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Abstract: It is very necessary to study the mechanism of rock burst, which is related to the safe
construction of many geotechnical projects. Previous studies have shown that small trigger stress
will lead to large energy release, but the specific conditions that cause the release and how to quantify
the energy are urgent problems to be solved. In this study, an innovative calculation method of rock
mass energy release is proposed, and the calculated release energy is consistent with the monitoring
results of field monitoring equipment. The revealed mechanism of rock burst reflected is that under
the condition of a large-ratio pre-state stress field (mostly > 2.5), a small trigger stress field will lead to
a large amount of energy release under “late butterfly shape” or “final butterfly shape” of the plastic
zone. This study reveals the key factor of rock burst, which plays an important reference role for the
mechanism research, subsequent monitoring and treatment method of rock burst.

Keywords: released energy; calculation method; numerical simulation; rock mass; rock burst

1. Introduction

Rock bursts are harmful phenomena in many geotechnical engineering fields [1,2],
such as rock bursts in tunnels [3], rock bursts in metal mines [4], rock bursts in coal mines [5],
coal and gas outbursts [6], and dynamic responses of metro engineering [7]. These rock
bursts are obviously different, but they also have common parts. They all occur in rocks
or soil and other media and are caused by certain forces and structures. Rock burst have
brought great losses to mankind which can cause instantaneous damage to tunnels, mine
roadways, etc., and bring a great threat to safe production [8].

At present, research on rock bursts mainly focuses on their occurrence mechanism [9],
monitoring methods [10,11], early warning indicators [10] and treatment measures [9,12].
Among the above, the occurrence mechanisms should be studied clearly first, to form
the basis of follow-up monitoring, early warning and treatment measures. There are
many studies on the mechanism of rock bursts, which mainly include energy theories [13],
strength theories [14], stiffness theories [15], rock burst tendency theories [16], instability
theories [17], three factor theories [18], three criteria theories [19], dynamic and static load
principles [20], rock burst initiation theories [21], butterfly rock burst mechanism [22,23],
etc. No matter which mechanism, it must be aimed at the rock mass involved in the disaster,
the mechanical properties of the rock mass, the stress environment leading to the disaster,
the time process of the disaster, etc.

In terms of rock burst research methods, some mechanism studies aimed at a spe-
cific condition, such as fault [24,25], strong mining influence [26,27], high stress environ-
ment [28], high dynamic load [29], stratum movement [30], etc. Others study a series of
problems from one aspect, such as strength [31], stress [32], energy [33], gas superposi-
tion [34], surrounding rock properties [35–37] and so on [18]. Whether it is into specific
conditions or a certain aspect, the research plays a positive role in revealing the rock burst
mechanism. However, research into common problems of geotechnical engineering is more
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inclined to use the general mechanism to explain different manifestations, which is the
highest goal of scientific and engineering research.

As for rock burst, an important point of view is that small inducing factors lead
to a serious dynamic response [38]. However, there are two main problems: one is the
specific condition that small inducing factors produce a large energy release; the other is
the quantifiable degree of released energy, that is, how to calculate the released energy
and match it with the energy of an on-site vibration signal monitoring system. This
study attempts to reflect the mechanism of rock bursts through the simplest mechanical
calculation method and the simplest model. An innovative calculation method of energy
released from a rock mass is proposed from the perspective of energy in this study. With the
help of a numerical simulation method, the energy-release law and specific value of rock
burst are calculated, and the formation factors and mechanism of rock burst are obtained.
The mechanism research of rock burst mostly depends on the numerical simulation method
with strong operability. In addition to the mechanism of rock burst, this study also discusses
the energy-release laws under different circumstances, such as no holes, uniform stress field,
non-uniform medium, etc. The study is of great significance for revealing the mechanism
of rock bursts and provides a basis for subsequent monitoring and treatment methods of
rock burst.

