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Abstract: This research evaluates the effects of the Three Red Lines policy on water usage efficiency
(WUE), production technology heterogeneity, and water productivity change in 31 Chinese provinces
between 2006 and 2020. SMB-DEA, Meta-frontier analysis, and Malmquist–Luenberger index (MLI)
techniques were employed for estimation. Results revealed that the mean WUE (2006–2020) in all
Chinese provinces was 0.52, with an improvement potential of 48%. Shanghai, Beijing, Shaanxi,
and Tianjin were the best performers. The WUE scores before (2006–2011) and after (2012–2020)
water policy implementation were 0.58 and 0.48, respectively; on average, there was more than a
9% decline in WUE after the implementation of the water policy. The eastern region has the most
advanced water utilization technology as its technology gap ratio (TGR) is nearly 1. The average MLI
(2006–2020) score was 1.13, suggesting that the MLI has increased by 12.57% over the study period.
Further technology change (TC) is the key predictor of MLI growth, whereas efficiency change (EC)
diminished from 2006 to 2020. The mean MLI score for 2006–2011 was 1.16, whereas the MLI Score
for the period 2012–2020 was 1.10, indicating a modest decline following the implementation of the
water policy. All three Chinese regions experienced MLI growth during 2006–2020, with TC the main
change factor.

Keywords: water usage efficiency; regional heterogeneity; productivity change; DEA

1. Introduction

Water is a transparent fluid that composes the world’s rivers, lakes, oceans, and rainfall.
It is an essential item for the living organism. Water scarcity is a huge global challenge in
the twenty-first century. The organization of water supplies and water treatment facilities
for optimal performance constitutes good water management. Over the past two decades,
China’s economy has expanded rapidly, making it the second-largest in the world. This
“economic miracle” has lifted hundreds of millions of people out of poverty, but at a heavy
price of environmental degradation. The effects of environmental pollution on human
health and water scarcity are currently the top concerns of the Chinese government [1]. With
the rapid development of the economy and society, water security in China is becoming
increasingly severe [2]. Gaps in supply and demand, uneven distribution of water resources,
frequent floods, waterlogging disasters, construction of farmland, and water conservancy
are still major water-related issues in the country. Water scarcity is a major hurdle in stable
agriculture development and national food security. Moreover, China’s economic growth
has increased domestic and industrial sewage, which is a major contributor to the depletion
of environmental quality [3]. The country’s GDP output per water unit is far below the
world average. The average economic productivity of water in the developed world is
approximately USD 36 per cubic meter, whereas the economic productivity of water is
approximately USD 3.50 per cubic meter in China [4].
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Although China has some of the most important rivers in South Asia, the chronolog-
ical and spatial distribution of water resources is uneven. Among the 31 administrative
regions on the mainland, 8 are seriously water deficient, while 20 others face a slight
water shortage [5]. These water-scarce provinces face severe challenges for agriculture,
industrial, domestic, and even drinking water. These water scarcity challenges ultimately
affect people’s health and everyday life and slow the pace of sustainable economic and
social goals. In addition, the low level of production technology in agriculture, industry,
and domestic usage leads to low water utilization efficiency and wastage of resources [6].

In 2011, the State Council of the CPC Central Committee developed and implemented
the “Three Red Lines” strategy and China’s water resources management goals for the next
20 years. The objective was to control the scale of water usage, increase water utilization
efficiency, and limit sewage discharge; three “red lines” show the need to regulate water
supply, use, and pollution. A further explanation is: (1) controlling the overall quantity
of water use, (2) enhancing the efficiency of water usage, and (3) controlling the total
amount of pollutant discharge into rivers [7]. By 2030, it was planned to keep China’s
total water consumption below 700 billion cubic meters. Water efficiency will be enhanced
through water-saving society development. In addition, the effective utilization coefficient
of farmland irrigation water would be increased to more than 0.6. Finally, sewage manage-
ment targets included reducing main pollutant discharges to within the pollutant receiving
capacity of the water function zone by 2030 and increasing the water quality standard rate
above 95% [8].

