, size, and settling
distance of respirationally ejected pathogenic particles, as well as in the frequency and
length of activity occurrence. The most frequent respiratory actions in office settings include
breathing, talking, coughing, and sneezing.

In virtual office environments, Shrestha et al. [18] investigated the aerosol dispersion
of SC-2 and found that unventilated areas are more likely to transmit diseases. They
concluded that even with minimal occupancy, a building with inadequate ventilation
can result in a considerable aerosol buildup. In addition to SC-2, poor ventilation is
also related to an increase in the prevalence of other respiratory ailments. However, in
accordance with the present emphasis on SC-2, researchers have noted that poor ventilation
is a significant contributor in the transmission of SC-2 within various building types.
Numerous scholars, decision-makers, building-related research organizations, and HVAC
societies, as well as associations from various nations, have published studies on the
management and operation of ventilation systems during pandemics. The WHO has issued
recommendations and guidelines to combat COVID-19, along with a number of other
countries throughout the globe, including the United States, European Union, Canada,
India, China, and Japan [19–22]. Almost all of the recommendations make it seem desirable
to boost exterior air ventilation in a building throughout the day.

One of the most fundamental techniques to consume less energy with significant
air changes and better comfort conditions in buildings is mixed-mode (MM) ventilation.
Significant air changes per hour are achievable with MM ventilation at low operating
costs and efficient heat removal to create comfortable indoor environment. Both natural
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forces and the use of mechanical equipment such as fans, air conditioners, and coolers
produce airflow through the building with MM ventilation. The buoyant forces produced
by temperature fluctuations inside the building, wind from the outside, and the fan speed
inside the building, as well as all other operating ventilation and air conditioning equipment
are necessary for MM ventilation. Buildings may be designed and operated to benefit from
the interactions of these natural forces with the aid of mechanical equipment. According to
a previous study [23], the period of aerosol dispersion is multiplied ten-fold in a room with
poor ventilation.

The indoor ventilation and carbon dioxide (CO2) concentration have a particular
connection in a steady-state situation [24]. As a result, the indoor concentration of CO2
might be used as a proxy indicator if an appropriate instrument to monitor indoor ven-
tilation is unavailable. The interior CO2 levels indicate the ventilation effectiveness of a
building in connection to air changes, mechanical devices, air flow patterns (depending
on internal and external environments, human activities indoors), opening areas, and the
occupant density, as well as the spatial volume of occupied space [25]. Traditional CO2
monitoring methods do not capture spatiotemporal fluctuations in CO2 concentration
levels. Recent technical advancements in CO2 monitoring and prediction have allowed
for reliable predictions of CO2 concentration levels within buildings. These advancements
further provide information on individuals’ CO2 exposure. Furthermore, the number of
accurate air changes per hour (ACH) is difficult to discover in an actual office environment,
since the circumstances in mixed-mode ventilated building spaces are very dynamic. The
CO2 concentration in standard indoor environments must be maintained below 1000 ppm.
This should be prioritized for improvement if the concentration exceeds 1500 ppm or above.
As per the SAGE-EMG recommendations for COVID-19 circumstances [26], the CO2 levels
in buildings where a lot of aerosols are created should be kept below 800 ppm. CO2 might
be utilized as a surrogate to identify the spread of infection caused by SC-2, since both
the COVID-19 spread and CO2 concentration are affected by the occupant density in any
enclosed environment.

Based on the carbon dioxide content, Rudnick and Milton [27] assessed the chances
in viral transmission through air indoors. They created a model that uses the CO2 con-
tent as a gauge for respired breath exposure, as well as determining how much of the
air being breathed has previously been expelled by a dweller within the structure. The
scientists developed a CO2-based risk model without considering the outer air supply
rate or assuming that it remains constant over time. They also avoided assuming that
the concentration of an infectious agent had reached the steady state. Likewise, Peng
and Jimenez [28] suggested evaluating the CO2 levels as a SC-2 infection risk proxy for
various interior locations and activities in 2021. In a range of typical indoor environments,
the authors developed analytical formulas for CO2-based risk proxies. The authors cited
a restriction whereby the estimations of infection risk, which are mostly dependent on
viral exhalation rates, have significant uncertainties. Nonetheless, they advised installing
low-cost risk monitoring systems based on CO2 sensors to check for indoor infection in
order to advance public safety and health. To reduce COVID-19 transmission, Bazant and
Bush [29] advised limiting the amount of time spent in mutual places with an infected
person. Later, Bazant et al. [30] recast the safety advice in terms of the mean exhaled
CO2 concentration and occupancy time in an indoor setting, permitting the use of CO2
sensors in the risk evaluation of aerial viral transmission. Based on monitored CO2 data,
the authors created a mathematical model to estimate the likelihood of aerial transmission.
The authors came to the firm conclusion that while CO2 levels are regarded as a direct
signal for ventilation and air mixing, they may also be utilized to evaluate the risk of
SC-2 viral aerial transmission. A review on the aerial transmission of respiratory viruses
was provided by Wang et al. [31]. By serving as indicators of the buildup of exhaled
air, CO2 sensors may be used to track ventilation and enhance it. It has been suggested
that CO2 levels be kept between 700 and 800 ppm, however the method of ventilation
should also be taken into account. “ArchABM” is a brand-new agent-based simulator that
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Martinez et al. [32] created. By estimating ventilation characteristics and adequate room
sizes, as well as evaluating the impacts of policies while accounting for IAQ as a conse-
quence of complex building–human interaction patterns, the system is made to help with
either the creation of brand new structures or the modification of already existing ones. In
this study, an aerosol model that had already been published was updated to calculate the
time-dependent CO2 and viral quanta concentrations in each room and the inhaled CO2
and viral quanta concentrations for every dweller for a day as a gauge of the physiological
response. Recently, Kapoor et al. [33,34] published a couple of studies to predict AI-based
event-specific airborne viral transmission in a naturally ventilated office room. In [33],
the authors connected IEQ parameters (CO2 levels, temperature, and humidity) with the
occupancy rate, occupant behavior of door and window opening, outdoor pollution level,
air conditioning with an operable fan, and event-specific viral transmission probability via
ANN and curve fitting methods. In another study [34], the abovementioned parameters
were connected using various other machine learning (ML) methods. This study advances
existing studies by incorporating AI to forecast the aerial transmission by means of data
on the indoor CO2 concentration, occupancy rate, occupant behavior, and other indoor
and outdoor environmental factors that are acquired in real-time mixed-mode ventilated
office environments.