2. Numerical Methodology

The surrounding rock in geotechnical engineering is basically in the state of three-
dimensional stress. The rock mass in a certain area is taken as the study object, and its
volume is assumed to be Ω. A circular hole is set in the middle of the Ω area in order to
facilitate the research (in respect of tunnels or roadways). The triaxial force of the Ω rock
mass is simplified to the form of (P1, P2, P3), where P1 is the maximum force, P2 is the
intermediate force, and P3 is the minimum force. Under the action of external force, each
element named as (f(x, y, z) in the rock mass will produce a unit stress, which is assumed to
be (σ1i, σ2i, σ3i), where σ1i is the maximum principal stress, σ2i is the intermediate principal
stress, and σ3i is the principal minimum stress. Under the action of stress, the element will
produce a certain energy, which has been clearly pointed out as Equation (1) in previous
research results [31].

f(x, y, z) =
1

2Ei

[
σ1i

2+σ2i
2+σ3i

2−2µi(σ1iσ2i+σ2iσ3i+σ1iσ3i)
]

(1)

where Ei is the elastic modulus of the element, and µi is the Poisson’s ratio of the element.
Under the action of a certain trigger stress field (TSF, the stress wave caused by roof

fracture [39] or media fracture [40]), the force state and energy value of the rock mass will
change. It is assumed that the state of rock mass before TSF influence is a pre-state stress
field (PSSF), and the state after TSF influence is a late-state stress field (LSSF). Assuming
the rock mass as two kinds of medium, one is pure elastic and the other is an elastoplastic
medium. Here, we define the storage energy of pure elastic medium and elastoplastic
medium under PSSF as UPSSF and UPSSF

′
, respectively, and similarly define the storage

energy of pure elastic medium and elastoplastic medium under LSSF as ULSSF and ULSSF
′
,

respectively. Under the condition of an elastic medium, all elements in the rock mass are
elastic elements, while under the condition of an elastoplastic medium, some elements in
the rock mass are elastic elements (Ωe) and the other are elastoplastic elements (Ωp) due
to the plastic failure. When the mechanical state changes from PSSF to LSSF, new plastic
elements of ∆Ωp are generated, the original Ωe changes to Ωp−∆Ωp, and the original Ωp
changes to Ωp + ∆Ωp. Therefore, UPSSF, UPSSF′ , ULSSF, and ULSSF′ can be expressed by
Equations (2)–(5), respectively.

UFSF =
∫ ∫ ∫

Ω(PSSF)
f(x, y, z)dV (2)
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UFSF
′ =

∫ ∫ ∫
Ωe(PSSF)

f(x, y, z)dVe +
∫ ∫ ∫

Ωp(PSSF)
f(x, y, z)dVp (3)

ULSF =
∫ ∫ ∫

Ω(LSSF)
f(x, y, z)dV (4)

ULSF
′ =

∫ ∫ ∫
(Ωe−∆Ωp)(LSSF)

f(x, y, z)d(V e−∆VP)+
∫ ∫ ∫

(Ωp+∆Ωp)(LSSF)
f(x, y, z)d(V p+∆VP) (5)

where V is the volume of all elements, and Ve and Vp are the volume of elastic elements
and elastoplastic elements, respectively.

The energy different-value DPSSF represents the energy difference between UPSSF and
UPSSF′ under PSSF state, and similarly the energy different-value DLSSF represents the
energy difference between ULSSF and ULSSF

′
under the LSSF state. The energy difference of

the different-value of the two-forces state represents the release energy from the PSSF state
to LSSF state, as shown in equation 6 (only part of the total energy is converted into elastic
wave energy [41], so multiply by transformation factor β, which is generally between 1%
and 10% [26,42]). When a rock burst occurs, the energy value reflected by vibration signals
monitored by vibration signal monitoring system is W.