After implementing this policy, Chinese provincial governments have taken serious
measures to secure water reservoirs, enhance water usage efficiency, and limit pollutants [7].
However, the degree of this mission’s success has not yet been determined and needs inves-
tigation. To this end, our study measured the water usage efficiency through 31 provinces
and city-level data from 2006–2020. Therefore, firstly, the study incorporated sewage as a
bad output in the estimation process and employed SBM-DEA to gauge the water usage
efficiency for extended periods to evaluate the impact of the Chinese government’s water
policy. Production technology heterogeneity in different regions of the country could im-
pact water usage efficiency; hence, in the second stage, we used the Meta-frontier method
to calculate the technological gap ratio in western, central, and eastern China. This gauges
the success rate of different parts of the county in terms of water usage efficiency and
provides advice for policy implications for weaker production technology regions to en-
hance their technology to achieve a higher efficiency frontier. The Malmquist–Luenberger
index measures the total factor productivity change in the third stage. It decomposes this
productivity change to compute the determinant (technology change or efficiency change)
of productivity growth or decline over the study period. It highlights the recommendations
for provincial and central governments to either improve their technology or technical
efficiency in the conversion process to reduce the inputs (water, labor, and capital) to pro-
duce more value-added (GDP) with fewer pollutants (sewage). Finally, to strengthen our
findings, the Kruskal–Wallis and Mann–Whitney U tests measure the significant statistical
differences in water usage efficiency (WUE), productivity change (MLI), technology change
(TC), and technical efficiency change (EC) between the pre- and post-water policy period
(2006–2011, 2012–2020) for the three regions of China (see Figure 1). The rest of the study
is as follows. Section 2 describes the detailed literature review. Section 3 contains the
methodology used in the research. Section 4 provides the inputs–outputs selection and data
sources. Sections 5 and 6 focus on the results and discussion, and conclusion, respectively.



Int. J. Environ. Res. Public Health 2022, 19, 16459 3 of 23Int. J. Environ. Res. Public Health 2022, 19, x  3 of 24 
 

 

 
Figure 1. Central, western, and eastern regions in China. 

2. Literature Review 
Data envelopment analysis is a well-known mathematical technique extensively 

used to gauge the different types of efficiency estimation in various industries and regions 
globally [9–11]. Water usage efficiency is a relatively new phenomenon used to measure 
the relative efficiency of regions or units that incorporate water consumption with differ-
ent economic inputs to produce economic value editions [12]. The following literature de-
scribes water utilization efficiency in various regions and industries worldwide. 

2.1. Water Usage Efficiency and Regional Production Technology Heterogeneity 
One of the requirements for optimizing water usage efficiency (WUE) is understand-

ing its current state. WUE is also known as economic WUE in social science, defined as 
the value of the products produced per unit of water usage [13]. According to this con-
ceptual framework, studies have been conducted on water usage efficiency, related poli-
cies, and water’s importance in different regions [14–16]. It was eventually revealed that 
using only water as an input would not be capable of generating the required outputs. 
WUE evaluation also requires other information [17]. As a result, multiple-input model 
investigations of total factor WUE are becoming more popular. The production environ-
ment may differ regionally, which could influence water usage efficiency. In their study, 
the Meta-frontier technique was used by Rahman et al. (2019) [18] to analyze the effective-
ness of 625 farms in Bangladesh that raise phantasies and tilapia in diverse regions. 

The results suggest that efficiency varies significantly among various production lo-
cations and technologies. According to this research, planners should consider geograph-
ical variations in production conditions and the relative performance of different species. 
Xu et al. [19] studied the agricultural water rebound impact by measuring the causal in-
fluence of agricultural water usage efficiency on agricultural water use through panel data 
from 30 provinces and cities in China between 2000 and 2017. Results revealed a negative 
correlation between agricultural water usage efficiency and agricultural water usage. 
However, the average agri-water (water consumption for the agriculture sector) rebound 

Figure 1. Central, western, and eastern regions in China.

2. Literature Review

Data envelopment analysis is a well-known mathematical technique extensively used
to gauge the different types of efficiency estimation in various industries and regions
globally [9–11]. Water usage efficiency is a relatively new phenomenon used to measure
the relative efficiency of regions or units that incorporate water consumption with different
economic inputs to produce economic value editions [12]. The following literature describes
water utilization efficiency in various regions and industries worldwide.

