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Abstract: Coal dust pollution poses a serious public health threat. This study aimed to investigate the
feasibility of creating a coal dust suppressant using molasses, a byproduct of the sugar industry. We
studied the effects of a molasses solution of varying concentrations (i.e., ranging from 0% (pure water)
to 40%) on the moisture, bonding, and wind erosion properties of coal dust. Overall, the effectiveness
of the molasses increased with their concentration, and it manifested itself in the following way:
(1) the molasses improved the anti-evaporation ability of wet coal dust. For example, the evaporation
mass of the coal dust wetted using a molasses solution decreased by 82.8%; (2) molasses effectively
agglutinated coal dust; (3) molasses can effectively decrease the surface tension and increase the
viscosity of the wetting solution. The surface tension of the molasses solution reached 41.37 mN/m
and the viscosity increased to 6.79 mPa·s; (4) molasses can significantly suppress the wind erosion
of deposited coal dust, with its wind erosion mass decreasing 99.1%; finally, (5) the effectiveness
of molasses at suppressing coal dust was discussed at a molecular level. This study highlights the
feasibility of a low-cost and environment-friendly dust suppressant in coal mines.

Keywords: coal dust; dust suppressant; molasses; wind erosion; moisturizing; agglutination; anti-
evaporation

1. Introduction

The control of coal dust is of great significance in ensuring the occupational health
and safety of coal workers. The rapid development of science and technology has become
synonymous with improved living standards for many parts of the world, and these
improved living standards have been accompanied by an increase in energy demand [1–3].
With regard to energy, coal is one of the most widely used energy sources, and this is
especially true in developing countries, where coal is the primary source of energy [4,5].
To meet the ever-increasing demands, the mining intensity of coal is increasing yearly,
resulting in severe coal dust pollution in underground coal mines [6,7]. In recent years,
more than 10,000 cases of pneumoconiosis have been recorded in China each year [8], and
coal workers’ pneumoconiosis (CWP) has also been detected in developed countries such
as Australia and the United States [9]. Therefore, research into cheaper means to suppress
coal dust in underground mines is of great significance to ensure the health of coal workers
across the globe.
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Dust control technologies in underground coal mines can be divided into physical
and chemical dust suppression [8]. Chemical dust suppression involves the addition of
chemical materials into water, to alter the physicochemical properties of water. Such
alterations improve the capture efficiency of water droplets on fugitive dust, resulting in
the suppression of the further spreading of flying coal dust. Because of the hydrophobicity
of most coal dust, the suppression efficiency of pure water solutions on coal dust is very
low [8,10]. Therefore, chemical dust suppression has the potential to efficiently suppress
dust in underground coal mines. However, owing to the current issues plaguing chemical
dust suppression, this method has not been widely used in underground coal mines. The
problems are mainly twofold: (1) high application costs; and (2) environmental pollution
after the application. Therefore, it is worthwhile to develop chemical dust suppressants
that are low-cost and environment-friendly [11,12].

In recent years, numerous studies have been conducted to develop low-cost and
environment-friendly chemical dust suppressants. Using plant extraction technology,
Zhang et al. [10] developed a highly permeable moistening additive for coal seam water in-
jection, and a high dust reduction efficiency was achieved using the additive. Wang et al. [11]
explored the wetting and moisturizing performances of glycerol microemulsions on coal
seams. Liu et al. [13] prepared a modified dual-network dust suppression gel and efficiently
suppressed flying coal dust. Wang et al. [14] compounded a green biodegradable dust
suppressant using rhamnolipid, lactone sophorolipid, and surfactin and found that the com-
pound showed significant wettability on coal dust. In addition, sodium polyacrylate, starch
copolymer, and polymer guar gum are preferred materials for preparing environment-
friendly coal dust suppressants [15–17]. However, from the abovementioned studies, we
found the developed coal dust suppressants were primarily improved along with envi-
ronmental friendliness. However, there were no improvements in terms of cost reduction,
meaning that the developed suppressants cannot be widely applied in the mining industry.

The use of industrial byproducts to prepare dust suppressants is an effective method
for reducing the cost associated with developing chemical suppressants. Molasses is a
by-product of sugar production and is produced worldwide [18,19]. Many studies have
shown that molasses can effectively bond to particulate matter [19–21]. For example, Benk
and Coban [22] showed that molasses can substitute cement as a binder material to produce
lightweight and heat-insulating bricks. Zhong et al. [23] and Manyuchi et al. [24] found
that the strength of coal briquettes was significantly improved when molasses was used as
a binder. A similar result was reported by Kotta et al. [21], who found that the addition of
molasses could significantly increase the strength of iron ore pellets. A study conducted
by Huang et al. [19] showed that molasses could be utilized as a retarder for calcium
sulfoaluminate cement-based mortars. Furthermore, focusing on the prominent binder
properties of molasses, a few researchers have explored the possibility of using molasses as
a rock dust suppressant. Gotosa et al. [25] studied the prevention characteristics of molasses
on grave road dust and found that the molasses solutions decreased dust deposition by
77–83% compared to pure water. Parsakhoo et al. [12] found that molasses solutions have a
significant bonding effect on particles with a size of less than 10 µm in forest roads. The
study conducted by Omane et al. [26] showed that molasses can significantly decrease
fugitive rock dust emissions on mine haul roads across various temperatures. In summary,
the above-mentioned studies indicated that molasses can significantly suppress fugitive
rock dust emissions because of its affinity to particulate matter. However, to the best
of our knowledge, the ability of molasses to suppress coal dust (especially hydrophobic
coal dust) has not been studied. Thus, it is important to determine if molasses is also an
effective coal dust suppressant, as this would facilitate the development of low-cost and
environment-friendly coal dust suppressants.