W = β((U LSSF−ULSSF
′)−(U FSSF−UFSSF

′)) (6)

The flow chart of the innovative energy calculation method established above is shown
in Figure 1. Firstly, the energy different-value between elastic medium and elastoplastic
medium is calculated under the corresponding mechanical states, and then the difference
between the energy of the two mechanical states to obtain the specific energy value released
in the process of mechanical state change is calculated. The energy different-value between
the two mechanical states is not a simple subtraction of the energy under the condition
of elastoplastic medium, because the elastic medium energy of the foundation is different
under different mechanical states. The innovation of this method is that the energy release
of two mechanical states before and after TSF is obtained by four models subtracted in
pairs. The elastic wave energy obtained by this method can be compared with the actual
energy obtained by vibration signal acquisition when a rock burst occurs, and then the
occurrence factors of rock burst can be obtained. In addition, the sizes of the four models
are consistent, and the influence of model size is eliminated by subtracting two by two. It
should be pointed out that the three-dimensional mechanical state of the actual element on
site is difficult to obtain through actual measurement methods; however, the mechanical
state of each unit can be obtained by a numerical simulation method. Therefore, it is
best to complete energy calculation and mechanism disclosure with the help of numerical
simulation tools. The obtained model and calculation method quantify the capacity value
before and after the occurrence of a rock burst, which is of great help to the study of the
rock burst mechanism in this study. In addition, it can also be used to calculate the damage
or accumulation of rock mass energy.
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Figure 1. Flow chart of the innovative energy calculation method.

3. Results

According to the methodology proposed above, the simplest model and the stress
state are established to calculate the energy, as shown in Figure 2. The model size is
200 × 200 × 1 m, corresponding to the width, height and thickness of the model, respec-
tively. The PSSF assigned to the model is (P1, P2, P3), and the application directions are up
and down, front and back, left and right, respectively. A small hole with a diameter of 5.6 m
is set in the middle of the model to represent the tunnel or roadway (5.6 m represents the
specific diameter of a field test in a roadway, which is applied to the research model). The
medium used is a kind of coal (rock burst accidents occur more often in coal, so selecting
coal as the medium can better reflect the real mechanism), with shear strength of 1.3 GPa,
cohesion stress of 3 MPa, friction angle of 25◦, compressive strength of 15 MPa and tensile
strength of 1.77 MPa. The initial PSSF is set to (20, 20, 20) MPa, and the TSF is set to 1 MPa
and only increases to P1 each time for the convenience of calculation. When calculating
the stress and energy value of an elastic medium, the command of “model mech elastic” in
FLAC3D is adopted, and when calculating the elastoplastic medium, the “model Mohr” in
FLAC3D is adopted (the Mohr coulomb criterion is adopted as the failure criterion).
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Figure 2. Model and force state to calculate the energy.

After dozens of numerical simulations and energy calculations, the plastic zone dis-
tribution and energy values under different mechanical states are obtained. Results show
that the distribution of the plastic zone of the elastoplastic medium experienced a process
of “non-butterfly–early butterfly–final butterfly”, and the “early butterfly” is defined when
P1 is 50 MPa (η = P1/P3 = 2.5, which is similar to [43]), and the “final butterfly” is defined
when P1 is 55 MPa (η = P1/P3 = 2.75). The results of plastic zone distribution and energy
distribution of the elastoplastic medium show that the plastic zone and energy form an
obvious concentration around the hole, and the distribution range and concentration degree
expand with the increase of P1, which is confirmed in Figure 3. The energy different-value
in most areas is positive, but there are also some areas with a negative value, indicating that
the energy of the elastic medium is less than that of the elastoplastic medium for the energy
of a small part of elements. It can also be concluded from the energy difference value
distribution that the distribution result of energy is obviously related to the distribution
result of the plastic zone, and the area producing the plastic zone seems to have a greater
energy difference.

The variation curve of energy released is shown in Figure 4. The release of energy is
divided into three stages: “pregnant period”, “growth period” and “upward period”. The
dividing points of the three stages are also “early butterfly shape”, “late butterfly shape” and
“final butterfly shape”, and the corresponding P1 values of LSSF are 50 MPa, 55 MPa and
58.6 MPa respectively. The above facts show that even if the TSF is the same 1 MPa, the effect of
the initial PSSF on the release of energy is obviously different (the amount of energy released
increases by more than 10 times, and in the “upward period” stage, the amount reaches even
108 J).

