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Abstract: Flooding is a serious challenge that increasingly affects residents as well as policymakers.
Many studies have noted that decreasing the urban flood vulnerability (UFV) is an indispensable
strategy for reducing flood risks; however, some studies have several pertinent assessment limitations.
The objective of this study is to assess the UFV of the Xuanwu-Qinhuai-Jianye-Gulou-Yuhua (XQJGY)
region from 2012 to 2018 by integrating various indicators into a composite index. This study uses
the environment for visualizing images (ENVI) and the geographic information system (GIS) to
extract indicators that have geographic attributes for the assessment of UFV and the process analysis
method is then used to explore the relationship between these indicators. The results indicated
that: (1) The UFV of Xuanwu, Qinhuai, and Gulou decreased from 2012 to 2018 and the UFV of
Jianye and Gulou increased from 2012 to 2015 and decreased from 2015 to 2018. (2) The vegetation
coverage, precipitation during the flood season, population density, and highway density significantly
contributed to the UFV. (3) There also exist transformation pathways between the indicators that
led to vulnerability in five districts. This study provides a theoretical basis for the government to
manage floods.

Keywords: flood; urban flood vulnerability assessment; contribution analysis; process analysis

1. Introduction

In recent decades, extreme weather events and meteorological disasters have occurred
frequently in the context of global warming [1,2]. Urban flooding is a major natural global
hazard that is becoming increasingly frequent and serious in the world [3–5]. Currently,
more than half of the world’s population lives in urban areas [6]. As a result of floods,
19,000 people are killed, 12,000 people are injured, and 150,000 people lose their homes
per year all over the world [7]. Therefore, it is necessary and urgent to adopt strategies
for adapting to flooding, which suggests decision makers must utilize flood prevention
measures in advance to reduce economic losses and casualties.

Vulnerability estimation is an indispensable aspect of a flood risk assessment. With the
acceleration of urbanization processes, urban physical forms have changed dramatically,
increasing the uncertainties in the vulnerability assessment process. For example, built-up
land can drive flood hazard dynamics by altering hydrological and hydraulic processes [8].
From 1992 to 2015, the Chinese built-up land area increased by 542% (or 26 × 103 km2) [9].
Therefore, approaches to assess the urban flood vulnerability (UFV) should consider urban
physical forms. Vulnerability to urban floods have been evaluated in different countries and
the aim of a flood vulnerability assessment is to provide theoretical support for decision
makers to develop flood mitigation strategies. Most of these studies have remained at
the evaluation level and used multi-dimensional variables, including physical, economic,
community, nature, population, and political variables. In addition, these studies have
explored the risk levels of urban floods for populations in specific places. Nonetheless, the
internal drive mechanisms of the chosen variables have not been widely reported. The
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internal drive mechanisms of the chosen variables provide theoretical support for decision
makers to develop mitigation strategies.

The overall purpose of this study is to develop an integrated urban flood vulnerability
assessment approach that can accurately assess the UFV and explore the internal drive
mechanisms of the chosen indicators. Using the case of the XQJGY region, the aim is
to (1) measure the spatial and temporal characteristics of the study region; (2) assess
the contribution of each index to the UFV in the study region; (3) investigate the drive
mechanism pathways between the indicators; and (4) develop strategies for mitigation and
adaptation to flooding.