The objective of this study was to explore the suppression characteristics of molasses
solutions on hydrophobic coal dust (HCD). This objective was achieved in three ways:
(1) the moisturizing and agglutination performance of molasses solution on the HCD was
determined; (2) the properties of the molasses solution were tested with various concen-
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trations; and (3) the dust suppression efficiency of molasses on the HCD was measured
using wind erosion experiment. Finally, the suppression mechanism of molasses solution
on coal dust was discussed, and methods were proposed to improve the preparation of
molasses-based coal dust suppressants. This study is significant for the development of
low-cost and environment-friendly dust suppressants in coal mines.

2. Material and Methods
2.1. Material

(1) Molasses

The sugarcane molasses used in this study were purchased from Jinqianwan Molasses
Co., Ltd. (located in Liuzhou City, Guangxi Province, China). The composition and content
of sugarcane molasses are listed in Table 1 [18,19].

Table 1. The compositions of the molasses [18,19].

Number Main Constituents Mass (%) Components

1 Sugar ~45 Sucrose, glucose, fructose, etc.
2 Moisture ~10 water
3 Crude protein ~10 Amino acids
4 Ash ~5 Potassium, sodium, etc.
5 Other ~30 Non-nitrogenous materials

Note: ~ represents an approximation.

(2) Coal dust samples

Following GB/T 482-2008, the coal explored in this study was sampled from an
underground mining site located in Datong City, Shanxi Province, China. The proximate
contents of the coal samples were measured according to GB/T 212-2008. The maceral
composition and vitrinite reflectance (Ro) were tested following ISO 7404-1:2016 and ISO
7404-1:2016, respectively. The results are presented in Table 2.

Table 2. The proximate content, maceral composition, and vitrinite reflectance (R0) of the coal sample.

Proximate Content (wt%) Maceral Composition (Vol%)
R0 (%)

Mad Vdaf Aad FCad Vitrinite Liptinite inertinite Sapropelinite

1.16 26.01 25.79 47.04 72.43 6.83 0.98 19.76 0.60

The shown measures represent air-dried coal. Mad represents the moisture content, Aad represents ash content,
Vdaf represents the volatile matter content (i.e., dry-ash-free), and FCad represents the fixed carbon content.

2.2. Experimental Setup
2.2.1. Overview

As shown in Figure 1, this study includes three main approaches. First, the moistur-
izing and agglutination performances of molasses solutions in various concentrations on
coal dust were explored. Secondly, four physical parameters of the molasses solutions
were tested at different concentrations. Third, the dust suppression efficiency of the mo-
lasses solution on coal dust was measured. Combining insights from the first and second
research approaches, the suppression mechanism of molasses solution on coal dust was
analyzed, and the improved methods for preparing molasses-based coal dust suppressants
were proposed.

2.2.2. Moisturizing and Agglutination Performance Tests
Moisturizing Performance Test

Moisturization is an important property of dust suppressants, and it largely affects
dust suppression performance [7,11]. To explore the effect of molasses on the moisture
characteristics of coal dust, the evaporation parameters of mixed wet coal dust (MWCD)
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and moisturizing parameters of mixed dry coal dust (MDCD) were measured. The specific
tests are described below.
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Figure 1. Research flow chart of the present study.

(1) Evaporation parameters of the MWCD

First, the coal blocks sampled from the underground mining site were broken and
milled using a ball mill machine. Coal particles with a size of less than 75 µm (200 mesh)
were then screened. The coal dust was then mixed with the molasses solutions (with mass
concentrations of 0%, 5%, 10%, 15%, 20%, 30%, and 40%) at a 2:1 mass ratio. The two
elements (i.e., coal dust and molasses solution) were stirred slowly to ensure full mixing.
Once this was complete, the MWCD sample was obtained. The evaporation parameters of
the MWCD were measured as follows: M g of MWCD was placed into a glass dish with
an inner diameter of 8.0 cm (the mass of the dish is X g); next, the dish was exposed to a
room temperature condition (Beijing area, autumn, the temperature is 25 ± 1°C, relative
humidity is 40–45%); the mass of the dish was then tested per hour and recorded as Mn
(n presents time, h), and the moisture evaporation mass could then be calculated following
Equation (1). Subsequently, taking the time as the abscissa and the evaporation mass as the
ordinate for drawing, the data were linearly fitted using the least square method, and the
slope of the fitted linear is the evaporation rate (g/h).

mn = M − (Mn − X) (1)

where mn is the evaporation mass of the MWCD at time n (g); M is the mass of the MWCD
before evaporation (g); Mn is the total mass of the MWCD and dish (g), and X is the mass
of the dish (g).

(2) Moisturizing rate test for MDCD.

