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Abstract: Knowledge extraction from rich text in online health communities can supplement and
improve the existing knowledge base, supporting evidence-based medicine and clinical decision mak-
ing. The extracted time series health management data of users can help users with similar conditions
when managing their health. By annotating four relationships, this study constructed a deep learning
model, BERT-BiGRU-ATT, to extract disease–medication relationships. A Chinese-pretrained BERT
model was used to generate word embeddings for the question-and-answer data from online health
communities in China. In addition, the bidirectional gated recurrent unit, combined with an attention
mechanism, was employed to capture sequence context features and then to classify text related to
diseases and drugs using a softmax classifier and to obtain the time series data provided by users. By
using various word embedding training experiments and comparisons with classical models, the
superiority of our model in relation to extraction was verified. Based on the knowledge extraction, the
evolution of a user’s disease progression was analyzed according to the time series data provided by
users to further analyze the evolution of the user’s disease progression. BERT word embedding, GRU,
and attention mechanisms in our research play major roles in knowledge extraction. The knowledge
extraction results obtained are expected to supplement and improve the existing knowledge base,
assist doctors’ diagnosis, and help users with dynamic lifecycle health management, such as user
disease treatment management. In future studies, a co-reference resolution can be introduced to
further improve the effect of extracting the relationships among diseases, drugs, and drug effects.

Keywords: online post; online health communities; knowledge recovery; relationship extraction;
deep learning; disease medication; health management

1. Introduction

The incidence of chronic diseases is rapidly increasing worldwide [1]. Chronic diseases
represented by hypertension, stroke, diabetes, and coronary heart disease seriously endan-
ger human health and become important diseases threatening people’s health. According
to the World Health Organization, users with diabetes, hypertension, and cardiovascular
problems rely on functional medications every day [1]. Therefore, patients and doctors
must be aware of the effects of commonly used drugs [2]. Disease management is a crucial
aspect of health management [3]. Determining drug effects is the primary concern of
drug management [4]. The phrase “diseases, drugs, and drug effects (DDEs)” refers to an
obvious improvement effect or other effects observed when drugs are used to treat diseases
in different individuals [5]. Moreover, DDEs can reflect the effects experienced by different
individuals after taking medicine. Consequently, a patient can consult the physician regard-
ing continuing, stopping, replacing, or intervening the treatment scheme depending on the
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drug’s effects. In general, drug effects corresponding to various diseases are obtained via
clinical diagnoses; however, these effects vary for different people, and those identified in
limited clinical cases are far from sufficient. Online health communities (OHCs) provide a
convenient and fast communication channel, and after taking medication, users can review
symptoms and drug effects in OHCs [6]. For example, users can understand the drug
effects experienced by others over time; this enables a better understanding of the drug
effects for various diseases with respect to users with similar conditions [2,7,8] and avoid
adverse effects [9–11]. Although this user-generated content (UGC) in OHCs is timely and
effective, a large amount of UGC remains unused for disease management.

Scholars mostly studied the extraction of the relationship among diseases, symptoms,
and tests [12], and the relationship between diseases, drugs, and efficacy garnered the
attention of many scholars [13–15]. Extracting the relationship among DDEs from the UGC
of OHCs can generate a large amount of information regarding disease medication, which
can be used to establish, supplement, and improve the existing knowledge base of DDEs
and can assist clinical decision making [15]. Knowledge extraction results are also a key step
in establishing a medical knowledge map [16]. At the same time, the drug effects shared
by these large user groups provide support for evidence-based medicine [17]. However,
research with respect to extracting the relationship among DDEs from unstructured texts in
OHCs and then establishing a knowledge base of disease medication effects based on the
UGC in OHCs is scarce.

Studies on information extraction in the field of biomedical and health informatics are
mostly based on biomedical literature summaries [18], hospital discharge summaries [19],
and electronic medical records [20]. The words and sentences in these corpora are relatively
structured. However, extracting relationships from OHCs that contain colloquial and poorly
structured questions and answers (Q&As) is difficult. Therefore, this study aims to extract
the relationship among DDEs from doctor–patient Q&A data in OHCs, and it focuses on
the relationship extraction of DDEs as an information extraction problem. Considering the
popularity of bidirectional word embedding encodings and conversion technology and in
order to better obtain the semantic context, our research utilizes BERT word embedding
technology, deep learning technology, and the attention mechanism (ATT), thereby better
representing semantic relations. We construct a BERT-BiGRU-ATT network model based on
ATT, which is devoted to the problem of extracting relationships among DDEs from OHCs.
In addition, time-series data based on a user’s disease medication are obtained via relation
extraction to show the disease treatment process, which provides a strong guarantee for
dynamic health management based on the life cycle.