1.1. Literature Review

Vulnerability has become a central focus for global environmental change science
research communities in recent years [10]. Vulnerability is a complex concept with different
characteristics in the different research perspectives and different areas have different prob-
lems of vulnerability [11,12]. Vulnerability is commonly defined by the Third Assessment
Report of the International Panel on Climate Change (IPCC) as the degree to which a sys-
tem is susceptible to the adverse effects of climate variability or extremes. Næss et al. [13]
considered vulnerability as “A function of exposure, sensitivity, and adaptive capacity,
generated by multiple factors and processes”. The vulnerability also indicates the extent to
damage of the assets exposed to the forces generated by the hazard [14]. Researchers have
a more comprehensive understanding of the concept of vulnerability. There are a variety of
vulnerability assessment methods that are different in their methodologies, vulnerability
frameworks, and index selections [15]. According to earlier works, vulnerability assessment
methods can be categorized in three categories. The first is modeling methods that can
evaluate depth, elevation, and the velocity of floods by using the frequency, magnitude,
and shape of the hydrograph [16,17]. This approach requires a lot of data, is ineffective in
the absence of data and, when the model lacks the necessary data, this can lead to a loss
of decision effectiveness, confusing decision makers [11]. The second is implementing a
vulnerability assessment based solely on the available historical disaster records or mea-
surement data. This method is constructed on data collection from real flood hazards and
their usage. This method is a simple approach but can be slightly inaccurate. Owing to the
rapid development of urbanization, historical disaster data cannot effectively reflect the
current urban situation [18]. The last is the vulnerability indicators method, which has been
adapted to use the available data to provide a logical image of the vulnerability of a location.
Vulnerability from floods has many dimensions, such as social, physical, economic, and
political, which influence how floods affect inhabitants in varying ways and with different
intensities. Many frameworks for assessing flood vulnerability exist. For instance, Cutter
et al. [19] used a principle component analysis to aggregate county level socio-economic
data to assess the social vulnerability of different municipalities in the US. The analytical
hierarchy process (AHP) was used to identify risk elements and assign decision parameter
weights for creating a flood vulnerability distribution map [20,21]. Kablan et al. [22] used
the method for the improvement of vulnerability in Europe (MOVE) framework that in-
tegrates various indicators including environmental and societal aspects. Van et al. [23]
calculated flood vulnerability indexes that considered social, economic, environmental,
and physical indicators to assess flood vulnerability. Kashyap et al. [24] have assessed
vulnerability to flooding combined characteristics relating to exposure, sensitivity, and
adaptive capacity.

The selection of indicators has been widely discussed by researchers. Various flood
indexes have been used to assess flood vulnerability. The indicators related to physical
aspects, such as blocks with paved roads, health centers, sea-level rise [25–27], and in-
creasing groundwater levels [28], are applicable to physical flood vulnerability and these
parameters have been widely used. Physical, social, and infrastructure indicators have
been widely used in national or regional flood vulnerability assessments. Chang et al. [29]
selected indicators from social, ecological, and technological dimensions to assess urban
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flood vulnerability. However, with the acceleration of urbanization processes, populations
and economies are highly concentrated in urban areas, adding to the uncertainties in the
vulnerability analysis process [30]. Moreover, the disaster-bearing capacities of neighbor-
hoods are interdependent and, because of their similar service conditions and structural
behaviors, some indicators used in existing studies are not suitable for assessing flood
vulnerability. The geographic information system (GIS) has been frequently adopted to
evaluate the spatial heterogeneity of vulnerability [31]. Geographic information technology
can be more widely used in index extraction. The aim of the existing studies is to be policy-
making tools for reducing flood risk. Duan et al. [32] used game theory to determine the
spatiotemporal distribution of the flood vulnerability. Yang et al. [10] developed a multiple
flood vulnerability assessment approach based on the fuzzy comprehensive evaluation
method (FCEM) and coordinated development degree model (CDDM) to reveal the internal
relationships of exposure, sensitivity, and adaptive capacity. Helderop et al. [33] explored
the interrelationships between social, geomorphic, and climatic factors, highlighting the
many ways in which they contribute to somewhat unexpected vulnerabilities for coastal
settlements. Urban flood vulnerability can be mitigated by effective land use and efficient
urban drainage system [34]. Within the community, the legalization of certain materials
and techniques for construction are effective to reduce flood vulnerability [35]. The proper
planning of grey infrastructure and green infrastructure are important ways to reduce flood
vulnerability [36]. The risk perception of the local population can also affect the urban flood
risk [37]. However, in these studies, few researchers considered the relationship between
indicators for assessing vulnerability. They have only focused on the vulnerability score.
This does not intuitively provide policy recommendations for mitigating vulnerability.

The aim of this study is to provide a theoretical basis for the government to manage
floods. For this aim, a framework was developed that integrates the physical, economic,
community, nature, population, and political indicators. In particular, ArcGIS and the
environment for visualizing images (ENVI) were used to extract the impermeable areas,
fractional vegetation coverage, and built-up areas that have geographic attributes. Then,
a contribution analysis of 18 individual indicators was performed. The process analysis
method was applied to explore the drive mechanism pathways between the indicators.
Based on these analyses, specific advice is then proposed for the study area to decrease the
UFV.