The MWCD was placed into a plastic dish with an inner diameter of 8 cm. The dish
was then placed into an oven at a temperature of 100 °C. The mass of the dish was measured
per hour, and the mixed dry coal dust (MDCD) was obtained when the mass no longer
changed. The plastic dish was then removed and the MDCD was placed into an oven,
in which the temperature and relative humidity could be adjusted. The moisturizing
parameters of the MDCD were measured at a temperature of 25 °C and various relative
humidities (70%, 80%, and 90%). The mass of the dish was measured every 30 min for
4 h; after that, the maximum moisturizing mass (g) and moisturizing rate parameter were
calculated according to the Weibull mode following Equations (2) and (3) [27]:

Mt = M0 + (M∞ − M0)× [1 − e(−
t
β )] (2)

Mt = M∞ × [1 − e(−
t
β )] (3)
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where Mt is the mass of MDCD at time t (g); M0 is the mass of MDCD before moisturizing
(g); M∞ is the maximum moisturizing mass of MDCD (g/g); and β is the evaporation rate
parameter of MDCD.

Agglutination Performance Test

In this study, to evaluate the agglutination performance of molasses solutions on coal
dust, the maximum compressive strength of an MDCD block released from a plastic dish
was tested, as shown in Figure 2. We believe that the greater the maximum compressive
strength, the stronger the bonding effect of the solution on coal dust. As depicted in
Figure 2c, a pressure meter vertically compresses the MDCD block at its center point. After
the destruction of the MDCD block, as shown in Figure 2d, the maximum value recorded in
the pressure meter is the maximum compressive strength of the MDCD block. The pressure
surface of the pressure meter was a cylinder with a diameter of 2 mm. Using this method,
the agglutination performance of the molasses on coal dust was evaluated across various
concentrations (0%, 5%, 10%, 15%, 20%, 30%, and 40%).
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and (d) mixed dry coal dust after the test.

2.2.3. Physical Properties Tests of Molasses Solution

(1) Surface tension tests

Surface tension has significant effects on both the evaporation characteristics and the
wettability of the liquid [28]. The pendant drop method [29] was used in this study to
measure the surface tension of molasses solutions with various concentrations (i.e., 0%, 5%,
10%, 15%, 20%, 30%, and 40%) in a Theta Lite TL 101 (Finland) apparatus [7].

(2) Contact angle tests

Wettability is an important parameter for evaluating the performance of coal dust
suppressants because most coal dust is hydrophobic [8,30,31], and the contact angle is
commonly used to evaluate the wettability of a solution on coal dust [6,30]. Therefore, in
the present study, the contact angles between molasses solutions with concentrations of 0%,
5%, 10%, 15%, 20%, 30%, and 40% and coal dust were measured using the Theta Lite TL
101 (Finland). This test has been described in detail in our previous study [32].

(3) Viscosity tests

Viscosity is a key parameter that affects the agglutination and fluidity properties of a
solution [33,34], thus significantly influencing the performance of dust suppressants. An
RV-SSR viscosimeter (China) was used to measure the viscosity of molasses solutions of
varying concentrations (i.e., 0%, 5%, 10%, 15%, 20%, 30%, and 40%).

(4) Evaporation rate tests

The evaporation rate of the solution determines whether the solution can sustainably
moisturize a substance [35,36]. Therefore, the evaporation rates of molasses solutions with
concentrations of 0%, 5%, 10%, 15%, 20%, 30%, and 40% were tested at room temperature.
The method used was the same as that used in the measurement of the evaporation rate of
MWCD (i.e., described in “Moisturizing Performance Test” section).
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2.2.4. Dust Suppression Efficiency Measurement

According to [26], the suppression efficiency of molasses solutions on coal dust was
measured using the method illustrated in Figure 3. First, to simulate the surface materials
of the underground coal roadway, fine coal dust with a particle size of less than 75 µm was
fully mixed with large coal particles with a particle size larger than 2.0 mm at a mass ratio
of 1:9, and 200 ± 1 g of the mixed coal particles was evenly placed on a square acrylic board
with a side length of 20 cm, after which 10 mL of molasses solution was symmetrically
sprayed on the surface of the mixed coal particles; after that, the sprayed samples were
placed at a room temperature for 7 days (Figure 3a). Finally, the wind erosion test of the
prepared samples was conducted in a closed chamber (Figure 3b).
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For the wind erosion test, a fan was placed horizontally to the test sample, and
the wind speed at the surface of the test sample was 5 m/s (the maximum wind speed in
underground return roadway). This speed was controlled by adjusting the distance between
the fan and the test sample. The test time was 5 min, and the mass of the test sample was
measured before and after the wind erosion test, and the amount of airborne particulate
matter (PM) with a particle size less than 10 µm (PM10) was counted during the test at
1 m behind the test sample using a particulate matter quantity tester (FULKE 985). From
this test, the wind erosion mass (∆m) and the cumulative number of PM10 particles were
obtained to characterize the suppression efficiency of the molasses solutions on coal dust.

(1) Wind erosion mass

The wind erosion mass (∆m) is a quantity that represents the mass of the test sample
before and after the wind erosion test. The quantity can be calculated as follows:

∆m =m0 − m1 (4)

where ∆m is the wind erosion mass (g); and m0 and m1 are the masses of the test sample
before and after the wind erosion test (g), respectively.

To analyze the suppression efficiency of molasses solution on the test samples, the ∆m
reduction percentage (P) of the molasses solution over that of pure water (0% molasses)
was computed using Equation (5).

Pn =
∆mn − ∆mw

∆mw
× 100% (5)

where Pn is the ∆m reduction percentage of the molasses solution with a concentration of n
(%) over that of pure water without molasses (%); and ∆mn and ∆mw are the wind erosion
mass (g) of the molasses solution with a concentration of n and pure water, respectively.