This paper is committed to making the following three contributions to the literature:
first, our study extends the research on DDEs knowledge extraction to OHCs and expands
the data sources of disease–drug research; second, our research expands the research
direction of knowledge extraction from OHCs; third, based on the results of the research,
we provide a better understanding of DDE’s knowledge extraction.

The article is organized as follows. We describe how our work relates to existing
literature streams in Section 2 and provide the research Methodology in Section 3. The ex-
perimental setup is presented in Section 4. Experimental Results are provided in Section 5.
We then present Discussion and Conclusions, the implications of our findings and a discus-
sion of the limitations in Section 6.

2. Related Works
2.1. Research on Knowledge Extraction from OHCs

There are several users in OHCs, and user-generated content is now rich enough for
knowledge extraction. For example, the MedDRA was used to extract the knowledge of
drugs and drug effects from the Spanish drug effect database [15]. There is also a rule-based
approach for extracting knowledge on dietary recommendations from open data [21]. In
addition, disease- and drug-related knowledge extraction in the online health community
plays a significant role in the field of relationship extraction. For example, adverse drug
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events (ADEs) were extracted from the user-generated content of OHCs [8–10], and new
indications for drugs outside the drug label were found from online communities [2,7].

2.2. Research on Medical Text Knowledge Extraction

Initially, scholars mostly used pattern matching and machine learning methods to
extract knowledge related to diseases and drugs from medical texts. The former adopted
syntactic structure analyses, and relation extraction is carried out by expert-defined rules.
These methods generally have a low recall rate. Iqbal et al. extracted the relationship
between drugs and side effects from electronic medical records based on rules [20]. In the
I2B2/VA challenge task, the relationship between medical concepts in patients’ clinical
records was extracted; specifically, the following three types of medical relationships were
extracted using machine learning [22]. In addition, support vector machine and kernel
function methods are widely used for relationship extractions in the biomedical field. This
study uses the abundant features of support vector machines to extract knowledge between
chemical substances and diseases from research articles in PubMed [23]. Furthermore,
it employs multiple algorithms from machine learning to extract knowledge between
cures, preventions, and side effects from clinical records [24] and to extract relationships
related to patients’ medical problems (disease, examination, and treatment) from discharge
summaries [19]. Machine learning has been widely used in the knowledge extraction of
adverse drug events (ADEs) [9–11], new indications for on-label drug use [2], drug–drug
interactions [14], and the relationship between chemical substances and disease [23]. Most
of the relational extraction corpora of the above studies come from relatively structured texts
(for instance, electronic medical records). However, there are few studies that have extracted
the relationship of DDEs from a large number of colloquial and unstructured texts.

2.3. Research on Medical Knowledge Extraction Based on Deep Learning

Artificial intelligence has been extensively used in the industry and in medical prac-
tice. The methods of machine learning require specific domain knowledge and artificial
features in relation extraction tasks, which require considerable manpower. Deep learning
experienced a period of development and influenced many fields and industries [25]. It is
a new type of artificial intelligence technology. In various information extraction tasks, it
uses multi-layer cross-connected nodes to establish a multi-relation classification model
for input data, which can automatically and intelligently extract features, thus saving a
tremendous amount of manual work. Deep learning has been widely used when pro-
cessing health information. The research used the GRU model to extract knowledge on
bacteria-related information from the academic literature of biomedicine [26]. Luo et al.
achieved good results in evaluating the relationship among multiple medical problems
on the i2b2/VA relationship classification challenge dataset [27]. Yadav et al. used an
efficient multi-task deep learning framework to classify the relationship between drug–
drug interactions, protein–protein interactions, and medical concepts [28]. Deep learning
is also widely used in medical practice, such as nodule detection [29], medical labeling,
and scanning [30]. Moreover, it is widely used in the knowledge extraction of adverse
drug events (ADEs) [13], drug–drug interactions [31], and the therapeutic effect of drugs
on diseases [32–34]. Health informatics and natural language processing have become
important fields with respect to deep learning technology application [35]. Word correlation
training is used to convert words into word vector representation, and BERT word vector
and word translation representation are important technologies for assisting deep learning.