1.2. Study Area

The districts of Gulou, Jianye, Qinhuai, Xuanwu, and Yuhuatai are the core region of
Nanjing City and they have high population densities and frequent human activities [38].
The region is located between latitude 31◦14′ N–32◦37′ N and longitude 118◦22′ E–119◦14′ E
(Figure 1). The area is located in the north subtropical monsoon climate, with an annual
precipitation of 1200 mm [39,40]. The average annual temperature is 15.4 ◦C, the highest
annual temperature is 39.7 ◦C, and the lowest temperature is −13.1 ◦C. This region covers
an area of 392.01 km2, accounting for 5.95% of Nanjing, and the population of this region is
3.7 million, accounting for 43% of Nanjing. Moreover, its gross domestic product (GDP)
reached USD 58.68 billion in 2018. Geographically, this region lies on flat land with an
elevation generally between 10- and 20 m above the sea level.

This region has a subtropical monsoon climate with distinct seasons and abundant
rainfall. Under the control of the monsoonal climate, the winters are dry and the summers
are rainy. According to the data statistics, the average annual rainfall days in the region is
117 days, the average rainfall amount is 1106.5 mm, and the relative humidity is 76%. In
June every year, the region is prone to typhoons and frequent rainstorms, which can easily
lead to disasters within the city. In recent years, floods have occurred almost every year
in Nanjing, leading to the flooding of residential areas with imperfect drainage network
construction and the paralysis of urban road traffic systems. In some years, this has occurred
to a large degree and has had a wide coverage. The rapid development of urbanization has
brought about a high concentration of population in the cities, causing cities to be vulnerable
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to floods. In addition, rapid urbanization has led to rapid growth in impermeable areas of
the region, which contributes to the spatial and temporal redistribution of surface runoff,
resulting in the greater magnitude and less concentration time of flood peaks in urbanized
areas and creating conditions for urban floods [41].
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2. Data and Methodology
2.1. The Urban Flood Vulnerability Model

The methodology used in this study agrees well with the goal of the study, which is
the assessment of the vulnerability to urban flooding of the five districts of Nanjing. The
study framework is shown in Figure 2. For the comprehensive consideration of the concept
of vulnerability, 18 indicators were developed from six categories of physical, economic,
community, nature, population, and political parameters, as obtained from the relevant
literature regarding flood vulnerability and climate change vulnerability [10,42,43]. The
explanation and references of the evaluation index system are shown in Table 1.

2.2. Calculation of the Urban Flood Vulnerability
2.2.1. Standardized Flood Indexes

To calculate the final vulnerability score, the indictor set was first standardized using
the Min-Max method in order to ensure the data are comparable and eliminate the effect of
dimension. However, because standardization follows certain rules, it was important to
assess the functional relationship between the indicator and the vulnerability. Thus, the
positive and negative indexes were standardized using the following equations:

xij =
xj−xmin

xmax−xmin
, (1)

where xij = the standardized value; xj = the value of the indicator j; xmax = the maximum
value of the indictor j; and xmin = the minimum value of the indicator j.

2.2.2. Weighting Procedure

The weight of the indicators can be divided into objective and subjective weighting.
The subjective weighting depends on the subjective factors and the amount of qualitative
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data was larger than that of quantitative data. The entropy method is an objective weighting
method that can reflect the utility value of the index. Its weight value has higher credibility
and accuracy than that of the subjective weighting method. Therefore, the entropy method
was used in this study to calculate the weight index. The proportion of the year index value
in comparison with all the indexes was calculated using the following equation:

yij =
xij

∑m
i=1 xij

(0 ≤ yij ≤ 1), (2)

where yij = the proportion of the index value of year i in the index of item j; and m = the
total number of years. The entropy value was calculated using the following equation:

ej= −K
m

∑
i=1

yijlnyij (K =
1

lnm
), (3)

where ej = the information entropy value of the index j.
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Table 1. Indicators of urban flood vulnerability.

Indicator Category Source

Per capita GDP (CNY) Economic

2012–2018 statistical yearbook of Nanjing,
2012–2018 Xuanwu almanac,

2012–2018 Jianye almanac,
2012–2018 Yuhua almanac,
2012–2018 Gulou almanac,

2012–2018 Qinhuai almanac,
2012–2013 Xiaguan almanac,

2012–2013 Baixia almanac.