Int. J. Environ. Res. Public Health 2022, 19, 16472 7 of 19

(2) Cumulative number of PM10 particles.

The FULKE 985 apparatus used in the wind erosion test can measure the number
of particles in various sizes (i.e., 0.3, 0.5, 1.0, 2.0, 5.0, and 10.0 µm). To characterize the
suppression efficiency of molasses solutions on coal dust, the relative percentage of the
cumulative number of PM10 particles between the molasses solution and pure water was
calculated using Equation (6).

Cn =
cw − cn

cw
× 100% (6)

where Cn is the relative percentage of the cumulative number of PM10 in the test sample
sprayed with the molasses solution with a concentration of n compared with that of the test
sample sprayed with pure water (%); and cw and cn are the cumulative number of PM10 in
the test sample sprayed with pure water and the molasses solution with the concentration
of n, respectively.

Note that the cumulative number of PM10 particles is the total number of particles
with sizes of 0.3, 0.5, 1.0, 2.0, 5.0, and 10.0 µm. It can be computed using Equation (7).

c =∑ pm= pm0.3 + pm0.5 + pm1.0 + pm2.0 + pm5.0 + pm10.0 (7)

where c is the cumulative number of PM10 particles; and pmi is the number of particles
with a particle size of i (i = 0.3, 0.5, 1.0, 2.0, 5.0, 10.0).

3. Results
3.1. Moisturizing Performance of Molasses on the Coal Dust

(1) Evaporation parameters of the MWCD

The evaporation parameters of the MWCD, including the evaporation mass and
evaporation rate, were measured, and the results are shown in Figure 4. It can be observed
from Figure 4a, at the same evaporation time, the evaporation mass of the MWCD sample
gradually decreases with the increase in molasses concentration; in 3.5 h, the evaporation
mass of the MWCD wetted by 40% molasses solution is only 27.2% of that of the MWCD
wetted by pure water. This result confirms that molasses has a significant effect on the
anti-evaporation ability of coal dust.
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Figure 4. The evaporation mass (a) and evaporation rate (b) of the mixed wetting coal dust with
various molasses concentrations.

Figure 4b depicts the variation in the evaporation rate of the MWCD with molasses
concentration. Specifically, as molasses concentration increases, the evaporation rate of the
MWCD can be divided into three stages. In stage 1, there was no significant change in the
evaporation rate of the MWCD, where the molasses concentration is less than 10%; this
indicates that the molasses did not affect the evaporation of coal dust when their concentra-
tion is less than 10%. In stage 2, the evaporation rate of the MWCD rapidly decreases with
the increase in the molasses concentration from 10% to 30%; the evaporation rate of the
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MWCD at the 30% molasses concentration is 30.5% of that at 10% molasses concentration.
In stage 3, with the further increase in molasses concentration, the evaporation rate of the
MWCD at 30% molasses concentration slightly reduced from 0.064 to 0.056 g/h at 40%
molasses concentration. The result shows that the molasses could significantly improve the
anti-evaporation ability of coal dust when its concentration is greater than 10%. Moreover,
the concentration-dependent effectiveness increases until the concentration of molasses is
greater than 30%.

(2) Moisturizing characteristics of the MDCD

The moisture characteristics of the MDCD were measured at various relative hu-
midity values, and the results of the moisturizing mass variation with time are shown in
Figure 5. According to the moisturizing mass and the Weibull model [27], the maximum
moisturizing mass and moisturizing rate of the MDCD sample were obtained, as shown in
Figures 6a and 6b, respectively.
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It can be observed from Figure 6a that the molasses concentration has a significant
effect on the maximum moisturizing mass of the coal dust, and the effect largely depends
on the relative humidity. Specifically, first, the maximum moisturizing mass of the MDCD
sample exponentially increases with the rise in molasses concentration with a goodness-of-
fit (R2) large than 0.90 in three relative humidities; second, in higher relative humidity, the
molasses make a more apparent improvement in terms of their maximum moisturizing
mass of coal dust. At 70% relative humidity, molasses had a limited effect on the maximum
moisturizing mass of coal dust at concentrations less than 30%, whereas, at 90% relative
humidity, molasses showed an apparent improvement in the maximum moisturizing mass
of coal dust at low concentrations. Therefore, it can be concluded that molasses has a more
significant improvement in the moisturizing ability of coal dust in a space with higher
relative humidity.

Within the context of suppressants, the moisturizing rate is a key parameter for
assessing the performance of a material. As shown in Figure 6b, the concentration of the
molasses solution has a significant positive effect on the moisturizing rate of the MDCD; that
is, with the increase in molasses concentration, the moisturizing rate of the MDCD rapidly
increases first and then slowly increases. In addition, the variation in the moisturizing
rate was consistent under different relative humidity values, indicating that the relative
humidity had a limited influence on the moisturizing rate of the MDCD.

In summary, the concentration of the molasses solution has a significant effect on both
the maximum moisturizing mass and the moisturizing rate of the MDCD, and the relative
humidity of the surrounding environment can improve the maximum moisturizing mass
of the MDCD and had a limited influence on the moisturizing rate of the MDCD.