However, the current research on extracting medical knowledge primarily focuses on
relatively structured small sample data, such as medical literature summaries. However,
these corpora are relatively small in scale, and relatively limited knowledge was obtained
by relation extraction. In addition, the application of these research methods on a large
sample corpus of colloquial and unstructured texts is not ideal. There is little research on
how to apply the technology of deep learning to large oral and unstructured sample data
to extract the relationships among DDEs, but billions of users in OHCs have generated
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exceptional amounts of data. By using these large amounts of data, we can obtain valuable
knowledge that can help improve the existing knowledge base, thereby enabling auxiliary
clinical decision support. Because deep learning is an important development in the field
of text knowledge extraction, it is a crucial method for achieving the DDE relationships
extraction, which is an objective of this study.

3. Methodology

The proposed knowledge extraction model of BERT-BiGRU-ATT is shown in Figure 1.
The methods of BERT-BiGRU-ATT are described as follows: Input sentences are converted to
BERT word embeddings through a bidirectional GRU layer and by a weighted distribution of
attention mechanisms. Then, the relationship between two entities is classified by a softmax
function. Finally, the model gains a relationship type related to the maximum probability.

Figure 1. BERT-BiGRU-ATT.

3.1. Bert Word Embeddings

The early classical word embedding algorithm, word2vec, was proposed by
Mikolov et al. [36] and is used for feedforward neural network training to predict the next
word and then the preceding word of a given word. Recent research introduced a new
algorithm for calculating word embeddings: BERT, which is a milestone in unsupervised
training language models based on transformers [37–39]. The transformer is represented by
the bidirectional encoder and decoder and uses a sequence-to-sequence model built using an
attention mechanism. It can focus on different positions of the input sequence to calculate the
representation ability of the sequence. BERT can overcome the limitation that word2vec has of
only one static representation for a token and with no context. In addition, BERT overcomes
the limitation of the single attention mechanism, wherein only the left or right context is
combined. Because of the good effects of BERT in both theory and practice, this study used
BERT to extract the relationship of DDEs to help provide better drug-related contexts.

3.2. BIGRU

Gated recurrent units (GRUs) [40] simplify the model of LSTM. Specifically, they merge
the forgetting and inputting gates of LSTM into an update gate. GRU architecture can
handle relationship classification tasks more efficiently. The update gate, zt, determines the
extent to which the information from the previous state is forgotten and what information
from the new content is to be added. The reset gate, rt, controls how the extent of the
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previous hidden state and the current input is ignored. The t-th update gate, reset gate, and
cell state are calculated as follows:

zt = σ(Wz·[ht−1, xt]), (1)

rt = σ(Wr·[ht−1, xt]), (2)

h̃t = tan h(W·[rt−1 × ht−1, xt]), (3)

ht = (1− zt) × ht−1 + zt × h̃t, (4)

where h̃t is the new memory content, which is obtained from ht−1, ht is the new cell state,
and x is the current input.

3.3. Attention Mechanism

The influence of different input sequences on the output is different in semantic
information. Specific words have an important influence on the output, whereas certain
words are irrelevant. The attention mechanism was used to identify words that have
a significant impact on the output, assigning it a higher weight such that its semantic
information can be fully obtained [41].

Attention mechanism H = [h1,h2, . . . ,hT] represents the matrix of the output vectors
produced by the BiGRU layer, and T represents the sentence’s length. The eigenvector, r, of the
sentence was obtained using the summation of the output vectors multiplied by the weight:

M = tanh(H), (5)

α = softmax(ωTM), (6)

γ = HαT, (7)

where M denotes the state after the activation function, α denotes the obtained attention
weight, and γ denotes the output vector after weight summation processes. H ∈ Rdω×T,
dω is the word embedding,ω is the parameter vector after training, and the dimensions of
ω, α, and γ are dω, T, and dω, respectively.