2.1. Water Usage Efficiency and Regional Production Technology Heterogeneity

One of the requirements for optimizing water usage efficiency (WUE) is understanding
its current state. WUE is also known as economic WUE in social science, defined as the
value of the products produced per unit of water usage [13]. According to this conceptual
framework, studies have been conducted on water usage efficiency, related policies, and
water’s importance in different regions [14–16]. It was eventually revealed that using only
water as an input would not be capable of generating the required outputs. WUE evaluation
also requires other information [17]. As a result, multiple-input model investigations of
total factor WUE are becoming more popular. The production environment may differ
regionally, which could influence water usage efficiency. In their study, the Meta-frontier
technique was used by Rahman et al. (2019) [18] to analyze the effectiveness of 625 farms
in Bangladesh that raise phantasies and tilapia in diverse regions.

The results suggest that efficiency varies significantly among various production
locations and technologies. According to this research, planners should consider geo-
graphical variations in production conditions and the relative performance of different
species. Xu et al. [19] studied the agricultural water rebound impact by measuring the
causal influence of agricultural water usage efficiency on agricultural water use through
panel data from 30 provinces and cities in China between 2000 and 2017. Results revealed
a negative correlation between agricultural water usage efficiency and agricultural water
usage. However, the average agri-water (water consumption for the agriculture sector)
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rebound effect is 88.81%. Secondly, there is a regional variation in the rebound effect of
increased agricultural water usage efficiency. Veettil et al. [20] used Indian farm-level data
to gauge WUE and found that farms operating near the efficiency frontier have higher
water needs than those operating at lower efficiency levels. It has been demonstrated that
if the pricing system is handled on a volumetric basis, a rise in the price of water will not
result in a sizable profit loss, but water consumption would decrease significantly. Similarly,
numerous studies employed DEA techniques to estimate the WUE and technological gaps
in different regions of the world [21–23]. In China, different studies tried to measure the
WUE in different regions and industries [24–26]. However, a comprehensive study that
could analyze the impact of the three red line water safety policies on WUE and regional
heterogeneity on provincial data is missing. To this end, this study will evaluate China’s
WUE and regional heterogeneity.

2.2. Water Usage Total Factor Productivity and Its Determinants

The total factor productivity change could be decomposed into technological and
efficiency change, which evaluate the determinant of TFP change. Hu et al. [17] employed
DEA to assess the total factor water efficiency for different regions of China. Results of the
study revealed that the central region has the lowest water efficiency ranking and accounts
for almost 75% of China’s overall water usage. Superior water efficiency, especially in
terms of efficient water use, requires adopting more efficient production processes and
cutting-edge technology in the central region. Molinos-Senante [27] used data from 1993 to
2016 on the water industry in England and Wales to estimate the total factor productivity.
Each year, the water industry witnesses a 6.1% productivity boost, with 1.5% attributable to
technological innovations and 4.5% to economies of scale. Assessing the TFP of freshwater
efficiency in China from 2004 to 2019, Zhong et al. [28] developed a Meta-frontier Malmquist
index (MMI) model that considers regional heterogeneity. The results demonstrated that
TFP was highly variable between 2004 and 2012. The total factor productivity (TFP) of
inland freshwater was higher than that of coastal freshwater in this study.

Based on the decomposition index, technological progress (TC) and technical efficiency
drove freshwater total factor productivity variation. The decomposition index also reveals a
lower technical efficiency and a relatively stable managerial efficiency. The coastal areas are
near the optimal technical level for freshwater usage, with only a minor gap between the
two. On the other hand, inland areas have higher development potential. Wang et al. [29]
found that technological advancement has a positive and prominent role in TFP change in
China’s freshwater usage efficiency. A study by Molinos-Senante [30] on the water usage
TFP change in England shows that productivity increased between 2001 and 2004, with the
increase primarily attributable to improvements in efficiency and the decrease attributable
to a lack of technical change (except for 2004). Productivity growth slowed between 2005
and 2008, with any efficiency gains erased by the highly negative impact of technological
development. The TFP of water usage was measured for Chilean water providers between
2007 and 2018. TFP grew annually by 2.2%, with most of this improvement attributable to
greater outputs. The most significant factor in the productivity increase was a shift in scale
efficiency, which suggests that water firms may be able to reduce their operating expenses
by adjusting the size of their operations [31]. Oulmane et al. [32] demonstrated that
increasing financial support for WST increases water’s total factor productivity. Adopting
these methods enables reduced water consumption during crop production. This research
indicates that WST may affect productivity increases in total factor productivity. Further,
numerous studies gauge the impact of technology and technical efficiency on water and
environmental TFP growth [33–37]. Our study investigates the impact of the Chinese
government’s three red line water security policy on water usage TFP and explores its
determinant (technology or efficiency).
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3. Methodology