Proportion of male and female (%) People
Population density (person/km2) People

Government subsidies after disasters (104 CNY) Political
Number of firefighters Political

Number of community hospitals Political
Fixed investment (108/CNY) Political

Neighborhood committee coverage ability Community
Number of registered volunteers Community

Precipitation in flood season (mm) Nature
Vegetation coverage Nature
Number of old plots Physical

Number of protected buildings Physical
The percentage of impermeable ground (%) Physical

Built-up area (square meter) Physical
Road density (km/km2) Physical

Water area (km2) Physical
Length of vulnerable road (km) Physical
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The weighting was performed using the following equation:

wj =
dj

∑m
i=1 dj

, (4)

where dj = the information utility value of the index j; and wj = the weighting of the index j.

2.2.3. Urban Flood Vulnerability Score

The vulnerability score was calculated using the following equation:

UFV =
n

∑
i=1

yijwj. (5)

2.3. Impermeable Area

The impervious surface refers to the artificial surface. The biggest feature of this type
of surface is that it can prevent surface water from infiltrating into the soil. A spectral
blending analysis is a common method for spectral blending decomposition. It is used
to calculate the composition proportion of different end elements in mixed pixels and
decompose the spectrum of mixed pixels into a combination of spectral information of
various end elements and ground types. Spectral hybrid decomposition models can be
divided into linear and nonlinear models according to the relationship between variables.
However, many parameters in the nonlinear spectral hybrid decomposition model are
difficult to measure accurately and obtain. The linear spectral mixed decomposition model
was used in this study to assess the impermeable area based on the ENVI. The linear spectral
mixed decomposition model is one of the most commonly used methods to obtain the
impermeable surface information of the medium spatial resolution percentage of subpixels.
The principle is to assume that the reflectance of a pixel in a certain spectral band is a
linear combination of the reflectance of the basic components forming the pixel and the
proportion of the area of the pixel as the weight coefficient. The specific steps are as
follows. First, it is necessary to preprocess the image, including the geometric correction,
atmospheric correction, and image cutting. Second, the minimum noise fraction (MNF)
is calculated due to remote sensing image spectral correlation. The occurrence of noise
reduces the amount of information remote sensing data images required to be an effective
analysis method. Therefore, researchers need to reduce the spectral correlation between
the separation and noise of remote sensing data at the same time. Using a superimposed
MNF transform principal component transformation can effectively produce multispectral
and hyperspectral data dimension reduction more effectively than a principal component
analysis to reduce the data dimension, isolate information noise, and reduce the correlation
between bands, which reduces the computational burden. Third is the selection of end
elements. According to the end element selection process, the end element is divided into a
reference end element and an image end element. Image end elements are selected from the
image to be classified and are modified and adjusted continuously and finally determined.
All the image end elements are considered as a linear combination of image end elements.
The reference is the spectrum from the spectrum library, so the use of a reference to
conduct the decomposition of mixed pixels and the CNY has a higher accuracy in theory.
However, the video imaging can be affected by the sensor and uncertain factors such as the
atmosphere. Therefore, the features of the spectral curve and field measurements and the
feature spectrum curve of the unbridled differences, even after a series of pretreatments,
are also difficult to perfectly determine using the spectral feature spectrum curve in the
repository. The end elements obtained from the image have the same measurement scale
as the image data. In addition, due to the lack of a mature spectrum library suitable for a
specific area, field measurements often require a lot of labor and material resources and this
has become the primary means to obtain the end elements from the image itself. Owing
to the complex composition of ground objects on the urban surface and the large effect
of the urban atmosphere on remote sensing images, studies have shown that image end
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elements can be directly extracted from images and mixed pixel decomposition has a better
effect. Therefore, the end elements used in this study were directly extracted from images.
Fourth, the selection of the end member and the selection of the end elements determine
the precision of the result of the mixed pixel decomposition. The number of end elements
and the fitting degree of the decomposition model need a balance; too many end elements
will cause the decomposition model to be too sensitive to the end element selection. If the
end element is too small, the suitability of the model will be insufficient to fully explain the
spectral changes. For the extraction and analysis of urban impermeable ground, it is more
ideal to select four end elements, that is, four end elements with high reverse illumination,
low reverse illumination, vegetation, and soil, for the decomposition of mixed pixels. Fifth,
the building of the water mask. Because a water body is a ground object with low reverse
illumination, the influence of a water body must be eliminated before calculating the
impermeable surface coverage; a water body mask should be applied to the image. After
the mask, the value region is processed and the shielded value region is excluded from
the calculated range. Finally, the high albedo image and ground albedo image after the
linear spectral mixed decomposition are added and the impermeable layer is obtained. The
data were obtained from the U.S. geological survey network (https://ers.cr.usgs.gov/login
(accessed on 5 November 2021)). Additionally, the percentage of impermeable area in the
five districts are shown in Figure 3. The percent of impermeable area of all districts showed
a continuous rising trend. Qinhuai and Gulou have the highest percent of impermeable
area from 2012 to 2018.
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2.4. Fractional Vegetation Cover