Finally, the sentence representation after the attention mechanism is obtained as follows.

h* = tanh(γ), (8)

3.4. Softmax Output Layer

The relationship’s extraction is considered a classification task. The sentence feature
vector following the attention mechanism was classified by the softmax function classifier
to output the probability of the predicated relationship type of the entity pairs.

P̂(y|S) = softmax
(

W(s) hs
∗ + b(s)

)
, (9)

ŷ = argmaxP̂(y|S), (10)

To evaluate the experimental results, the prediction and annotated values were defined
as 1 and the inconsistency was defined as 0. Furthermore, F (F-score), R (recall), and P
(precision) were used to evaluate the results. For the overall performance of the model,
the micro-average was used for evaluation, where TP denotes true positives, FP denotes
false positives, and FN denotes false negatives. To evaluate the overall performance of the
model, the microaverage was used.

micro P =
∑c TP(c)

∑c TP(c) + ∑c FP(c)
, (11)
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micro R =
∑c TP(c)

∑c TP(c) + ∑c FN(c)
, (12)

micro F− score =
2 ∗micro P ∗micro R

micro P + micro R
, (13)

4. Experimental Setup
4.1. Data Description

The dataset in the knowledge extraction task is from the Ask and Answer website
(www.120ask.com, abbreviated as 120ask, accessed on 1 June 2020), which is China’s
most popular Q&A OHC. On this site, tens of thousands of real name-certified doctors
with different clinical titles and working at different hospital levels, from different regions,
provided free Q&A consulting services online. It contains a wealth of information, including
the following aspects: Q&A data (problem and reply, reply subproblem/child, etc.) based
on the interactions of doctors with the users, the personal information of the users (age,
gender, and location) and the doctors (title, professional portrait, and hospital information),
and user adoption labels. Therefore, this website is highly suitable for data extraction.

We used an automatic python crawler to download Q&A data from 120ask.com to
test the research model of our knowledge extraction task. Data cleaning involved deleting
users communicating in languages other than Chinese, empty questions or replies, and
invalid disease information. In addition to the posts that were blocked because the issue
contains sensitive words and violates community rules, we used the disease library and
drug library to delete users who have never consulted about the disease and drug-related
issues according to their user IDs. After data cleaning, 180 million Q&A data provided
by 60 million users were preprocessed [42]. Considering cardiovascular disease as an
example, following word segmentation and the execution of entity recognition tasks for
the physician–patient Q&A corpus, four relationships were annotated for model training,
testing, and predictions. We recruited two medical students to perform the data annotation
task. The Cohen’s Kappa value with respect to the internal agreement measure reached 0.88.
As shown in Figure 2, the four relationships are as follows: (1) drug-suit-disease (DsDIS);
(2) drug-not-suit-disease (DnsDIS); (3) drug-produce-effect (DpEFF); and (4) others (i.e.,
no relationship between entities). For these entities, disease refers to an unhealthy state
or doctor’s diagnosis result, and the drug effect refers to any observed changes in bodily
functions after the drug is taken, thereby determining the therapeutic and pharmacological
effects of the drug.

Figure 2. Diagram of the extracted relationships.

Cardiovascular diseases were considered examples of the training and testing pro-
cesses from the 120ask Q&A data in OHC from 2015 to 2020. There were 532,486 cardiovas-
cular disease Q&A records generated by 49,586 users in the 120ask Q&A dataset. The data
from users who asked questions more than five times were extracted. Consequently, a total
of 1927 users and 15,572 Q&A data were annotated in terms of 9732 relationships. All data
were cleaned and preprocessed; according to the ratio of 3:1, we divided the training set
and test set. Thereafter, the training data were input into the model for training, and the
model’s parameters were obtained. Finally, the results on the test set were obtained. The
annotation data are presented in Table 1.

www.120ask.com
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Table 1. Annotation relationship statistics in corpus.

Dataset DsDIS DnsDIS DpEFF Others Total

120ask 4246 1532 2461 1493 9732

4.2. Parameters Setup

The experiment used the open-source library Keras [43] based on TensorFlow [44]
and the program language of Python3 to obtain knowledge extraction results. Word
embeddings were obtained using the BERT model. Furthermore, the BRT word embedding
used a classical Chinese pretraining model: BERT-wwm. In addition, for the flexible short
text of the OHCs, the corpus training set of the Q&A OHCs was used for further pretraining.
Finally, the proposed BERT-BiGRU-ATT sequence model attempted to obtain a classification
probability by using model training and parameter tuning. These parameters were adjusted
in the appropriate range, and the parameters that yielded the best results were as follows:
word embedding at 150, batch size at 32, epoch at 20, hidden layer node number at 256,
and dropout at 0.5 [45].