3.2. Agglutination Performance of Molasses on the Coal Dust

The agglutination performance of a solution is highly related to the efficiency of the
secondary flying of coal dust [16]. Therefore, in this section, the agglutination performance
of the molasses solution on the coal dust with various concentrations is tested, and the
results are depicted in Figure 7.
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Figure 7. The mixed wetting coal dust (a) and the mixed dry coal dust blocks (b) with various
molasses concentrations.

The maximum pressure of the coal dust block (Figure 7b) was measured and the
results are shown in Figure 8. It was observed that molasses had a significant positive effect
on the maximum pressure of the coal dust block. Specifically, pure water (0% molasses
concentration) has almost no bonding effect on coal dust, and the maximum pressure is
only 1.15 N. However, the maximum pressure exponentially rises with the increase in the
molasses concentration with an R2 = 0.99, and at 40% molasses concentration, the maximum
pressure reached 171.21 N, which is 148.9 times that of pure water. These results indicate
that the molasses solution has a significant agglutination effect on the coal dust. Therefore,
molasses could be applicable in the field in terms of suppressing secondary-flying dust in
coal mine roadways.
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3.3. Physical Properties of Molasses Solution

To fully understand the moisturizing and agglutination functions of molasses solutions
on coal dust, the physical properties of molasses solutions with varying concentrations were
measured, including surface tension, wettability, viscosity, and evaporation parameters.
These results are detailly described in the following subsection.

(1) Surface tension and wettability of molasses solutions

Figure 9a depicts the variation in the surface tension of the molasses solution with
the concentration. It can be observed that molasses can significantly decrease the surface
tension of the solution. Specifically, the surface tension exponentially decreased following
the rise of molasses concentration with an R2 = 0.92; the surface tension decreased to
41.37 mN/m at 40% molasses concentration, which reduced by 43.07% lower than that of
pure water (0% molasses concentration). Owing to the hydrophobicity of most coal dust [6],
reducing the surface tension can improve the wettability of the solution to coal dust. In this
regard, molasses points to being an effective coal dust suppressant.
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Figure 9. The surface tension of molasses solution (a) and the contact angle between coal dust sample
and molasses solution (b) under various molasses concentrations.

Figure 9b depicts the contact angle variation between the molasses solution and the
coal dust. It was found that with the increase in molasses concentration, the contact
angle underwent two variation stages. In stage 1, the contact angle decreased with an
increase in the molasses concentration when the molasses concentration was less than
20%; subsequently, with a further increase in the concentration, the contact angle began
to increase slightly. The minimum value of the contact angle was 112.38◦ achieved at
20% molasses concentration. According to [37], the solution cannot wet the coal dust
when the contact angle is larger than 90◦. Based on these results, it was determined that
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although molasses can decrease the solution surface tension, it cannot wet hydrophobic
coal dust. Therefore, enhancing the wettability of molasses solutions will be a key step in
the preparation of molasses-based dust suppressants.

(2) Viscosity of molasses solutions

Viscosity is an important parameter that affects the fluidity and spray properties of
liquid [38]. The concentration-dependent variation in the viscosity of molasses solutions is
shown in Figure 10. The viscosity of molasses solution exponentially increases with the
increase in the molasses concentration with an R2 = 0.99; at 40% concentration, the viscosity
of molasses solution reached 6.79 mPa·s, which is 5.43 times that of pure water. That is,
adding molasses to water can increase the viscosity of the solution, which reduces its fluidity
and spray properties. Therefore, the concentration should be controlled when preparing
molasses-based coal dust suppressants to reduce their influence on solution viscosity.
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(3) Evaporation parameters of molasses solutions

The anti-evaporation characteristics of the dust suppressant solution are the key
reasons for the enhanced water retention of dust. The evaporation parameters of the
molasses solutions at room temperature are shown in Figure 11. As depicted in Figure 11a,
the evaporation mass of molasses solution is tightly related to its concentration; at the
evaporation time of 3 h, the maximum evaporation mass of molasses solution was 13.76 g,
which was reached at 10% concentration. The minimum evaporation mass was 7.83 g,
reached at 40% concentration, and the evaporation mass of the pure water was 11.61 g. That
is, molasses can both increase and decrease the evaporation mass of the solution, which
depends closely on its concentration.
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To further analyze the effect of molasses concentration on the evaporation properties
of the solution, as shown in Figure 11b, the evaporation rates of the molasses solutions
with different concentrations over 3 h were computed. The results show that with the
increase in molasses concentration, the evaporation rate of the solution increases first and
decreases then, and a turning point occurs at 10% concentration. The evaporation rate at
40% concentration reached a minimum value of 2.73 g/h, which was 29.82% lower than
that of pure water. The results show that the effect of molasses on the solution evaporation
rate is heavily concentration-dependent; that is, it can improve the evaporation rate at low
concentrations and decrease the evaporation rate at high concentrations.

3.4. Suppression Efficiency of Molasses on the Coal Dust

To investigate the suppression performance of molasses solution on the secondary
flying of coal dust, in this section, a wind erosion test is conducted for coal dust sprayed
with molasses solutions. Figure 12 shows the variation in the wind erosion mass (∆m) and
its reduction percentage (P) compared with pure water. We saw that ∆m exponentially
decreases following the increase in molasses concentration with an R2 = 0.95, and the ∆m
values of the coal dust samples sprayed with 20% and 40% concentration molasses are 0.22 g
and 0.02 g, which reduced 90.0% and 99.1% compared with that of pure water, respectively.
This result indicates that molasses has a significant suppression effect on the wind erosion
of coal dust, and its suppression efficiency largely depends on the molasses concentration.
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Figure 12. Variation in the wind erosion mass and its relative percentage of molasses solution
with concentration.