The fractional vegetation cover (FVC) refers to the percentage of the vertical projection
area of vegetation (including leaves, stems, and branches) on the ground to the total area of
the statistical area. In this study, the FVC was calculated by the dimidiate pixel model using
the ENVI. The dimidiate pixel model is a simple and practical remote sensing estimation
model; it assumes the pixel surface by using the vegetation-covered portions of the surface
and surface portions of the vegetation coverage. Then, the spectral information from
the remote sensing sensor observed, using these two components factored into the linear
weighted synthesis, that the weight of each factor is their respective areas as a ratio in
pixels, as the vegetation coverage can be thought of as the weight of vegetation. Based on
the dimidiate pixel model and the normalized difference vegetation index, the vegetation
fraction of the study region can be calculated by using the model for quantifying the
vegetation fraction from the normalized difference vegetation. The FVC was performed
using the following equation:

FVC = (NDVI − NDVImin)/(NDVImax − NDVImin). (6)

2.5. Built-Up Area

The built-up area was obtained from the MODIS land cover data using GIS. The
MODIS land cover data describes land cover types based on one-year of Terra and Aqua
observations. The land cover dataset consists of 17 primary land cover types, including
11 natural vegetation types, 3 developed and embedded land types, and 3 non-vegetative
land type definition classes according to the International Geosphere Biosphere Programme
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(IGBP). MCD12Q1, the annual global 500 m product of MODIS Terra + Aqua, adopts five
different land cover classification schemes and the primary technology for information
extraction is to supervise the classification of decision trees.

3. Results

Recognizing the spatiotemporal characteristics of the UFV is the basis for reducing
vulnerability and risk. A contribution analysis contributed to this exploration of UFV
reduction.

3.1. Spatial and Temporal Analysis

The trends of five districts from 2012 to 2018 are shown in Figure 4. For Jianye and
Yuhua, the trend of vulnerability rose and reached the maximum value in 2015, then it
declined. The amplitude of the fluctuations had a larger trend than that in the other districts.
In Xuanwu, the UFV decreased from the highest point from 2012 to 2014, increased from
2014 to 2015, then decreased to the lowest point from 2015 to 2017, and it increased from 17
to 18 years. Except for an increase in 2013, Qinhuai showed a downward trend every year.
Similarity, Gulou presented an upward trend in 2014. Yuhua showed a steady increase from
2012 to 2015 and in the following years it remained comparatively stable. Jianye jumped
up from 0.26 in 2012 to 0.61 in 2015, then fell back to 0.44 in 2018.
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The spatial distribution maps of the UFV of the five districts are shown in Figure 4.
The UFV of these five districts is spatially heterogeneous. In 2012 and 2013, Xuanwu and
Qinhuai have the highest UFV. The UFV of Qinhuai and Jianye is higher than other districts
in 2014. The UFV in Jianye continued to increase from 2012 to 2015 and the urban flood
vulnerability in 2015 was significantly higher than that in the other districts. The UFV of
Yuhua remained stable and was the most vulnerable from 2016 to 2018, while it showed
a downward trend in other districts. Qinhuai had the lowest UFV in 2018. Jianye and
Yuhua has the lowest vulnerability of urban flood in 2012, but the UFV of the two districts
increased to become the highest in 2018. The UFV of Gulou is at a medium or low level in
the five districts from 2012 to 2018.

3.2. Contribution Analysis
Contribution Analysis of the Five Indicators

The contributions of the indicators to the UFV for each district are illustrated in
Figure 5. Because there are 21 indicators, this study analyzed the top 6 indicators of the
five districts for the index contribution analysis. The top six indicators for each district are
similar but differ in their detail. For all the districts, the vegetation coverage, precipitation
during the flood season, population density, and road density are in the top six contributors.
In the Xuanwu district, the impermeable area contributed the most to the UFV. Similarly,
the third largest contributor in the Qinhuai districts was the impermeable area.