5. Experimental Results
5.1. Main Results

Using the BERT-BiGRU-ATT model, the knowledge extraction results are presented
in Table 2. The overall F-score of DsDIS reached 88.40%. The F-score of DnsDIS reached
85.67%, and the F-score of DpEFF was 85.15% in the dataset. Because of the difference
in the number of annotated relationship samples and the classified degree of difficulty of
different relationships, the knowledge extraction results are significantly different.

Table 2. The performance of BERT-BiGRU-ATT on the test set.

Category Precision Recall F-Score

DsDIS 89.04% 87.76% 88.40%
DnsDIS 86.85% 84.51% 85.67%
DpEFF 84.64% 85.67% 85.15%
Others 80.30% 78.37% 79.32%
Total 88.46% 86.09% 87.26%

To verify the validity and feasibility of the model, two groups of experiments were em-
ployed to verify the effectiveness of the DDE extraction model BERT-BiGRU-ATT proposed
in this study. The first group of experiments compared the effects of the BERT pretraining
model with other word embedding representations, such as word2vec, fastText [46], and
GPT [47], on the Q&A OHC’s short text; the results are presented in Table 3. Another group
of experiments compared the extraction effect of the BERT-BiGRU-ATT model in the DDE
relationship with other excellent models of the LSTM, GRU, and BERT-GRU models; the
results are presented in Table 4. All experiments used ten-fold cross-validation, training,
and testing on the corpus.

Table 3. Comparison of the effects of different word embedding models.

Category Precision Recall F-Score

Word2Vec-BiGRU-ATT (Baseline) 77.95% 78.53% 78.24%
fastText-BiGRU-ATT 79.45% 77.63% 78.53%

GPT-BiGRU-ATT 82.27% 80.76% 81.51%
BERT-BiGRU-ATT 88.46% 86.09% 87.26%
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Table 4. Comparison of relationship classification results on test sets.

Category Precision Recall F-Score

LSTM (Baseline) 72.15% 70.59% 71.36%
GRU 82.42% 81.06% 81.73%

BERT-BiGRU 84.95% 82.32% 83.61%
BERT-BiGRU-ATT 88.46% 86.09% 87.26%

The final results confirmed the superiority of BERT compared to other three-word
embeddings in relationship extractions. Furthermore, in terms of the model’s effect, com-
pared with those of the other three models, the BERT-BiGRU-ATT model exhibited better
precision, recall, and F-score, reaching 88.46, 86.09, and 87.26%, respectively.

The results of the first experiment indicate that different word embedding extrac-
tion methods have different degrees of influence on the effect of the model. The FastText
method is better than word2vec because it considers the subwords when training word
embeddings, thereby introducing character-level n-grams to better address long words and
low-frequency words. Furthermore, GPT is a generative pretraining model. Its feature ex-
tractor is composed of a multilayer transformer decoder. Compared to the fastText method,
it can capture semantic information and recognize polysemy; therefore, the model using
GPT as word embeddings is better than that using fastText in all aspects, with the F-score
increased by 3%. However, although both BERT and GPT adopt transformers, BERT uses a
bidirectional encoder. Thus, compared with the GPT model for capturing unidirectional
information, BERT can use all context information and offers better advantages in word
information extraction.

From the second experimental result, the precision rate, recall rate, and F-score of
the three models, other than LSTM in the DDE’s relationship extraction task, were greater
than 81%, implying that the application of the GRU method, which simplifies the LSTM
model, is more feasible and effective. Compared with GRU, the F1 value of the BERT-
GRU model was approximately 2% higher. This is because BERT can capture all context
information and possesses a greater expressive ability to better complete information
extraction tasks. Furthermore, compared with that of BERT-BiGRU, the F-score of BERT-
BiGRU-ATT increased nearly by 4%. It is evident that increasing the attention mechanism
can assign a higher weight to important information, which plays an important role in text
feature extraction to further effectively complete the DDE’s relationship extraction task.