The temperature and humidity are also crucial indoor environmental factors that influ-
ence viral survival. The temperature and humidity both have a significant impact on indoor
human comfort and have a direct impact on how people feel. Mecenas et al. [35] conducted
a review of the literature on the impacts of temperature and humidity on COVID-19 trans-
mission and concluded that future research should take these factors into consideration
because they may have an impact on the disease’s spread. The relative humidity and
temperature were also identified as essential factors in a number of international guidelines.
Many of these guidelines suggested boundary conditions for indoor temperature as well
as relative humidity, which took into account both indoor human comfort and the trans-
mission of SC-2. Figure 1 represents the boundary conditions recommended by several
guidelines for the indoor air temperature and relative humidity to prevent the transmission
of SC-2 while maintaining comfort [20,22,36–41]. The common safe–comfortable tempera-
ture range among the mentioned guidelines is from 24 ◦C to 26 ◦C and the safe–comfortable
indoor relative humidity range is from 40% to 60%.
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Other crucial factors for minimizing SC-2 transmission in a closed building include the
occupant behavior, outside environmental conditions, and indoor occupant density [42,43].
The guidelines on COVID-19-appropriate behavior in office contexts have been released by
a number of organizations and governments from across the world [44,45]. Some of the key
suggestions made to employers for a safe workplace were maintaining reduced occupancy,
good hygiene, sufficient aeration, appropriate safety measures, timely training schedules,
accurate information flows, quick responses to any kind of illness or symptom, and worker
health monitoring.

The chance of SC-2 spreading in an office setting can be significantly reduced by using
an appropriate door and window opening strategy in accordance with spatiotemporal
variation and occupant activity behavior patterns, as well as comfort. Almost all of the
recommendations call for opening windows and doors to improve ventilation and reduce
stale air generated within by exhalation. Opening windows or doors, however, is not
always a smart option. Particularly in situations where there is unwanted excessive light,
high levels of outside pollution entering the building (based on AQI measurements), visual
privacy concerns, fly and insect invasion risks, uncomfortable air movements or drafts,
or excessive outside noise, which can affect user concentration an in turn increase errors,
leading to productivity losses. However, using mechanical devices combined with altered
ratios of door and window opening operations can solve these problems up to a certain
level. MM ventilation can be an effective solution in the abovementioned situations against
viral transmission problems. Ceiling fans, exhaust fans, air conditioners, coolers, and table
fans can be used effectively to ventilate the indoor spaces containing operable doors and
windows. The additional mechanical components merged with natural ventilation help in
reducing the viral transmission if used properly.

The most significant components of the air quality index, or AQI, are the PM10 and
PM2.5, which indicate the levels of pollutants [46]. Several researchers have tried to find
the relation between the particulate matter in buildings and SC-2 transmission [47–51].
Since the size of the virus is very small, it can easily settle on dust and particulate matter
and then be transmitted by the resuspension of those particles inside closed buildings due
to human activities or natural forces. As the gravitational force is negligible on the dry
nucleus form of virus, the SC-2 virus can survive longer in the air and on surfaces; this
makes it a dangerous viral form. The chances of inhaling the free floating viral load in the
air is much higher in closed environments with higher occupancy rates. In addition to this,
the minuscule pathogens can penetrate deeply in our bodies and create severe problems.
Most of the features presented above are correlated, with some having strong relationships
while others have weaker linkages. The diurnal trends and associated variations among
indoor environmental parameters have been studied by researchers globally [52–54].

In connection to SC-2, Tupper et al. [55] developed the idea of “Event-R”. The Event-R
rate is the “expected number of new infections due to the presence of a single infectious in-
dividual at an event”, according to Tupper et al. The authors discovered a basic association
between the “Event-R” rate and four different characteristics, namely the spread intensity,
degree of mixing, individual proximity, and exposure time. The R-Event is another term for
the Event-R, and either can be used in real time. In addition to the infection probability, the
R-Event was also employed by REHVA in their revised (Version 2.1) airborne COVID-19
prediction tool [56].

The precise infection probability is now being determined by scientific research on
the antecedent transmission of several SC-2 virus strains in indoor environments around
the world. In bounded spaces, the scientific community examines two distinct sorts of
infection probability: (i) based on the CO2 exhaled by the enclosed space occupiers and
(ii) based on the air change rate. The first type is coupled with on-site dynamic spatiotem-
poral interior and outside environmental data to forecast the R-Event. The R-Event is a
more advanced and informative method for infection probability. The R-Event value is
the multiplication of the infection probability by the ratio of susceptible individuals to the
infected person; alternative values of the R-Event can be provided for different occupancy
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rates, whereas the infection probability remains the same regardless of the occupancy
rate. The REHVA calculator (v2.1) is used in determining the R-Event under mixed-mode
settings and recording it synchronously with other real-time information to create a re-
lationship between indoor CO2 levels and R-Event values. To determine the likelihood
of airborne transmission, an unknown solitary contaminated person (among four static
individuals inside the case office room) is taken as an infection source (through aerosols
only). The purpose of this study is to assist readers in reliably predicting the R-Event
value via indoor CO2 levels in an office area. In addition to CO2, the interior and exterior
environmental characteristics, occupancy rate, and occupant information are essential for
the prediction results.