Figure 13a depicts the number of flying particles with different particle sizes in the
wind erosion test. It can be seen that, first, compared with the coal dust sample sprayed
with pure water, the number of flying particles in the coal dust samples sprayed with
molasses solution largely decreased; secondly, the particle sizes of the flying particles from
the coal dust sample sprayed with pure water were mostly less than 2.0 µm; however,
the particle sizes of the flying particles from the coal dust samples sprayed with molasses
solution were mostly approximately 0.3 µm, and the number of particles with larger particle
size was also significantly less than that from the pure water-sprayed coal dust sample.
This result also points to an apparent suppression effect of molasses solution on the wind
erosion of coal dust compared with pure water.

Figure 13b presents the variation in the relative percentage of PM10. It can be seen
that, similar to the variation in the relative percentage of molasses solution shown in
Figure 12, the relative percentage of the PM10 number exponentially increases with the
increase in the molasses concentration with an R2 = 0.99. The PM10 number of the coal dust
sample sprayed with 5% and 40% molasses solutions was reduced by 76.9% and 91.2%,
respectively, compared with that of the coal dust sprayed with pure water. This result well
verified the data shown in Figure 12. In summary, the molasses solution exhibited good
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dust suppression performance in the wind erosion test, indicating its feasibility in acting as
a coal dust suppressant is high.
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3.5. Relationships of the Moisturizing and Agglutination Parameters with the Dust Suppression
Efficiency

To reveal the effect of the moisturizing and agglutination parameters on the dust sup-
pression efficiency, the wind erosion mass was used as the dust suppression parameter, and
the relationships between the evaporation rate of the MWCD, the maximum moisturizing
mass of the MDCD, and a maximum pressure of the agglutination coal block with the wind
erosion mass were established and analyzed in this section.

3.5.1. Relationships between Moisturizing Parameters and the Wind Erosion Mass

Figure 14 presents the relationships between the evaporation rate of the MWCD, the
maximum moisturizing mass of the MDCD, and wind erosion mass. It can be seen that
with an increase in the evaporation rate and maximum moisturizing mass, the wind erosion
mass exponentially increases with R2 = 0.77 and exponentially decreases with R2 = 0.99,
respectively. That is, improving the moisturizing ability of coal dust has a positive effect
on preventing wind erosion and the secondary flying of coal dust, but the effect is limited.
Specifically, after the moisturizing performance of coal dust reaches a certain point, the
suppression effect will not be improved by further enhancing the moisture ability.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 15 of 20 
 

 

point, the suppression effect will not be improved by further enhancing the moisture abil-

ity.  

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22

0.0

0.5

1.0

1.5

2.0

2.5

R
2
 = 0.77

W
in

d
 e

ro
si

o
n

 m
as

s 
(g

)

Evaporation rate (g/h)

(a)

y = 0.02e
(x/0.05)

−0.06

 

0.080 0.085 0.090 0.095 0.100 0.105 0.110 0.115

0.0

0.5

1.0

1.5

2.0

2.5

R
2
 = 0.99

y = 1.41E8 e
(−x/0.005)

+0.04

W
in

d
 e

ro
si

o
n
 m

as
s 

(g
)

Maximum moisturizing mass (g/g)

(b)

 

Figure 14. Relationships between the evaporation rate of the wetting mix coal dust and the wind 

erosion mass (a), and between the maximum moisturizing mass of the dry mixed coal dust and the 

wind erosion mass (b). 

3.5.2. Relationship between Agglutination Parameter and the Wind Erosion Mass 

Figure 15 shows the relationship between the maximum pressure of the agglutination 

coal dust block and the wind erosion mass. It was found that the wind erosion mass line-

arly decreased with an increase in the maximum pressure with R2 = 0.96. This result indi-

cates that the agglutination effect could directly affect the wind erosion resistance of coal 

dust, and the higher the maximum pressure, the stronger the bonding effect and the more 

significant the dust suppression efficiency.  

0 20 40 60 80 100 120 140 160 180

0.0

0.5

1.0

1.5

2.0

2.5

R
2
 = 0.96

W
in

d
 e

ro
si

o
n
 m

as
s 

(g
)

Maximum pressure (N)

y = 1.99−0.012x

 

Figure 15. Relationship between the maximum pressure of the dry mixed coal dust block and the 

wind erosion mass. 

Based on the above results, we can conclude that the suppression effect of molasses 

on coal dust can be primarily attributed to enhancing the moisturizing and bonding prop-

erties of coal dust, and the bonding effect is the dominant factor.  

4. Discussion 

In this study, the feasibility of using molasses as a coal dust suppressant was evalu-

ated through the lens of experiments. The results showed that molasses can significantly 

improve the moisturizing ability of coal dust and strongly bond coal particles. Through 

these two effects, the molasses solution has a remarkable suppression effect on the sec-

ondary flying of coal dust caused by wind erosion. In this section, we place our results 

within the context of published literature and discuss their implications. 

Figure 14. Relationships between the evaporation rate of the wetting mix coal dust and the wind
erosion mass (a), and between the maximum moisturizing mass of the dry mixed coal dust and the
wind erosion mass (b).