There are numerous techniques available to measure the efficiency of homogeneous
decision-making units. Data envelopment analysis (DEA) and stochastic frontier analysis
(SFA) are extensively used in the literature. DEA has an advantage over SFA because it does
not require functional form specification and can gauge efficiency through linear program-
ming. This study employed advanced DEA models, the super-efficiency SBM model with
undesirable outputs, the DEA Meta-frontier model, and the Malmquist–Luenberger index.
Further, when the data are non-normally distributed, Kruskal–Wallis and Mann–Whitney
tests are more appropriate to measure the statistical difference between the two populations.
The detailed properties and advantages of the used techniques are given below.

3.1. Super-Efficiency SBM Model with Undesirable Outputs

The super-efficiency SBM model, proposed by Tone [38], is a non-radial DEA model
that allows for simultaneous consideration of input and output to evaluate the efficiency of
homogenous decision-making units (DMUs). The super-efficiency SBM model overcomes
the shortcoming of the radial DEA model, which lacks slack variables in the estimation
process. Super-SBM can overcome the shortcomings of radial measurement and efficient
DMUs can be distinguished from one another. Tone [39] developed the Undesirable Super-
SBM model. The proposed model is a pioneer in the study to account for bad output and
rank efficient units. Details of the model are as follows:

If there are n DMUs and each one has m inputs, then s1 and s2 are, respectively,
the good and bad outputs. The input–output matrix has the formulas X = [x1 . . . xn] ∈
Rm×n, Ynd =

[
yd

1 . . . yd
n

]
∈ Rs1×n, and Yu =

[
yA

1 . . . yut
n
]
∈ Rs2×n. The expression of the

super-efficiency SBM model with bad output is shown below.

ρ∗ =
1
m ∑m

i=1

(
x

xik

)
1

(s1+s2)

(
∑

s1
r=1

yd

yd
rk
+∑

s2
t=1

yu
yu

rk

)

s.t.



x ≥
n
∑

j=1,4k
xijλj; i = 1, 2, . . . m

yd ≤
n
∑

j=1, 6=k
yd

rjλj; r = 1, . . . , s1

yuµ ≥
n
∑

j=1, 6=k
yu

tjλj; t = 1, . . . , s2

λj ≥ 0, j = 1, 2, . . . n, j 6= 0
x ≥ xik; yd ≤ yd

rk; yµ ≥ yu
dk

(1)

The slack variables of input, desirable output, and undesirable output, respectively,
are x, yd, and yu in the formula; λj is the weight vector; and ρ∗ is the model’s optimal
solution, with the DMU effective when ρ∗ ≥ 1.

3.2. DEA Meta-Frontier Model

The Meta-frontier model allows for more precise estimations of DMU efficiency eval-
uations with different groups. Comparing DMUs within the same group is preferable to
ensure that they all have access to the same level of technology. To determine how far the
various groups are in terms of technological development, the technology gap ratio (TGR)
can be used. TGR can be presented for a specific group [40,41].

TGR =
MWUE
GWUEi

(2)

The evaluation considers the WUE of all DMUs, where GWUE i represents the water
usage efficiency of DMUs within a particular group category and MWUE represents the
Meta-WUE of DMUs within a particular technical level. The TGR employs a distance
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metric to determine how close a Meta-frontier technology is to a group’s frontier technol-
ogy [42]. TGR is commonly used to evaluate regional disparities. Further, TGR =1 shows
no technological gap between a group and the Meta frontier.