If an SC-2-contaminated sick occupant is occupying a closed indoor space with other
susceptible occupants and all are inhaling and exhaling simultaneously, then high occu-
pant density and lower ventilation rates can lead to an accumulation of CO2 with freely
suspended SC-2 virus (in air) particles that are liable for the aerial transmission of SC-2. To
forecast the probability of infection using objective and subjective data, many numerical
models have been established, and there have been several simulation studies as well. As
noted in the introduction, only a few scientists have tried to connect the dots between
indoor CO2 concentration and SC-2 transmission rates. A model based on sophisticated
computing techniques such as artificial intelligence (AI) has yet to be presented in a real-
time research study.

There is less research on the relationship between indoor CO2 levels and viral trans-
mission [27–34]. However, as CO2 may be utilized scientifically as a proxy for indoor viral
transmission, similarly the indoor CO2 concentration can be used to predict the probable
number of infected people as well. In practical dynamic environments such as workplaces
and classrooms, the CO2 levels are not linked to the amount of infectious pathogens present
in the air.

In this study, as a proxy for the chance of SC-2 transmission, the R-Event value was
predicted using a supervised ML-based ANN model, as well as a curve fitting (CF) model.
Another advantage of this study was the development of the CO2 concentration database
and investigation of the occupants’ exposure to indoor CO2 by mapping the office staff
members’ (subjects) activities within the MM ventilated office room and combining them
with the R-Event. The three research objectives of this work were as follows:

1. Gathering real-time spatiotemporal data for both subjective (occupancy-related) and
objective (environmental) variables in office environment to use machine learning
(ML) techniques to create links among the parameters;

2. Creating a unique relationship between the R-Event (event-specific infection probabil-
ity) value and CO2 concentration in mixed-mode ventilated office environments;

3. Comparing novel CF and ANN models (developed for a mixed-mode office environ-
ment) for the prediction of R-Event values.

The rest of this study is organized as follows. Section 2 explains the novelty and
objectives of the study. Section 3 deals with the materials and methods used in this research,
including the collection, standardization, and filtration of the data. Section 4 defines the
CF method and ANN technique in detail. Section 5 discusses the results of the ANN
models and the CF model with the ANN formulation. The last section, Section 6, concludes
the work done in this study with the limitations of this research and potential scope for
future work.

2. Materials and Methods

CO2 was continually monitored in an office using an EXTECH Indoor Air Quality
Meter/Data-Logger Model EA80. The EA80 instrument measures CO2 concentrations
using a maintenance-free CO2 sensor with a 0 to 6000 ppm range. The equipment was
maintained away from the static occupants because CO2 being directly emitted over the
instrument degrades the measurement accuracy. The EXTECH Heat Stress WBGT Meter
Model HT200 was used to detect the temperature and humidity. Both devices were installed
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at 0.8 m above the tile floor. Tables 1 and 2 give the technical specifications for both devices.
Both factory-calibrated instruments were examined before usage. Alternative equipment
models with higher accuracy are also available for the same purpose; however, owing to
our financial restrictions, these models were utilized throughout this investigation. The
AQI was recorded from [46]. The calculations were carried out on a desktop computer
using MATLAB R2021a.

Table 1. Specifications for the EXTECH Model EA80 instrument.

Veracity Factor CO2 Air Temperature Relative Humidity

Range 0~6000 ppm −20~+60 ◦C 10~95%

Resolution 1 ppm 0.1 ◦C 0.1% RH

Accuracy
±3% of reading or

±50 ppm, whichever is
greater @ 101.4 kPa @ 25 ◦C

±0.5 ◦C

±3% RH @ 25 ◦C,
30~95% RH

±5% RH @ 25 ◦C,
10~30% RH

Sensor type Dual-wavelength detector
with NDIR sensor Thermistor Precision capacitance

sensor

Response time <10 min 1 ◦C/2 s 45%→5% 5 1 min
95%→45% 5 3 min

Warm up time 10 s - -

Table 2. Specifications for the EXTECH Model HT200 instrument.

Veracity Factor Air Temperature Relative Humidity

Range 0~50.0 ◦C 1~99%

Resolution 0.1 ◦C 0.1%

Accuracy ±0.8 (@ 15~40 ◦C) ±3.0% RH (20~80%)
±5.0% RH (<20% or >80%)

The prediction model was built using 2207 datasets out of a total of 2640 datasets. This
study included measurements of the indoor temperature (TIn), indoor relative humidity
(RHIn), area of opening (AO), number of occupants (O), area per person (AP), volume per
person (VP), CO2 concentration (CO2), air quality index (AQI), outer wind speed (WS),
outdoor temperature (TOut), outdoor humidity (RHOut), fan air speed (FS), air conditioning
(AC), and one target variable, the Event-R (R-Event). The datasets were chosen based on the
likelihood of having at least two occupants present in the workplace. This study did not
take into account single-occupancy datasets. Furthermore, datasets in which no mechanical
device was engaged were not considered. As a result, 433 datasets were removed from the
total collected datasets for mixed-mode ventilated office environments.