From the above results, the basic characteristics of plastic zone distribution and energy
distribution of the system under different PSSF conditions are obtained. The corresponding
relationship between released energy and plastic zone is obvious. In the “growth period”
and “upward period” stages, the released energy caused by the same TSF are significantly
increased, which is very consistent with the occurrence mechanism of rock burst. That is, a
small TSF can lead to a large energy release, especially under the condition of a large ratio
PSSF (deviatoric loading [44], mostly η > 2.5). In the “pregnant period”, the TSF required
to reach the accident energy value will be very large; however, in the “growth period” and
“upward period” stages, the TSF required will be significantly smaller.
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For the amount of released energy, the above results show that in the “growth period” and
“upward period” stages, the total energy release of one meter of roadway or tunnel is about
107–108 J. Considering the elastic wave energy transformation factor β (1~10%), the roadway
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of 10~100 m length will release 107~108 J of elastic wave energy, which is consistent with the
actual released energy monitored by the on-site vibration signal monitoring system. Therefore,
according to the innovative calculation method and its calculation results, the factors of a rock
burst are reflected in the model: hole; P1 greater than uniaxial compressive strength (reaching
the value of foundation failure); PSSF with higher η (mostly η > 2.5) and an appropriate TSF.
Among the factors, hole is necessary for excavation and production; P1 is greater than uniaxial
compressive in the “growth period” and “upward period” in the high probability; the TSF
reaching the energy critical value is small (Ref. [45] shows that it mostly much less than 1 MPa);
therefore, the PSSF with a higher η may be the key factor of a rock burst. The mechanism of rock
burst reflected in this study is that under the condition of a large-ratio PSSF (mostly η > 2.5), a
small TSF will lead to a large amount of energy release under the “late butterfly shape” or “final
butterfly shape” of the plastic zone.

4. Discussion

The point to prove the key influence of a large-ratio PSSF is whether there is a large increase
in energy under a uniform stress field applied to the model; therefore, Figures 5 and 6 are made.
From the results, when P1, P2 and P3 are increased by 5 MPa at the same time, the storage
energy of the pure elastic medium and the elastoplastic medium are also increasing; however,
the different value of energy does not increase abruptly. Even if the PSSF is bigger than (55, 55,
55) MPa and the TSF is bigger than (5, 5, 5) MPa, the released energy of the system is still only
at the 107 J level. In addition, there is no butterfly shape in the plastic zone under PSSF = (P1, P2,
P3) = (55, 55, 55) MPa, which also confirms the key role of the butterfly plastic zone caused by a
large-ratio PSSF.
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One of the formation factors of a rock burst is the existence of a hole. Will there be a
sudden change in energy in the model without a hole? In order to show this, Figures 7 and 8
are made to show a change curve of storage energy, different-value, and released energy of
the no-hole model. The results show that the storage energy of the pure elastic medium and
elastoplastic medium also increase, but there is no difference before the final failure, resulting in
a different-value of 0; however, when the failure occurs, there is a large energy different-value.
The released energy is 0 before failure occurs and increases sharply to 108 J after failure occurs.
From the shape of the plastic zone, partial failure occurs after failure, and complete failure
occurs when P1 reaches 59 MPa. The above facts show that the mutation of energy is due to
the failure of the model, and the existence of a hole will lead to stress concentration [46] in the
model in advance, and the guess is that the larger the diameter, the greater the impact, which
will be studied in detail in the later study.
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Figure 6. Change curve of release energy under uniform stress field.
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The above calculation and simulation results are based on a uniform medium, and whether
the proposed factors and mechanisms are applicable to non-uniform medium [47,48], especially
a shallow layered medium, is worth verifying. Therefore, the numerical simulation model in
Figure 9 is established. The established model is divided into five layers; the middle layer is
coal, with the lowest strength and a thickness of 11 m, and a hole is located in the coal seam.
The first layer in the upper part is mudstone with a thickness of 26 m, the second layer in the
upper part is conglomerate with a thickness of 21 m; the first layer in the lower part is mudstone
with a thickness of 6 m, and the second layer in the lower part is fine sandstone with a thickness
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of 16 m. The total height and width of the model are all 80 m, and the external force setting is
the same as that of the uniform medium model.
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Figures 10 and 11 denote the change curve of storage energy, different-value, and
released energy of a non-uniform medium. Results show that both the storage energy of
the pure elastic medium and the elastoplastic medium increase with the increase of P1,
and the increasing speed is also different, which is the same as the uniform medium. The
different-value of energy also increases for the non-uniform medium model; however, the
acceleration is smaller compared to a uniform medium. From the results of the energy
release, the non-uniform medium also has a sudden change, and the dividing points are also
distributed at η = 2.5, 2.75 and 2.93. For the distribution of the plastic zone, the difference is
that the plastic zone entirely extends to the model boundary along the direction of the weak
coal seam when P1 = 60 MPa. The above facts show that the proposed energy calculation
method and mechanism are also suitable for a ubiquitous non-uniform medium.
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Figure 10. Change curve of storage and different-value of a non-uniform medium.