(1) Vegetation Coverage
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For all the districts, the proportion of vegetation coverage to the UFV was greater than
10%. The contribution of vegetation coverage in the Jianye district was the largest, at 21.6%.
The vegetation coverage of the Gulou district contributed the smallest amount to the UFV
(11.96%).
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Figure 5. The contribution of indicators to urban flood.

(2) Precipitation during the Flood Season

Heavy rainfall can cause urban flooding. According to historical disaster data, it was
stipulated in the 2015 edition of the Nanjing Flood Control Planning that Nanjing City
had its annual flood season from May to September. During this period, Nanjing is more
vulnerable to flood disasters. Extreme precipitation events are more likely to occur and
rainstorm floods are more likely to occur in local vulnerable areas. It can be seen from the
contribution index that in the five districts, the precipitation during the flood season was
one of the first five indicators. Xuanwu had the largest share (11.45%), followed by Jianye
(11.06%), Gulou (10.51%), and Yuhua (10.42%).

(3) Impermeable Surface Area

The districts where the impermeable surface area was one of the dominant factors
of the UFV were Xuanwu and Qinhuai. Xuanwu accounted for 16.33% and Qinhuai
accounted for 13.06%. It is understandable that the less impermeable surface area in a city
will accelerate the speed of rainwater infiltration and reduce the possibility of rainwater
accumulation, thus reducing the possibility of urban flooding.

3.3. The Mediating Effect Test

The mediating effect refers to how the effect of A on C is realized by B, that B is
a function of A, and C is a function of B (A-B-C) [44]. Considering the influence of an
independent variable A on a dependent variable C, if A influences variable C through B,
then B is called the intermediary variable. In recent years, the bootstrap method has been
utilized in most studies published in top international academic journals in psychology,
consumer behavior, organizational behavior, and other fields to test the mediating effect.
This study also used this method to test whether there is a mediating effect between
indicators. Mediation path models (Figure 6) and an integrated path diagram for each
district were then established (Figure 7). The solid line is the indirect effect path and the
dotted line indicates the direct influence path. The red line shows positive effects, while
the green line shows negative effects.
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3.3.1. Xuanwu District

The mediating effect of “vegetation coverage-population density-flood vulnerability”
was significant, while the direct effect of “vegetation coverage-flood vulnerability” was not
significant. In this intermediary path, vegetation coverage reflects the greening environment
of the region. The greening environment has a significant effect on the agglomeration effect
of the regional population. There are many residential communities around the green
space of the park and the population density is large. Therefore, the vegetation coverage
was positively correlated with the population density. The greater the population density,
the higher the vulnerability of the region to flood disaster, so the population density was
positively correlated with the flood vulnerability.
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3.3.2. Qinhuai District

The mediating effect of “fixed investment-population density-flood vulnerability”
was significant, while the direct effect of “fixed investment-flood vulnerability” was not
significant. In the intermediary path, the higher the fixed investment was, the better the
regional government’s financial situation was, and there was enough fiscal revenue to
support the higher fixed investment. The per capita GDP reflects the overall economic level
of the region; hence, fixed investment was positively correlated with per capita GDP. The
greater the population density, the higher the vulnerability of the region to flood disaster.
Therefore, the population density was positively correlated with the flood vulnerability.

3.3.3. Yuhua District

The mediating effect of “per capita GDP-road density-flood vulnerability” was sig-
nificant, while the direct effect of “per capita-flood vulnerability” was significant. In the
mediation path, the per capita GDP reflects the economics of area residents. The economic
level is higher in urban areas where urbanization levels are high and these areas will have a
higher road density. Therefore, there was a positive correlation between the per capita GDP
and road density and road density; the higher the representative regional transportation
routes, which receive urban flooding operation losses, the greater the increase in the flood
vulnerability of the area. Therefore, the road density had a negative correlation with the
flood vulnerability. In the direct path, the per capita GDP reflects the regional economic
level. The higher the economic level is, the stronger the resilience, risk resistance, and
post-disaster recovery will be in the face of floods and flood disasters. Therefore, the per
capita GDP was negatively correlated with flood vulnerability.