The occupancy rate of the office space has the most impact on the CO2 concentration,
since the occupants are the major source of emissions. The output R-Event is the anticipated
number of new infections that arise in any event occurring during a time period “T” in any
enclosed environment. Equation (1) presents the mathematical form of the R-Event [55].
However, the R-Event is calculated mathematically using the SC-2 infection probability
calculator in REHVA version 2.1. Equation (2) is the REHVA-calculator-based mathematical
formulation for the R-Event [56]. The surroundings of the MM ventilated office building
have an impact on the conditions inside as well. Office buildings close to busy roads,
markets, and densely populated areas are frequently seen to be affected by environmental
factors. As a result, this study also takes external environmental variables into account.

REvent =
kT
t

(
1− e−βt

)
, (1)
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“T” represents the length of the entire event; “t” represents the length of time that
a solitary susceptible occupant made contact with an infected occupant; “β” denotes the
probability of transmission, which is constant with respect to time; “1 − e−βt” denotes the
likelihood that any susceptible occupant will become infected; “k” denotes the susceptible
occupants (total) who made contact with the infectious person, which may be expressed
simply as Equation (2):

REvent =
In f ection probability× Number o f susceptible person

Number o f in f ectitious person
, (2)

The research approach used for this investigation is depicted in Figure 2. The compila-
tion of a database is the first step in developing a unique ANN-based model to forecast
SC-2 transmission in a MM ventilated office setting using exhaled CO2 as a proxy indicator.
The database preparation process consists of three major steps: (a) data collection; (b) data
normalization; (c) data splitting for training, testing, and validation.
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2.1. Data Collection

The data used in this study was collected in an MM ventilated office in India, utilizing
a CO2 measurement instrument. In the year 2022, the measurements were made in the
months of March, April, and May. The test site coordinates are NL 29◦51′54′′ and EL
77◦54′10′′. The office space has a floor area of 24 m2 and it has an 84 m3 volume. About 40%
of the floor surface was taken up by furniture such as tables, chairs, and storage cabinets.
The office is on the ground level and has a large window with an aluminum and glass
frame that is 1.5 m in height and 2.5 m wide on the south wall. The window is split into
three sections: the center section is fixed, while the sections at each end are operable and
regarded as movable elements of the office. The main door and a side door of the office
space are both made of wood. The front door, which measures 1.2 m × 2.4 m and leads to
the passageway, is located on the north wall, right in the front of the window. The coupled
ventilation above the main entrance door measures 1.2 m × 0.5 m in size. The office room’s
east side wall contains the side door, which is 0.9 m × 2.0 m in size, and is regarded as a
movable element of the office. A double door is used for the front door, while a single door
is used for the side door. The room contains one ceiling fan. One window air conditioner is
fitted under the fixed window pane at the height of 0.3 m from the ground floor. Table 3
outlines the additional room’s components in particular that are not mentioned in [33].
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Table 3. Additional components of the office room not listed elsewhere [33].

Component Area/Volume Fixed/Variable Material

Ceiling Fan - Variable Steel
Air Conditioner - Variable Multiple Material

Because the Hawthorne effect [57] would have an adverse influence on the participants’
typical behavior (talking, working, activity level, free motion, etc.), the study’s objective
was kept confidential from both the dynamic and static occupants (subjects). If subjects
knew they were being watched, their actions may have changed. If they were aware of
the study objectives, they also may have altered their breathing patterns, movements, and
other behaviors. However, only one person (the first author) was aware of the research
goal, since they were collecting the information for this study. A previous [33] contained
information on the subjects. As indicated in Figure 3, all of the static participants sat in the
‘L’ shape (longitudinal direction) at a space of around one meter.
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Figure 4 depicts a two-dimensional representation of the monitored office room. The
different operational scenarios were based on the status of the ceiling fan, the status of the
window air conditioner, and the operability of two doors and two windows. From Monday
through Friday, data were collected 44 times each day at ten-minute intervals. Figure 5
depicts the data gathering schedule.
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Figure 5. Monitoring schedule.

The dataset plot matrix is presented in Figure 6. The two most crucial elements of
a scatter plot diagram are the ‘R’ and ‘P’. The correlation coefficient between two values
shows the fitting relationship for the selected datasets. The p value is the probability, which
shows the relationship between the two values, which is equal to zero. Strong correlations
have low p-values because the probability of the relationship parameters is very low. For
‘P’, the highest value is 0.82 and the lowest value is 0. ‘R’ is highest between the input
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features AP and VP, both of which have a value of one. However, the ‘R’ is minimal at
points AP and O, as well as VP and O. At the aforementioned points, the minimal value of
R is −1, as represented by the dark blue circles in the middle of Figure 6.
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The indoor temperature (TIn), indoor humidity (RHIn), area of opening (AO), number
of occupants (O), area per person (AP), volume per person (VP), CO2 concentration (CO2),
air quality index (AQI), outer wind speed (WS), outdoor temperature (TOut), outdoor
humidity (RHOut), fan air speed (FS), and air conditioning (AC) were the thirteen input
parameters that were collected. According to the input data, the CO2 concentration levels
within the office room varied from 354 to 1398 ppm. The R-Event valued had a range of
0.04–1.00.

Table 4 presents the data for all of the input parameters and output parameters along
with their minimum, maximum, and mean values. Additionally, the standard deviation,
kurtosis, and skewness are also presented in the table. The mean indoor temperature was
29.84 ◦C, with a mean indoor relative humidity of 38.54 percent. The area of opening was
2.42 m2. The mean occupancy rate was 2.94. The mean AP and mean VP were 8.28 m2 and
30.90 m3, respectively. The mean CO2 concentration inside the office room was 648.42 ppm
during the measurement period. The mean AQI was 124.94 and the outer mean wind speed
was 13.97 kmph. The outdoor mean temperature and mean relative humidity were 37.43 ◦C
and 11.95 percent. The mean values for the fan speed and air conditioning were 1.79 m/s
and 0.40, respectively. The mean R-Event value for the MM case was 0.128, as presented
in Table 4.
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Table 4. Statistical analysis of the monitored parameters in the MM ventilated office environment.