Int. J. Environ. Res. Public Health 2022, 19, 16472 14 of 19

3.5.2. Relationship between Agglutination Parameter and the Wind Erosion Mass

Figure 15 shows the relationship between the maximum pressure of the agglutination
coal dust block and the wind erosion mass. It was found that the wind erosion mass
linearly decreased with an increase in the maximum pressure with R2 = 0.96. This result
indicates that the agglutination effect could directly affect the wind erosion resistance of
coal dust, and the higher the maximum pressure, the stronger the bonding effect and the
more significant the dust suppression efficiency.
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Based on the above results, we can conclude that the suppression effect of molasses on
coal dust can be primarily attributed to enhancing the moisturizing and bonding properties
of coal dust, and the bonding effect is the dominant factor.

4. Discussion

In this study, the feasibility of using molasses as a coal dust suppressant was evaluated
through the lens of experiments. The results showed that molasses can significantly im-
prove the moisturizing ability of coal dust and strongly bond coal particles. Through these
two effects, the molasses solution has a remarkable suppression effect on the secondary
flying of coal dust caused by wind erosion. In this section, we place our results within the
context of published literature and discuss their implications.

4.1. Wetting and Moisturizing Functions of Molasses on Hydrophobic Coal Dust

Molasses contain a lot of carbohydrates, such as sucrose, glucose, and fructose, among
which the sucrose content can reach approximately 48.8% [18]. Sucrose molecules contain
large amounts of functional groups containing oxygen elements such as hydroxyl and
ether, as shown in Figure 16a, these functional groups are hydrophilic. Additionally, the
sucrose molecules also contain two hydrophobic hexane chains. In other words, sucrose
molecules contain both hydrophilic and hydrophobic groups, which could function as
surfactants. Therefore, molasses could effectively reduce the surface tension of water
(Figure 9a). However, the molecular weight of the hydrophilic group in the sucrose
molecule is comparable to that of the hydrophobic group, which limits the ability of
molasses to reduce the surface tension of water. Figure 9a validates this analysis, and
the surface tension of the molasses solution with 40% concentration was still larger than
40 m·N/m. According to a study by Xu et al. [39], when the solution surface tension is
greater than 45 m N/m, it cannot wet the hydrophobic coal dust. Our findings are congruent
with this conclusion (Figure 9b); the minimum contact angle between the molasses solution
and the hydrophobic coal dust was greater than 90◦, indicating that the molasses solution
cannot effectively wet the hydrophobic coal dust. Therefore, a small amount of surfactant
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would need to be added to improve the wettability of the molasses solution during the
development of a molasses-based coal dust suppressant.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 16 of 20 
 

 

4.1. Wetting and Moisturizing Functions of Molasses on Hydrophobic Coal Dust 

Molasses contain a lot of carbohydrates, such as sucrose, glucose, and fructose, 

among which the sucrose content can reach approximately 48.8% [18]. Sucrose molecules 

contain large amounts of functional groups containing oxygen elements such as hydroxyl 

and ether, as shown in Figure 16a, these functional groups are hydrophilic. Additionally, 

the sucrose molecules also contain two hydrophobic hexane chains. In other words, su-

crose molecules contain both hydrophilic and hydrophobic groups, which could function 

as surfactants. Therefore, molasses could effectively reduce the surface tension of water 

(Figure 9a). However, the molecular weight of the hydrophilic group in the sucrose mol-

ecule is comparable to that of the hydrophobic group, which limits the ability of molasses 

to reduce the surface tension of water. Figure 9a validates this analysis, and the surface 

tension of the molasses solution with 40% concentration was still larger than 40 m·N/m. 

According to a study by Xu et al. [39], when the solution surface tension is greater than 45 

m N/m, it cannot wet the hydrophobic coal dust. Our findings are congruent with this 

conclusion (Figure 9b); the minimum contact angle between the molasses solution and the 

hydrophobic coal dust was greater than 90°, indicating that the molasses solution cannot 

effectively wet the hydrophobic coal dust. Therefore, a small amount of surfactant would 

need to be added to improve the wettability of the molasses solution during the develop-

ment of a molasses-based coal dust suppressant. 

 

Figure 16. The molecular structure of sucrose (a), the hydrogen bonds of sucrose molecular in water 

(b), and the hydrogen bonds of sucrose molecular on the surface of coal dust (c). 

In addition, molasses also contains plenty of ash (approximately 13%) [18], which can 

increase the solid content and viscosity of the solution. Furthermore, as shown in Figure 

16b, when molasses is dissolved in water, the hydrogen in the hydroxyl group of the su-

crose molecule can quickly form a hydrogen bond with the oxygen element in the water 

molecule, and the oxygen in the ether group of the sucrose molecule can also form hydro-

gen bonds with the hydrogen in the water molecule. The viscosity of the molasses solution 

increases under the action of hydrogen bonding. Therefore, as presented in Figure 10, the 

viscosity of the molasses solution exponentially increases with an increase in molasses 

concentration. With an increase in the concentration of molasses, the solution surface ten-

sion did not change (Figure 9a), but its viscosity increased rapidly (Figure 10), which may 

Figure 16. The molecular structure of sucrose (a), the hydrogen bonds of sucrose molecular in
water (b), and the hydrogen bonds of sucrose molecular on the surface of coal dust (c).