5.2. BERT-BiGRU-ATT Model Application

A few examples in the remaining data were randomly selected (after model training
and testing) from 1927 users who asked questions more than five times in the 120ask dataset.
The model was used to predict the relationship between entity pairs of Chinese Q&A data
in OHC. The obtained results are presented in Table 5.

The relational classification model of BERT-BiGRU-ATT achieved better predictive
effects with respect to relationship classification. Therefore, it can be used to extract DDE-
related knowledge from OHCs.

Considering “myocardial infarction” as an example, the final relation extraction results
among the DDEs are shown in Figure 3. “Myocardial infarction” is associated with multiple
drugs and drug effects. “Myocardial infarction,” drugs, and drug effects are represented by
red, orange, and blue, respectively. The straight line represents the relationship between
entities. Furthermore, considering “coronary heart disease” as an example, the relationship
among DDEs is shown in Figure 4.

Life cycle health management refers to the user health management system for disease
control and prevention. Health management involves formulating a personalized health
management plan based on the individual’s health status, which can control and prevent
diseases. Thus, this study identified the effective management of diseases, reduced medical
expenses and medical accidents, and ultimately identified effective health care.
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Table 5. Prediction results on the Q&A data relationship extraction task.

Head Entity Tail Entity Q&A Sentences True Relation The Top Three Predication
Relation (Probability)

arteriosclerosis nifedipine
sustained-release tablets

Hello, arteriosclerosis refers to many factors. Usually, you
should pay attention to not smoking and not drinking
alcohol, consuming nonhigh-fat, nonhigh-sugar, and

nonhigh-salt foods, drinking plenty of water, and
exercising properly. Suggestions: You can take some

captopril, nifedipine sustained-release tablets or other
drugs as appropriate and check your blood

pressure regularly.

DsDIS
1. DsDIS (0.924124)
2. DpEFF (0.473218)
3. DnsDIS (0.145164)

antimalarials favism

Favism is caused by mutations that affect the regulation
of erythrocyte glucose-6-phosphate dehydrogenase; it is a
hereditary hemolytic disease and is more common in men.

Suggestions: It is necessary to pay attention to whether
there is hemolysis; if there is, you need active treatment to

prevent anemia and acute renal failure. Usually, you
should avoid eating broad beans and their products,

avoid taking drugs of oxidative properties (including
antimalarials, sulfonamides, etc.), and actively prevent

and treat it. The disease can still be controlled.

DnsDIS
1. DnsDIS (0.913346)
2. Others (0.336215)
3. DpEFF (0.074103)

captopril blood pressure was still
100,160

It became apparent that I have had hypertension for more
than two months, and my blood pressure was still 100,160

after taking captopril for one month. After that, I had
taken hyzaar for a month, and my blood pressure

dropped to 90,133. However, hyzaar is too expensive. Can
I change to other less expensive drugs?

DpEFF
1. DpEFF (0.903671)
2. Others (0.384623)
3. DsDIS (0.104216)

Shensong Yangxin
Capsule myocardial ischemia Can a 62-year-old man take a type of Shensong Yangxin

Capsule for treating myocardial ischemia?
Others

1. Others (0.854143)
2. DsDIS (0.568127)

3. DnsDIS (0.134755)

Note: Each English relation instance is translated by a Chinese relation instance.

Figure 3. Drugs and drug effects related to myocardial infarction.
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Figure 4. Drugs and drug effects related to coronary heart disease.

For the Q&A data in OHC, the DDEs of 1927 cardiovascular disease users were
extracted according to the user ID, and the results were used to analyze the disease’s
progression evolution from the first to the last question in three years. In addition, the
results can be used to assist patient life cycle health management. Considering “Members
29231652” as an example, the user is a 27-year-old female and asked 14 questions during
the three-year period. Based on the Q&A data and the relationship extraction results, the
progression evolution of her hypertension medication was obtained, and the results are
presented in Table 6.

Table 6. Medication management information of a user’s DDEs and time evolution.

Time Patient’s Question (Female, 27 Years Old, Hypertension) Physician’s Reply

25 January 2018 “Nifedipine sustained-release tablets” have the effect of
“accelerating heart rhythm.”

“Nifedipine sustained-release tablets” have the effect of
“accelerating heart rhythm.”