Parameters Symbol Unit Min. Mean Max. Std. Kurtosis Skewness Type

Indoor Temp. TIn
◦C 17.6 29.8439 34.3 2.9229 6.8896 −1.6459

Inputs

Indoor RH RHIn % 17.8 38.5449 67.5 7.4712 3.5377 0.4716
Area of Opening AO m2 0 2.4208 4.5 0.9347 2.1744 0.7410
Occupants O Nos. 2 2.9415 5 0.8277 2.2970 0.4161
Area per person AP m2/person 4.8 8.8288 12 2.4564 1.5737 0.2497
Volume per person VP m3/person 16.8 30.9009 42 8.5976 1.5737 0.2497
CO2 Level Inside CO2 ppm 354 648.4232 1398 177.0212 2.3827 0.3235
AQI AQI - 7 124.9393 299 49.3736 3.2166 0.1602
Wind Speed WS km/h 1.4 13.9738 33.6 6.9065 2.5846 0.3812
Outdoor Temp. Tout

◦C 24 37.4300 44 3.8624 2.9119 −0.6020
Outdoor RH RHOut % 3 11.9515 39 6.7152 3.6486 1.0699
Fan Speed FS m/s 0 1.7850 2.4 0.4544 7.3613 −1.8744
AC Operation AC - 0 0.3960 1 0.4892 1.1808 0.4252
R-Event R-Event - 0.04 0.1280 1.00 0.0957 50.3785 5.5647 Output

2.2. Standardization of Selected Data

After the collection of the datasets, the selected database for this study was standard-
ized. The most crucial stage in defining data into definite ranges, such as 0 to 1, −1 to +1,
0 to +0.9, or 0 to +0.8, is the standardization stage [33,34,58]. The chosen input parameters’
values could change over a certain range. In order to make the computations simpler, data
standardization was used. Equation (3) was used to standardize the data in this research
study in the range of 0 to +0.8:

Nstandardized = 0.8× N − Nmin
Nmax − Nmin

, (3)

Here, N is the random value from the database, Nstandardized is the value that has to be
normalized, Nmin is the parameter’s smallest value, and Nmax is its highest value.

2.3. Filtration of Data

In order to construct a multi-layered, feed-forward, back-propagation learning method,
numerous researchers proposed using 70% of the data for training, 15% for validation,
and 15% for testing. The data was divided into three portions with the 15:15:70 ratio of
the entire dataset for testing, validation, and training purposes, respectively, following a
short assessment of the ANN literature. After dividing the 2207 datasets, 331 datasets were
utilized in this study for testing, 331 datasets for validation, and 1545 datasets for training.

3. R-Event Prognosis

In order to create the relationship and forecast the R-Event, two techniques were used
in this study. The first technique was simply applying the first-degree order equation to
the output and input parameters and was based on the CF method. The second approach
was a type of artificial intelligence method, whereby supervised machine learning with
multiple-variables ANN is applied to predict the R-Event for the mixed-mode ventilated
office room.

3.1. Curve Fitting

Figure 7 displays the curve fitting (CF) process applied in this work.
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From Figure 7, let N = 0.2114.
The equation now becomes:

R-Event = −0.0092 TIn − 0.1103 RHIn − 0.2023 AO + 0.1997 O − 0.002 AP + 0.00002
VP + 0.0416 CO2 + 0.033 AQI − 0.043 WS − 0.0401 Tout − 0.0029 RHOut − 0.0734 FS

+ 0.0035 AC + N,
(4)

The coefficient of correlation (Cc) may now be expressed computationally for all
parameters as follows:

Cc = −0.0092 TIn − 0.1103 RHIn − 0.2023 AO + 0.1997 O − 0.002 AP + 0.00002 VP
+ 0.0416 CO2 + 0.033 AQI − 0.043 WS − 0.0401 Tout − 0.0029 RHOut − 0.0734 FS

+ 0.0035 AC,
(5)

Thus, the final equation can be expressed as follows:

R-Event = Cc + N, (6)

3.2. Artificial Neural Networks

Frank Rosenblatt, a psychologist, developed the first ANN, also called a perceptron,
in 1958, with the intention of simulating the human brain’s interpretations of visual in-
formation and object recognition process. Artificial neural networks have significantly
aided in the implementation of several intelligent information processing techniques and
the study of the fundamental functions of real neurons and brain activity, as well as in
numerous industrial applications during the past forty years [59]. The ANN modeling
method uses computers to mimic certain important features of the human nervous system,
such as the ability to address problems by utilizing information from prior experiences in
new situations.

Learning models such as ANNs construct a network of key connections between the
selected target and considered features, which are connected by connections recognized as
neurons and concealed behind layers. Each neuron contains a weight parameter as well as
hidden or input connections to neurons from the layer above, each of which is weighted
differently. The performance of the learning model depends significantly on the number of
neurons in the hidden layer of the ANN. If the hidden layer’s population of neurons is too
small, the error function will exhibit oscillating behavior and the network learning function
will not be able to converge to an ideal value, making it difficult for the network to learn the
relationships between the input–output configurations. When the number of neurons is too
high, the input–output list is merely stored, resulting in poor generalization performance.
The primary cause of overfitting is overtraining [60]. To achieve the best possible outcome,
a trained ANN assembly can detect linkages between inputs and outputs by comparing
measured and anticipated outputs [61].