This study reveals the important impact of a large-ratio PPSF on a rock burst disaster.
In fact, some previous examples [49,50] also show that many rock burst accidents occur in
places with large stress ratios. Some of these places are affected by faults and others are
in a large abnormal stress field environment. The research results are consistent with the
rock burst accident occurring when heading to the corresponding area, while still occurring
when mining the same area, and the area is more likely to be in the environment of a
large-ratio stress field. When heading and mining to this area, a small TSF will easily lead
to the rock burst accident. In practice, a TSF is unlikely to be the dominant factor causing
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accidents, unless a hard roof hundreds of meters thick is broken on a large scale at one time
(TSF above 1 MPa is required in the non-butterfly state) [51]; however, this rarely exists in
reality, which has been already demonstrated in [45].
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Figure 11. Change curve of release energy of a non-uniform medium.

The energy variation law and mechanism obtained by the study are based on an
innovative calculation method and numerical simulation method. Results show that a
large-ratio PSSF and butterfly plastic zone and their energy mutation are closely related
to rock burst accidents. The study points out the direction for later monitoring and early
warning of rock burst, that is, the state of a large-ratio PSSF or plastic zone. Once the
stress ratio reaches 2.5/2.75/2.93, or the butterfly state of plastic zone has formed (like the
results in [52]), the state must be more dangerous. It should be recognized that the element
stress values in this study are obtained by numerical simulation (in the energy calculation
model, the energy calculation parameters of the element in the plastic zone adopt the
results derived from FLAC3D, and adopt the energy calculation method equivalent to the
elastic element, which will bring some errors, but will not change the law of energy release),
and it is difficult to monitor the three-dimensional stress state of every element in the
actual field to verify the correctness of the method. The next step is likely to be reflected
in the laboratory or by field verification (such as the results in [53]) of the method, and
seek monitoring methods to monitor the three-dimensional stress field or real-time plastic
zone state.

5. Conclusions

In this study, an innovative calculation method of rock mass release energy is estab-
lished, and a rock burst mechanism based on energy analysis and plastic zone distribution
is obtained through the calculation method. The main conclusions are as follows: (1) The
energy release area of a rock mass is closely related to the distribution area of the plastic
zone. In the butterfly plastic zone stage, the energy release of rock mass increases signifi-
cantly. (2) For the rock mass with a butterfly plastic zone, a small TSF can lead to a large
amount of energy release, resulting in the occurrence of a rock burst. (3) A butterfly plastic
zone is caused by a large-ratio PSSF (η = 2.5, 2.75 and 2.93), which is the key factor leading
to a rock burst. However, it should be pointed out that this study relies more on numerical
simulation, and later research should focus more on laboratory or field verification.
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