25 January 2018 How should I take enalapril maleate tablet?
“Hypertension” applies to “enalapril maleate tablet,” and the

specific dosage needs to be determined according to the
individual’s constitution and condition.

26 January 2018 Drug effects of hypertension: higher low pressure, normal
pressure high pressure.

“Hypertension” applies to “calcium antagonists” and “nifedipine
sustained-release tablets.”

2 February 2018 Hypertensive drug effect: stable blood pressure. Hypertension” applies to “amlodipine,” “irbesartan,”
and “betaloc.”

8 February 2018 The effect of antihypertensive drugs: the amount of menstruation
is light. I suggest you evaluate further.

8 February 2018
“Nifedipine sustained-release tablets” has the drug effect of
“increasing heart rate and uncomfortable heart;” “enalapril

maleate tablet” has the effect of “not effective.”

“Hypertension” suits “nifedipine sustained-release tablets,”
“benazepril tablets” and “betaloc” have the effect of “slow

heart rate”

9 February 2018 “Enalapril maleate tablet” has the effect of being “not very
effective.” Can I use hydrochlorothiazide tablets?

“Hypertension” can be treated with “enalapril maleate tablets”
and “hydrochlorothiazide tablets;” “hydrochlorothiazide tablets”

have a “hypokalemia” drug effect.

13 February 2018 I have hypertension, can I take enalapril maleate tablets, felodipine
sustained-release tablets and betaloc simultaneously?

“Hypertension” can be treated with “enalapril maleate tablets,”
“felodipine sustained-release tablets,” and “betaloc.”

Note: Each relationship instance is the translating from the Chinese characters.
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6. Discussion and Conclusions

This paper proposed a BERT-GRU-ATT network architecture for the extraction of the
relationship among DDEs from online health communities in China. The experimental
results confirmed the effectiveness of the proposed model. BERT word embedding in the
proposed model uses bidirectional encoding conversion in order to make better use of
all important contextual information and grammatical and semantic feature information
related to the biomedical field, and it has better advantages over Word2Vec, fastText, and
GPT in word information extraction. Compared with LSTM, GRU, and BERT-BiGRU-ATT,
the model of BERT-BiGRU-ATT showed better effects with respect to knowledge extraction,
and it was superior in completing the knowledge extraction task of DDEs. This is due to
the fact that BERT can capture all context information and has stronger expression abilities,
and the execution of bidirectional GRU is also more efficient. In addition, the attention
mechanism can assign higher weights to important information, which plays an important
role in text feature extraction. Because the existing disease–drug relationship extraction
is mostly based on electronic health records or abstracts from the medical literature, the
greatest advantage of our research method is that information from unstructured, large-
scale doctor–patient Q&A OHCs can be extracted. Furthermore, the knowledge extraction
results can form a knowledge graph; according to the knowledge extraction results, the
health management process of the dynamic life cycle of the medication process of a user’s
disease is formed based on the user’s ID.

6.1. Theoretical Contributions

The theoretical contributions of our research are as follows: (1) Our research expands
the research field on knowledge extraction. Currently, the research related to disease–
drug knowledge extraction focuses on electronic medical records and medical literature
summaries. Our study extends the research on disease–drug knowledge extraction to
OHCs and expands the data sources of disease–drug research. (2) Our research expands the
research direction of knowledge extraction from OHCs, enriches the knowledge sources of
disease–drug management, and supplements and improves the existing knowledge system.
(3) The disease–drug knowledge extraction method developed in our research serves as a
reference for knowledge extraction in other fields.

6.2. Practical Implications

The practical implications of our research are as follows: (1) The results of knowledge
extraction obtained in our research enrich the knowledge sources of disease medication and
supplement and improve the existing knowledge base, which can assist doctors in clinical
diagnosis and help patients in health management. (2) The extracted dynamic life-cycle
disease evolution knowledge provides help for patients in conducting effective daily health
management. Therefore, this study’s results have an important practical significance.

6.3. Limitations and Future Work

Although our research expands the research direction of knowledge extraction for
disease medication management, there is still room for improvement, such as using coref-
erence resolution, which can also be employed for DDE relationship extraction in future
research to maximize the extraction of disease-related relationships in OHCs.
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