Neural networks can be used to make models of difficult natural systems that have
many inputs, making the models more accurate and simpler to use [62]. The most important
feature in training is to minimize errors while increasing the value of R. This is achieved
by modifying the weights during the course of the learning phase until the error function
is achieved. In ANN, to evaluate the network performance, the ‘R’ and ‘MSE’ values are
used [63]. Equations (7) and (8) express the ‘R’ and ‘MSE’ equations, respectively:

R =
∑(xi − x)× (yi − y)√

∑(xi − x)2 ×∑(yi − y)2
, (7)
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R is the Pearson correlation coefficient, xi represents the measured values in the
datasets, the mean value of the measured values is x, yi represents the predicted values in
the datasets, and the mean value of the predicted values is y.

MES =
1
N ∑N

i=1(xi − yi)
2, (8)

The above is an iterative approach to changing the value of w by approximating yi and
calculating the associated MSE. The errors are too large at first since the weights are chosen
at random. The aim of network learning is to find the weights with the lowest level of error
across all datasets. Approximating the weights using “trial and error” approaches would
require a significant amount of effort as well as time. The gradient descent method is an
effective way to quickly track the minimum sets of errors in a network training process.
The gradient descent slopes down the error using the error gradient. In this work, an ANN
model was suggested to forecast the R-Event value for the MM ventilated office room based
on the observed conditions of the thirteen input features.

3.2.1. ANN Modeling

Modeling is the procedure of describing a practical element or phenomenon as a series
of computer assertions. It is critical to identify the network’s best architecture, providing
both high precision and a well-fitted dataset. Figure 8 depicts the ANN architecture for
this scenario, which includes thirteen input features and the R-Event as a target parameter.
There is no method for calculating the precise number of hidden layers and neurons on
every layer; thus, the number of ideal neurons and hidden layers was established via
“trial and error”. After experimenting with several architectures and different counts of
neurons in each layer, the ideal structure was discovered. The MSE-value-based network
performance result is displayed in Figure 9. The model based on ANN started training from
3 neurons and trained until reaching 17 neurons. At the 3rd neuron the R of the training
was 0.99916, while at the 17th neuron the R of training reached 0.99993. Each of the ANN
models underwent at least 20 iterations. The suggested ANN model’s optimum design is
illustrated in Figure 10. Each neuron’s MSE and R values were taken into consideration
while determining its rank. In Table 5, the rankings of all neurons for their R and MSE
values for training, testing, and validation are presented to show the overall best neurons.
The 13th neuron trial had the lowest overall rating of all of the trials. The network that
predicted the best performance among all neurons had a single hidden layer containing
13 neurons. The database features were linearly standardized in the range of 0 to 0.8 to
speed up the learning process and promote quicker convergence. The ANN toolbox was
used in the MATLAB (R2021a) environment to perform the simulations. The training
techniques offered by MATLAB include Levenberg–Marquardt (LM), scaled conjugate
gradient, and Bayesian regularization methods. The LM training method was chosen from
among them due to its excellent convergence, high accuracy, and quick training of the
network. This method often requires more memory but is quicker. The training ends
when the generalization stops becoming better, as shown by an increase in the MSE of the
validation samples. The same strategy was utilized in this study to randomly split the data
into three portions: 15% for validation (331 datasets), 15% for testing (331 datasets), and
70% for training (1545 datasets). The activation functions for the hidden and output layers
were selected to be TANSIG (Equation (9)) and PURELIN (Equation (10)), respectively:

y = tangsig(x) =
2

(1 + e−2x)
− 1, (9)

y = purlin(x) = x, (10)
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Figure 10. The ANN model’s performance results (13 neurons): (a) error plot; (b) training, validation,
and testing data performance plot; (c) learning process.

Table 5. Selection of the best neuron based on the ‘R’ and ‘MSE’ values.

S. No. Neuron

Statistical Parameters

R MSE

Training Validation Testing Training Validation Testing

1 3 0.999163 0.999571 0.999499 0.00001223 0.00000221 0.00000699

2 4 0.999856 0.999838 0.999749 0.00000191 0.00000131 0.00000446

3 5 0.999937 0.999937 0.99999 0.00000079 0.00000091 0.00000011

4 6 0.99948 0.999215 0.999442 0.00000846 0.00001705 0.00001795

5 7 0.99993 0.999531 0.999844 0.00000088 0.00000594 0.00000236

6 8 0.999923 0.999975 0.81034 0.00000096 0.00000021 0.00303513

7 9 0.999882 0.998693 0.999804 0.00000156 0.00003469 0.00000252

8 10 0.999927 0.999998 0.999997 0.00000087 0.00000004 0.00000002

9 11 0.999771 0.999678 0.999773 0.00000243 0.00000575 0.00000433

10 12 0.999922 0.999995 0.999996 0.00000086 0.00000005 0.00000008

11 13 0.999946 0.999997 0.999926 0.00000070 0.00000003 0.00000090

12 14 0.999985 0.999997 0.999861 0.00000017 0.00000001 0.00000336

13 15 0.999932 0.999994 0.999989 0.00000085 0.00000008 0.00000012

14 16 0.999938 0.999995 0.999992 0.00000085 0.00000006 0.00000008

15 17 0.999931 0.999483 0.999549 0.00000086 0.00000921 0.00000681
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Figure 9 shows the MSE values for variable neurons for training, testing, and valida-
tion. The minimum MSE for the training is at the 14th neuron with a value of 0.00000070.
The maximum MSE values for the training, testing, and validation are at the 3rd neuron, 8th
neuron, and 9th neuron, with values of 0.00001223, 0.00303513, and 0.00003469, respectively.
Table 6 presents the neuron ranking based on their MSE and R values.

Table 6. Rankings for the best neuron.