In addition, molasses also contains plenty of ash (approximately 13%) [18], which
can increase the solid content and viscosity of the solution. Furthermore, as shown in
Figure 16b, when molasses is dissolved in water, the hydrogen in the hydroxyl group of the
sucrose molecule can quickly form a hydrogen bond with the oxygen element in the water
molecule, and the oxygen in the ether group of the sucrose molecule can also form hydrogen
bonds with the hydrogen in the water molecule. The viscosity of the molasses solution
increases under the action of hydrogen bonding. Therefore, as presented in Figure 10, the
viscosity of the molasses solution exponentially increases with an increase in molasses
concentration. With an increase in the concentration of molasses, the solution surface
tension did not change (Figure 9a), but its viscosity increased rapidly (Figure 10), which
may be the reason why the contact angle increased again when the molasses concentration
was greater than 20% (Figure 9b).

In addition, molasses contains a few metal ions, such as Ca, Mg, Na, and K, and trace
chlorides [18], and these elements easily form compounds such as CaCl2 and MgCl2 after
water evaporation. CaCl2 and MgCl2 can form CaCl2·xH2O and MgCl2·xH2O, respectively,
by absorbing moisture in the air [7,40]. Therefore, mixed wetting coal dust (MWCD) and
mixed dry coal dust (MDCD) exhibit significant anti-evaporation characteristics (Figure 4)
and moisturizing properties (Figure 6), respectively.

4.2. Agglutination Molasses on Hydrophobic Coal Dust

Molasses solutions exhibit significant agglutination properties for coal dust. As shown
in Figure 17, after spraying the molasses solution on the coal dust surface, a bonding layer
(Figure 17d) can be formed on the surface of the deposited coal dust after drying, which
is the main reason why the molasses solution has a significant wind erosion suppression
effect on the deposited coal dust (Figure 15).
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Figure 17. Agglutination of molasses solution on the hydrophobic coal dust: dry coal dust (a), wetting
coal dust by molasses solution (b), dried coal dust mixed with molasses (c), and the agglutination of
molasses on coal dust (d).

As shown in Figure 16c, when the molasses solution was mixed with the coal dust, the
sucrose molecules in the solution contacted the coal dust surface. It is well known that coal
contains large amounts of organic polymers mainly composed of carbon, hydrogen, and
oxygen. Thus, on the surface of coal dust, there is a large number of alkyl, alkenyl, and other
groups [41–43], and the hydrogen and oxygen in these groups can rapidly form hydrogen
bonds with the oxygen and hydrogen in sucrose and water. Using hydrogen bonds, coal
dust particles, sugar molecules, and water molecules could quickly form physical networks,
resulting in the macroscopic phenomenon of the bonding of coal dust particles, as shown
in Figure 17d. Therefore, an agglutination layer can be formed when spraying a molasses
solution on the surface of deposited coal dust, such as in open coal piles and underground
roadways. The agglutination layer can effectively prevent wind erosion of the deposited
coal dust, producing a dust suppression effect.

In summary, in this study, we found that molasses could effectively improve the
moisturizing and agglutination properties of coal dust. Under the action of these two char-
acteristics, the molasses solution has significant wind erosion resistance to the deposited
coal dust. At the same time, molasses solutions have some disadvantages in preventing coal
dust, such as poor wettability and high viscosity. Therefore, the wettability and viscosity
should be fully improved when developing a coal dust suppressant using molasses.

5. Conclusions

The objective of this study was to investigate the suppression performance and mecha-
nism of molasses solutions on coal dust at various concentrations. To achieve this objective,
the moisturizing and agglutination of molasses on coal dust was tested, the physical prop-
erties of molasses solutions with different concentrations were measured, and the dust
suppression efficiency of molasses on the deposited coal dust was investigated. Based on
the above experiments, the suppression mechanism of molasses on coal dust is discussed,
and the advantages and disadvantages of molasses in facilitating the creation of coal dust
suppressants are analyzed. The following conclusions can be drawn:

(1) Molasses can improve the anti-evaporation ability of wet coal dust. The evaporation
mass of the MWCD experienced three stages as the molasses concentration increased
from 0% to 40%, and the evaporation mass decreased by 82.8% at 40% concentration
than that at 0% concentration (pure water).

(2) Molasses can enhance the moisturizing properties of coal dust. The moisturizing mass
of the MDCD exponentially increased with an increase in molasses concentration, but
the moisturizing rate was slightly influenced by the molasses concentration.

(3) Molasses has a significant agglutination effect on coal dust. The bonding pressure of
molasses solution on coal dust exponentially increases with the increasing of molasses
concentration, and the maximum pressure of the coal dust block bonding by 40%
molasses solution reached 171.21 N, which is 148.9 times that of the coal dust block
bonding by pure water.
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(4) Molasses can effectively decrease the surface tension of a solution and increase its
viscosity. At 40% concentration, the surface tension of the molasses solution reached
41.37 mN/m and the viscosity increased to 6.79 mPa·s.

(5) Molasses can significantly suppress the wind erosion of deposited coal dust. The wind
erosion mass of the deposited coal dust exponentially decreased with an increase
in molasses concentration, and the wind erosion mass decreased by 99.1% at 40%
concentration than that at 0% concentration (pure water).

(6) The use of molasses to create a coal dust suppressant is highly feasible. How-
ever, the wettability of molasses solutions should be improved, and the viscosity
of molasses solutions should be considered when developing molasses-based coal
dust suppressants.
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