3.3.4. Jianye District

The mediating effect of “per capita GDP-population density-flood vulnerability” was
significant and the direct effect of “per capita-flood vulnerability” was also significant. The
per capita GDP was negatively correlated with the population density. A higher per capita
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GDP means better personal economic levels and residents with better economic levels
are able to live in high-end residential areas, which have smaller plot ratios and lower
population densities.

3.3.5. Gulou District

The mediating effect of “fixed investment-per capita GDP-flood vulnerability” was
significant and the direct effect of “fixed investment-flood vulnerability” was significant.
In the intermediary path, the higher the fixed investment was, the better the regional
government’s financial situation was, and there was enough fiscal revenue to support the
higher fixed investment. The per capita GDP reflects the overall economic level of the region
and the fixed investment was positively correlated with the per capita GDP. The higher
the economic level, the stronger the resilience, risk resistance, and post-disaster recovery
in the face of floods and flooding disasters. Therefore, there was a negative correlation
between the per capita GDP and vulnerability. In the direct path, fixed investment was
negatively correlated with vulnerability. The higher the fixed investment was, the more
funds the regional government has. Investment in infrastructure will increase the stability
of infrastructure. This can effectively reduce the flood disaster vulnerability.

3.3.6. By Combining the Paths of the Five Regions, the Comprehensive Path Was Plotted

The per capita GDP, road density, and flood vulnerability had a positive conversion
path. The per capita GDP, population density, and flood vulnerability had a negative
conversion path. The vegetation coverage, population density, and flood vulnerability
had a positive conversion path. The fixed investment, population density, and flood
vulnerability had a positive conversion path. The fixed investment, per capita GDP, and
flood vulnerability had a positive conversion path.

4. Discussion

Based on the index-based system method, this study assessed the UFV of the XQJGY
region in Nanjing and performed the contribution analysis of different indicators. The
XQJGY region showed the heterogeneity in the temporal and spatial distribution of UFV.
Flood vulnerability represented the decreasing trend in almost all the districts from 2012 to
2018, except the Yuhua and Jianye districts. Additionally, many researchers have found
the analogous results of urban flood characteristics by using Nanjing as a case study,
which was believed to have flood resilience [45] and lower the exposure risk [46]. UFV
presented the aggregation effect in the spatial distribution and was primarily concentrated
on the southern XQJGY region, which was consistent with the current studies [47,48]. This
study also emphasized and extracted the indicators with geographic attributes and created
the contribution analysis in UFV. Additionally, vegetation coverage showed the highest
contribution to flood vulnerability in all the districts and the impermeable surface area
contributed the most in the Xuanwu and Qinhuai districts. Rapid urbanization dramatically
changed the feature of the urban underling surface [49] and the natural surface, such
as farmland and woodland, was sharply decreased and obviously converted into the
impermeable surface [50]. Unbalanced land transformation significantly affected the urban
hydrological system [51] and prevented rainwater from infiltrating into the ground [52],
which would intensify the urban flood risk faced with climate change. Although flood
vulnerability showed the decreasing trend in the XQJGY region, it was also necessary to
pay attention to the change of vegetation cover and impervious surface and avoid the
large-scale urbanization for a more resilient city.

This study explored the influence path of flood vulnerability and revealed the medi-
ating effect between indicators in different districts. It was found that the road density
showed a positive effect on flood vulnerability, which was in agreement with the results
of the present study [53]. The road density was the common significant factor affecting
the urban flood and negatively correlated with floods in Chinese megacities [46,53]. The
most-connected road links within a network were more prone to floods and urban floods
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became more frequent with the increase in road density [54]. The roads were believed to
disrupt water storage and affect the infiltrated volume and consequently increase flood
vulnerability [55]. We found that the per capita GDP showed a negative effect on flood
vulnerability. The per capita GDP mainly reflected the per capita economic development
level and performance [45] in the XQJGY region. The functioning economy system could
support the capacity to resist to, adapt to, and recover from flood events in cities [56,57].
Additionally, the vitality, redundancy, and resourcefulness of the local economy helped
to enhance individuals’ adaptive capacity of flood prevention and the economic afflu-
ence caused people to be more resilient to floods [56], which could mitigate and reduce
flood vulnerability. Furthermore, vegetation coverage showed the indirect negative ef-
fect on flood vulnerability and population density played the mediating effect between
vegetation coverage and flood vulnerability. In current studies, good vegetation cover-
age, positively correlated with floods, was believed to provide the ecosystem service of
flood mitigation [58,59], reduce the flood peak and regulate the hydrological process [60]
through precipitation interception and soil infiltration [61]. However, vegetation cover-
age could increase population density and lead to flood vulnerability according to this
study. Vegetation promoted human behavior and personal perception and showed the
benefits of microclimate mitigation and thermal comfort improvement at the neighborhood
scale [62]. However, increased anthropogenic activities could enhance the probability of
flood occurrence [53] and aggravate flood risk exposure [45] and population density was
demonstrated to have the significant positive correlation with flooding [46,47]. Therefore, it
was fundamental to attach importance to the rational planning and recovery of vegetation
for inhibiting the positive effect of vegetation coverage on flood vulnerability.