3.3. Malmquist–Luenberger Index

Chung et al. [43] renamed the Malmquist index as the Malmquist–Luenberger index
because it included an undesirable directional distance function. The new metric is de-
composed into two factors: technological change (TC) and efficiency change (EC). The ML
index between t and t + 1 is represented as:

MLt+1 =


[

1 +
→
Dt

0
(

xt, yt, b∗; yt,−bt)][
1 +

→
Dt

0(xt+1, y+1, bt+1; yt+1,−bt+1)

] ×
[

1 +
→

Dt+1
0
(
xt, yt, bt; yt,−bt)][

1 +
→

Dt+1
0 (xt+1, y+1, b++1; yt+1,−bs+1)

]


1/2

(3)

EC,x+1 =
1 +

→
Dt

0
(
xt, yt, b′; yt,−b2)

1 +
→

Dt+1
0
(
xt+1, yt+1, b+1; yk+1,−bt+1

) (4)

TC4+1 =


[

1 +
→

Dt+1
0
(

xt, yt, bt, yt,−bt)][
1 +

→
Dt

0(xt, y′, bt; yt,−b′)
] ×

[
1 +

→
Dt+1

0

(
xt+1, y++1, b

′+1; yt+1,−bt+1
)]

[
1 +

→
D′0(xt+1, yt+1, bt+1; yt+1,−b++1)

]


1
2

(5)

where x, y, and b represent input, desirable output, and undesirable output, respec-

tively; (D 0t)
→
Dt

0
(

x2, yr, br; yt,−bt) and
→

Dt+1
0
(
xs+1, yt+1, bt+1; yt+1,− bt+1 ) are the distance

functions of periods t and t + 1, respectively;
→
Dt

0
(
xs+1, ys+1, bt+1; ys+1,−bt+1) is the dis-

tance function of the t + 1 period under the technical condition of the t + 1 period; and
→

Dt+1
0
(

xt, yt, bt; yt,−bt) is the distance function of the t period under the technical condition
of the t + 1 period. Total factor energy efficiency (ML > 1, ML = 1, and ML < 1), technical
efficiency (EC > 1, EC = 1, and EC < 1), and technological development (TC > 1, TC = 1,
and TC < 1) all show growth, stability, and decline, respectively.

3.4. Mann–Whitney U and Kruskal–Wallis Tests

Wilcoxon’s Mann–Whitney U test [44,45] is a non-parametric test comparing the results
of two independent groups. The Mann–Whitney U test, also known as the Mann–Whitney
Wilcoxon Test or the Wilcoxon Rank Sum Test, determines whether two samples come
from the same population. In this test, the medians of the two populations are compared.
However, if there are more than two independent groups, the Kruskal–Wallis test [46] is
used to measure the statistically significant difference. We used the Mann–Whitney U test
to measure the statistically significant difference among the mean water usage efficiency
(WUE), MLI, TC, and TE between two periods, 2006–2011 and 2012–2020. Therefore, our
null hypothesis for the Mann–Whitney U test is as follows:

H1: The distribution of average WUE is identical for both time periods (2006–2011 and 2012–2020).

H2: The distribution of average MLI is identical for both time periods (2006–2011 and 2012–2020).

H3: The distribution of average TC is identical for both time periods (2006–2011 and 2012–2020).

H4: The distribution of average EC is identical for both time periods (2006–2011 and 2012–2020).
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The Kruskal–Wallis test was used to determine whether the mean water usage effi-
ciency (WUE), MLI, TC, and TE across all three regions differ significantly. The following
are our null hypotheses for the Kruskal–Wallis test:

H5: The distribution of average WUE is identical across China’s three distinct regions.

H6: The distribution of average MLI is identical across China’s three distinct regions.

H7: The distribution of average TC is identical across China’s three distinct regions.

H8: The distribution of average EC is identical across China’s three distinct regions.

4. Inputs-Outputs Selection and Data Sources

The selection of correct inputs–outputs data for efficiency and productivity change
is essential for accurate DEA estimation results [47]. Water efficiency cannot be measured
with only single water input. Therefore, labor and capital unanimously agreed on inputs
with water consumption to produce economic value edition GDP [17]. However, not
incorporating undesirable input in the estimation process could generate biased results in
DEA evaluation [48]. To this end, the inputs and outputs given in Table 1 are selected from
previous studies. Data for 31 Chinese provinces and administrative units were taken from
China’s statistical books for 2006–2020. The unit of labor is a person aged between 15–64,
capital stock is CNY 10,000, water consumption is 100 million cu. m, and unit of GDP is
CNY 100 million. Finally, the unit of sewage is 10,000 tons. Sewage water includes solid
waste and pollutants and the unit is 10,000 tons.