S. No. Neuron

Ranking
Ranking

Score
RankingR MSE

Training Validation Testing Training Validation Testing

1 3 15 11 13 15 10 13 77 14

2 4 12 9 11 12 9 11 64 11

3 5 4 8 4 3 8 4 31 6

4 6 14 14 14 14 14 14 84 15

5 7 7 12 8 9 12 7 55 8

6 8 9 7 15 10 7 15 63 10

7 9 11 15 9 11 15 8 69 13

8 10 8 1 1 8 3 1 22 3

9 11 13 10 10 13 11 10 67 12

10 12 10 5 2 6 4 2 29 5

11 13 2 2 6 2 2 6 20 1

12 14 1 3 7 1 1 9 22 2

13 15 5 6 5 4 6 5 31 7

14 16 3 4 3 5 5 3 23 4

15 17 6 13 12 7 13 12 63 9

For the MM ventilation datasets, Figure 10 shows the error and performance plots
with the learning process. Figure 10b portrays the validation MSE as a green line, the
training MSE as a blue line, and the testing MSE as a red line.

3.2.2. Performance Indices

Basic performance indicators including the R, RMSE, MAPE, MAE, NS, and a20-index
were taken into account while evaluating the effectiveness of the CF and ANN models in
order to determine the models’ reliability [64–68]. It is clear that COVID-19 has affected
many areas of our life, including our environment, activities, and other factors, and may
require intelligent solutions using AI techniques, medical images, and clinical data to
control the pandemic [69–77]. Formulas (11) to (16) below give the equations for the
performance indices listed above. The following acronyms stand for the following terms:
R is the Pearson correlation coefficient, MAE stands for the mean absolute error, RMSE
for the root mean square error, MAPE for the mean absolute percentage error, and NS for
the Nash–Sutcliffe efficiency index. Higher values of R and NS approaching 1 are used
to measure a model’s accuracy. The most accurate model had values for the MAE, RMSE,
and MAPE that were closest to zero. The most accurate model had the lowest values
that were closest to zero for the RMSE, MAE, and MAPE. These performance indicators
were used to assess how well the model could forecast R-Event values. In Section 3.2,
Equations (7) and (8), corresponding to the R and MSE equations, are mentioned.



Int. J. Environ. Res. Public Health 2022, 19, 16862 19 of 27

MAE =
1
N ∑N

I=1|xi − yi|, (11)

MAPE =
1
N ∑N

I=1

∣∣∣∣ xi − yi
xi

∣∣∣∣× 100, (12)

MSE =
∑N

i=1(xi − yi)
2

N
, (13)

RMSE =

√
∑N

i=1(xi − yi)
2

N
, (14)

NS = 1− ∑N
i=1(xi − yi)

2

∑N
i=1(xi − yi)

2 , (15)

a20− index =
m20

N
, (16)

The total number of values in the experimental dataset is denoted by N; xi and yi are
the measured value and predicted value at ith level, respectively; yi denotes the mean value
of the predicted results.

4. Results and Discussion

The R values for the CF and ANN models were 0.7439 and 0.9999, as shown in
Figure 11a,b, respectively. The R value of the ANN model was 25.60% higher than the
CF model. The other performance index values for the CF model, such as the MAE,
MAPE, RMSE, NS, and a20-index values, were 0.0243, 23.2429, 0.0640, 0.5535, and 0.6611,
respectively. Similarly, the performance index values for the ANN model, such as the MAE,
MAPE, RMSE, NS, and a20-index values, were 0.0002, 0.1939, 0.0000, 0.9999, and 0.9991,
respectively. The MAE, MAPE, and RMSE values for the CF model were 99.18%, 99.17%,
and 100% higher than for the ANN model. The other performance factors such as the NS
and a20-index values for the ANN model were 44.64% and 33.83% higher than for the CF
model. As shown in Figure 11a, the plot of the CF model is more scattered as compared
the ANN model. A correlation plot of the selected ANN model for training, validation,
testing, and all datasets is presented in Figure 12. The results for the CF and ANN models
are tabulated in Table 7.
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Table 7. Comparison of the performance indicators for the CF and ANN models.

Proposed
Model

Performance Indicators

R MAE MAPE MSE RMSE NS a20-index

CF 0.7439 0.0243 23.2429 0.0041 0.0640 0.5535 0.6611

ANN 0.9999 0.0002 0.1939 0.0000 0.0000 0.9999 0.9991

The variation in the predicted results, frequency distribution of the errors, and error
plot with respect to the number of datasets for the CF model are shown Figure 13i–iii,
respectively. Similarly, in the ANN model, the aforementioned results are shown in
Figure 13iv–vi, respectively. It is also clearly visible from the Figure 13 the more scat-
tered results and errors observed for the CF model as compared to the ANN model. The
predicted datasets in Figure 13vi are directly aligned with the actual values of the R-Event,
and the blue line that depicts the errors is also straight. However, the CF model’s projected
values and actual values are not quite in line, and the green line used to show this is
similarly crooked. The histogram plot also confirms the reliability and accuracy of the
ANN model. The constructed ANN model is more accurate and dependable than the CF
model, which can be said after considering all of the performance parameters.
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ANN Formulation

The suggested ANN model displayed great accuracy and interpretability, as was
already mentioned. The ANN model may directly yield the explicit formula for the R-Event.
Equation (17) is the final equation to forecast the R-Event:

R− Event = purlin(WHOYi + BHO) = WHOYi + BHO, (17)

Equation (18) illustrates the generalized formulation for the input to the hidden
layer Yi.

Yi = WIH Ni,normalized + BIH , (18)

where Ni,normalized represents the normalized inputs, BIH represents the biases between
the input and hidden layers, WIH is the weight of the matrix in between the input and
hidden layers, and BHO and WHO are the bias and weights of the hidden-to-output
layer, respectively.