The physical expansion of urban areas often arose at the expense of natural space [63]
and rapid urban growth posed pressure on sustainable development and led to a high flood
risk. Additionally, the increased impervious areas ought to adopt responsibility for more
frequent flood events. The most developing countries mainly depended on grey solutions
to achieve flood management, such as dams or concrete pipes, but this approach lacks
sufficient sustainability and resilience [64]. Based on nature-based solutions, blue-green
infrastructure (BGI) referred to the interconnected infrastructure network of natural or
man-made green and blue spaces [65], including forests, wetlands, green roofs, green
walls, rivers, creeks, parks, etc. BGI promoted ecosystem resilience and human well-being
by providing a range of ecosystem services [66] and operated as the useful and effective
way to mitigate and adapt to floods. Therefore, based on the results of this study, we
recommended these suggestions to promote the development of BGI in the XQJGY region
for mitigating flood vulnerability and increasing flood resilience. First, reasonably control
the urbanization process to avoid excessive urban expansion in order to reduce the increase
in or generation of impervious surfaces. Additionally, pay attention to the protection of
urban vegetation coverage and rationally plan the vegetation distribution to enhance the
flood regulation effect of the urban landscape. Furthermore, build and restore urban rivers,
lakes, water systems, green spaces, and parks and improve the capacity of blue-green
spaces to absorb rainwater. Finally, effectively protect and fully utilize urban blue and
green infrastructure and promote the coordination role of blue, green, and gray systems.

This study stressed the role of indicators with geographic attributes in flood vul-
nerability and illustrated the influence path and mediating effect. Although these paths
provided the theoretical basis for mitigating flood vulnerability, how to put into practice
remained challengeable and unsolved. Current studies focused on flood simulation and
modeling [50] and attempted to reveal the hydrologic process with climate change [67,68].
Additionally, flood simulation could be used to examine and test the actual influence of
vulnerability indicators through the change of modeling parameters. Moreover, although
major rainstorm occurring on the large impervious areas became the primary source and
cause of urban flooding [69], rising river levels and flash floods were also a contribution
factor for floods [67,70] and led to the considerable losses during heavy rain. Future studies
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should further explore the cascading effect and influence the consequence between different
flooding types.

5. Conclusions

In this article, a method for measuring and mapping flood vulnerability was demon-
strated using Xuanwu, Qinhuai, Jianye, Gulou, and Yuhua as examples. The results
contribute to a growing body in the literature on flood vulnerability assessments, which
offer some perspectives for both researchers and policy makers. One of the key perspec-
tives of this study was that an integrative framework was used for measuring the flood
vulnerability that included physical, economic, community, nature, population, and policy
parameters. The flood vulnerability of the affected study area utilized a composite index
and was based on geographic information technology. Another perspective was the use of
a contribution analysis and process analysis from the index layer, which was conducive for
the exploration of the influencing factors and transformation path of the UFV.

The findings demonstrated that the flood vulnerabilities in the XQJGY region were dif-
ferent. From 2012 to 2018, the UFV of the Yuhua district and Jianye district increased, while
Xuanwu, Qinhuai, and Gulou decreased. By using an analysis of the specific contribution
of the index layer, it was observed that the top six indicators that significantly contributed
to the UFV were the following: vegetation coverage, precipitation during the flood season,
population density, and road density.

This study analyzed the UFV of the XQJGY region and its influential factors. Based on
the results, the interaction mechanisms of the cities in the XQJGY region should be explored
in future studies.
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