Table 1. Inputs and Outputs used for WUE and productivity change estimation.

Inputs Outputs

Labor: Population (persons) aged 15–64 Expected output Real GDP (CNY 100 million)

Capital: Capital stock (CNY 10,000)
Sewage discharge of industrial and domestic
waste water by region (10 000 tons):
Undesired output

Water consumption: Water use (100 million cu. m)

5. Results and Discussion

Section 5 presents the WUE, production technology gaps, and productivity change
results of the study.

5.1. SBM-DEA Results

Since the Chinese government issued and implemented the “Three Red Lines” water
policy in 2011, provincial governments have actively responded to the central government’s
call. In addition, efforts have been made to promote the remediation measures of water
supply, water use, and water pollution; however, the policy’s implementation effect does
not appear optimal. Figure 2 shows the sewage discharge of 31 provinces in China from
2006 to 2020. From 2011 to 2015, the sewage discharge increased and reached its peak in
2015. The policy does not appear to reflect its enforceability. After 2015, sewage discharge
began to reduce, but the pace was gradual and slow. The policy demonstrates that the
delay in sewage treatment is severe and insufficient. Therefore, to gauge the impact of bad
output (sewage) on water usage efficiency, we employed the Super-SBM DEA model with
undesirable output.

The model used economic inputs with water consumption to produce GDP and
sewage. Figures 3 and A1 show the water usage efficiency levels of 31 provinces in China
from 2006 to 2020. The mean WUE in all Chinese provinces is 0.52, with an improvement
potential of 48%. The results further show that, compared with other provinces in China,
Shanghai has the highest average WUE value of 1.236. In addition, there are three provinces
with an average WUE greater than 1, namely, Beijing (1.08), Shaanxi (1.02), and Tianjin
(1.01). The results demonstrate that these provinces or municipalities can adopt sustainable
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growth policies and increase water efficiency throughout the study period. Shanghai’s
economy is relatively developed, and its water resources utilization technology and man-
agement system are advanced. In addition, Beijing, Shaanxi, and Tianjin have always had
serious water shortages. The government has strict control over water resources, complete
management systems, and a higher water utilization ratio than other provinces. The results
show that most provinces in central and western China are inefficient, and their average
WUE score is less than 0.5, which indicates that the energy efficiency level of these provinces
or cities still has a 50% improvement potential. Inefficient provinces and cities could reduce
their water and economic inputs to achieve an efficient frontier demonstrated by efficient
DMUs. Alternatively, they could retain the inputs and improve their economic output with
the least sewage to become efficient. The efficient province sets the benchmark policies
and practices for inefficient provinces to follow and improve their WUE. Deng et al. [26]
had similar conclusions and advised similar policy implications for inefficient provinces.
However, the WUE is diverse for different periods and provinces, as a change in WUE
fluctuates over time and geographical regions.
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Figure 2. Total sewage in 31 provinces of China.

To check the impact of water policy on water usage efficiency over time, we also
compared the annual average WUE from 2006 to 2020 (See Table 2). The results demonstrate
that before 2011, China’s annual average WUE showed a fluctuating downward trend.
After the announcement and implementation of the “three red lines” water policy in 2011,
the annual average WUE showed an upward trend from 2012 to 2015. However, afterwards,
a gradual and continued decline in WUE was witnessed. The average WUE before the
water policy (2006–2011) was 0.58, indicating a 42% potential efficiency improvement in the
water utilization process. The mean efficiency score after the water policy implementation
was 0.48. It demonstrates that, on average, there was more than a 9% decline in water
usage efficiency after implementing the water policy. It further increases the potential
for improvement in WUE to 52%. These results indicate that although there is a decline
in sewage with time, WUE declined over the study period, and the mission to increase
water efficiency was not achieved compared to its targets. In addition, Chinese provinces
could not use water resources efficiently with sustainable development. Scarce water
resources, lack of advanced sewage treatment technologies, excessive labor, and capital
inputs with region gaps to optimum value addition (GDP) are the potential causes of the
decline in water usage efficiency. Byrnes et al. [49] concluded that water scarcity, technology,
and excessive inputs are the main hurdles to improving water usage efficiency. Sewage
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treatment technologies, efficient water usage in agriculture through leveling fields, surge
flooding, capture and reuse of runoff, drip irrigation, spray irrigation technologies, and
domestic and industrial water safety through public awareness campaigns are possible
solutions to increase water usage efficiency in China. Further, reducing the economic inputs
(capital and labor) through labor skill programs and efficient utilization of public funds
could increase the WUE.
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Table 2. WUE difference in two study periods (2006–2011, 2012–2020).