The proposed model is capable of predicting the R-Event for inputs with standardized
projected data within the specified ranges. To forecast the indoor R-Event values for a
mixed-mode ventilated office room scenario, the suggested model has thirteen parameters.
The value of Yi can be obtained from Equation (20). The R-Event final equation is expressed
in Equation (19):
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R− Event = 0.918042 P1− 0.000658 P2− 0.000418 P3 + 0.071724 P4− 0.347533 P5− 0.000094 P6+
0.613483 P7− 0.000302 P8 + 0.000570 P9− 0.154289 P10− 2.100065 P11− 0.001439 P12−

0.000447 P13− 0.922097,
(19)
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(20)

In addition to creating CF- and ANN-based models, some additional broad observa-
tions were made throughout the investigation. A higher degree of human activity increases
the likelihood of illness transmission and directly affects the CO2 content. For a safe work-
ing environment, the office size and volume are crucial factors. The occupancy rate, on the
other hand, is the main variable that has a high correlation with the R-Event. Therefore,
the occupancy level must be decreased to a safe level for a safe working environment. It is
crucial to ventilate indoor settings to maintain low CO2 levels in order to stop the spread of
SC-2. The CO2 level and indoor airborne transmission rate can be substantially correlated,
demonstrating the need for ventilation. For improved operational control, maintaining
all doors, windows, fans, and other ventilation systems is advised. Effective maintenance
improves the effectiveness during full-scale operation. Nets are further advised for usage
in order to stop insects from entering the office. Regular conversation is not encouraged
in the workplace, and when it occurs without a mask, the risk of an infection spreading is
increased. Installing CO2 sensors in offices to keep track of the CO2 levels is advised. The
danger of viral transmission is considerably decreased via training and enforcing rules.

5. Limitations of the Study

This study has several restrictions. This study’s focus is only on the interior spaces
of the office buildings. Under an office setting working under a mixed-mode ventilation
mode in a composite climatic environment, a singular source of infection is considered,
with pathogen proliferation occurring exclusively through airborne transmission channels.
A range of technological, financial, social, and chronological limitations affect this research.
However, the procedure is consistent and may be used for a wide range of buildings in a
wide range of climatic regions with a wide range of environmental conditions. During this
investigation, the directions and patterns of air flow were not taken into account. However,
they may significantly affect the transmission of airborne viruses, limiting the study’s
applicability. Since office hours prevent the monitoring of nocturnal oscillations, only
diurnal environmental fluctuations were taken into consideration. The participants were
healthy adults with a normal breathing rate and no respiratory illnesses. The information
acquired was case-based and reliant on several other environmental factors, such as the
wind direction and pressure, which were not included in this study. This study considered
all occupants occupying the office space without face masks and who were not immune
to SC-2, thereby remaining susceptible. This study considered the delta variant of SC-2
for prediction purposes, which is estimated to be twice as infectious as the original virus.
The numerous new and ancient SC-2 versions exhibit extremely inconsistent behavior.
The interactions between humans and viruses are, therefore, not covered by this research.
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Human behaviors vary widely depending on a wide range of circumstances, which is a
limitation in and of itself because each person has a certain behavioral pattern based on
their experiences and brain prints. There were a few additional restrictions to this study, as
the model could only predict results within the boundaries of the dataset. Furthermore,
sneezing, coughing, and other respiratory activities were not considered in this study.
People’s outer mobility (near office doors and windows) is also a significant component;
however, owing to the extremely dynamic nature of such situations, this aspect was not
taken into account in this study. The interference of outdoor CO2 concentrations was one
more limitation of this study. The developed model predicts the average rate of event
reproduction for an office room with diurnal variations, while other case-based alterations
were limitations for the developed model. Close contact and fomite transmission were
not considered. Full mixing with equal concentrations in the whole office room was
considered, so the lack of non-uniform concentrations was one more limitation of the
developed model. The models developed are single-zone models. Several parameters
were uncertain, and were taken from the literature or estimated based on the current best
available knowledge. The developed model was sensitive to the quanta emission rate
values. The authors will address some of these limitations in future studies. More realistic
and complex models can be built; however, the parametric uncertainty may still dominate
the total uncertainty. Futuristic models can consider parameters based on the findings of
new research to incorporate advanced knowledge.

6. Conclusions

AI-based modeling is usually a long and complex process. This study provides two
models, one being an analytical model, i.e., the curve fitting (CF) model, and the second
model being an AI-based model, i.e., the artificial neural network (ANN) model. Both
the predictive models, namely the ANN and CF models, were tested and compared to
forecast the R-Event values. The real-time data for the office environment were gathered in
March, April, and May of 2022 in a mixed-mode (MM) ventilated office room situated in
a composite climate. Thirteen features were used as inputs when developing the models.
The R-Event was the target that was utilized as a proxy for the likelihood of SARS-CoV-2
infection transmission. The data were statistically examined first, then the CF model was
used and the analyzed data were trained, tested, and validated with the ANN model.
Only the ANN model did well in predicting the R-Event results when compared to the
CF model. The ANN model showed a stronger correlation and lower error s(R = 0.9999,
MSE = 0.0000, RMSE = 0.0000, MAE = 0.0002, MAPE = 0.1939, NS = 0.9999, and
a20-index = 0.9991) with the measured results. When the data for the required input
parameters are available, the ANN model may be utilized to reliably forecast the R-Event.
The models created in this work may be used to forecast the R-Event, which serves as
a proxy for estimating the likelihood that SARS-CoV-2 will be transmitted in MM office
settings. As a result, time, effort, and human lives will be saved.
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