Year WUE

2006 0.6100
2007 0.5981
2008 0.5902
2009 0.5597
2010
2011

0.5822
0.5321

Avg. 2006–2011 0.5787

2012 0.5379
2013 0.5373
2014 0.5292
2015 0.538
2016 0.5186
2017 0.5155
2018 0.4192
2019 0.3647
2020 0.3885

Avg. 2012–2020 0.4832

Avg. 2006–2020 0.5214
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5.2. Meta-Frontier DEA Results

Production technology heterogeneity impacts the resource utilization capability of
any region or firm, ultimately influencing the production process’s efficiency level. Thus,
without distinguishing the technology gap ratio in different regions of China, our WUE
results could be biased. Therefore, we employed Meta-frontier analysis to accurately evalu-
ate water resources utilization efficiency and elaborate on the technology heterogeneity in
different Chinese regions. Production technology regional heterogeneity in three different
regions (see Figure 1) of China was estimated to advise the policy implication for the
Chinese government to reduce the technology gap ratio in different regions of the country.
The MWE, GWE, and TGR associated with the group frontier, Meta frontier, and technology
gap ratio are shown in Table 3. To explain the results in Table 3, we take the example of
Anhui Province, located in the central region. Results revealed that the average water
usage efficiency (GWE) under the group frontier was 0.91. It shows that compared to other
provinces in the central region, the WUE of Anhui was high, with only a potential of 9.2%
to reach the efficient frontier in its central group. The core region’s technology serves as
a benchmark for Anhui. According to the Meta-frontier analysis, the average MWE for
water resources in Anhui was 0.38, with a growth potential of 62%; this is much greater
than the group frontier. Compared to other provinces, Anhui has a greater group frontier
efficiency but a poor WUE in the Meta frontier. There was also a significant difference in
water-use efficiency between the central region and the rest of the country, as indicated by
the technological gap ratio (TGR) of 0.43, which is significantly less than 1. The situation in
most provinces of China is similar to that in Anhui. The Meta-frontier efficiency in water
resources is lower than that of the group frontier. Therefore, Meta-frontier results conclude
that the national technology level is the highest, while the group frontier only indicates
the region’s best technology. Eastern provinces, such as Beijing, Shanghai, Shaanxi, and
Tianjin, have demonstrated higher efficiency within the group and nationally. It shows that
these provinces or cities are the benchmark and demonstrate best practices and policies for
the rest of the provinces that cannot achieve effect frontier. Moreover, Tables A2 and A3
show the results of all three regions for the Meta frontier and group frontier over the
study period. The findings show that the eastern region recorded the highest water usage
efficiency in the Meta frontier with a value of 0.74. It demonstrates that eastern provinces
are more efficient in water usage than central and western provinces. The WUE values
of the central and western provinces were 0.38 and 0.42, respectively, showing that the
central and western regions are less efficient than eastern coastal regions. As eastern re-
gions obtained more advanced water treatment technologies, more sophisticated water and
economic practices and policies are the main causes of higher WUE values in the region.
The regional difference in water usage efficiency was also measured by numerous studies
and concluded similar results and suggestions to improve it [25,50,51]. Comparing the
results of the group frontier, the central region recorded a higher WUE = 0.879, which
shows that central provinces perform better in their group and only need 12.1% potential
to achieve an efficient frontier. The average WUE of the western region was 0.84, while the
eastern region recorded a 0.74 score. Meta frontier and group frontier results explain that
although central and western provinces secured lower scores in the Meta frontier, their own
groups’ average WUE was higher. These results discloses two facts: Firstly, gaps between
the efficiency scores in the eastern region are very high, making the average value lower in
groups. For example, the WUE of Beijing and Tianjin was 1.08 and 1.02, respectively; in
contrast, the WUE scores of other eastern provinces such as Fujian, Hainan, and Liaoning
were 0.44, 0.36, and 0.43, respectively. This indicates an enormous efficiency gap, which
is why group efficiency declines. It also sheds light on the fact that not all the eastern
provinces display higher WUE scores. Secondly, the WUE in central and western regions
almost perform equally as there are not huge efficiency gaps between the provinces, which
increases their group frontier efficiency. Our conclusion is backed by Chen et al. [52], who
discuss the possible reasons for efficiency heterogeneity in different regions and its impact
on the efficiency level in the group and Meta frontier.
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Table 3. Group water efficiency, Meta water efficiency, and TGR in 31 provinces and cities in China.

Province GWE MWE TGR

Mean S.D Mean S.D Mean S.D

Anhui 0.908 0.1744 0.377 0.0411 0.435 0.1228
Beijing 1.083 0.2551 1.083 0.2551 1 0
Fujian 0.44 0.046 0.44 0.046 1 0
Gansu 0.911 0.1604 0.41 0.0723 0.463 0.1091
Guangdong 0.904 0.1825 0.837 0.1985 0.933 0.1436
Guangxi 0.742 0.2268 0.356 0.0437 0.518 0.1473
Guizhou 0.718 0.201 0.337 0.0676 0.495 0.1258
Hainan 0.358 0.0395 0.358 0.0395 1 0
Hebei 0.619 0.176 0.616 0.1673 0.998 0.0097
Henan 0.649 0.0284 0.322 0.0513 0.497 0.0795
Heilongjiang 0.962 0.2499 0.5 0.2509 0.503 0.1528
Hubei 0.966 0.1642 0.399 0.0418 0.428 0.1006
Hunan 1.151 0.107 0.446 0.0447 0.393 0.0651
Jilin 0.884 0.2746 0.329 0.0784 0.39 0.0855
Jiangsu 0.7 0.1022 0.7 0.1022 1 0
Jiangxi 0.793 0.2032 0.346 0.0364 0.462 0.1259
Liaoning 0.432 0.0928 0.432 0.0928 1 0
Inner Mongolia 1.184 0.0776 0.644 0.2787 0.534 0.2078
Ningxia 0.413 0.0324 0.223 0.0375 0.542 0.0901
Qinghai 0.389 0.0659 0.216 0.0612 0.55 0.1139
Shandong 0.736 0.2141 0.735 0.2135 1 0.0012
Shanxi 0.721 0.1662 0.348 0.0702 0.49 0.0829
Shaanxi 1.49 0.045 1.02 0.1311 0.685 0.087
Shanghai 1.238 0.1853 1.236 0.1854 0.999 0.0055
Sichuan 1.015 0.0688 0.397 0.0401 0.393 0.0486
Tianjin 1.025 0.3383 1.012 0.331 0.99 0.0111
Tibet 0.944 0.2812 0.43 0.3236 0.509 0.349
Xinjiang 0.651 0.2091 0.302 0.064 0.483 0.1037
Yunnan 0.601 0.2029 0.346 0.0916 0.591 0.0935
Zhejiang 0.558 0.082 0.558 0.082 1 0
Chongqing 0.973 0.1878 0.408 0.0766 0.426 0.0638

The technology gap ratio (TGR) is an indicator explaining the production technology
gaps between different regions. Figure 4 shows the average TGR of China’s eastern, central,
and western regions from 2006 to 2020. The TGR of water resources utilization in the
eastern region is far greater than that in the western and central regions; during the entire
sample period, the technology gap ratio in the east was maintained near 1. The eastern
provinces, therefore, possess the most advanced water resources usage technology. As the
initiator and earliest adopter of modern water use technology, the east holds China’s most
advanced water resources development and management system. The fact that eastern
provinces perform well under the Meta frontier outlined above supports this point. The
technology gap ratio in the west was 0.52, which lagged behind that in the east but was
superior to that of the central region (0.45). Another bunch of studies endorsed our findings
of technology gaps in different regions of China [53–55]. It is suggested that the central and
western regions develop through R&D or acquire advanced water conversion technologies
from eastern regions to narrow down their TGR. Otherwise, the water resources in the
central and western regions will face more scarcity, and sewage will be discharged into the
water reservoirs, contaminating the underground water resources and ultimately affecting
humans and other living species. Technological development can make water usage more
efficient in domestic, industrial, and agricultural sectors. Similar recommendations were
made to improve the WUE through modern technological development in different studies
globally [56–58].
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Figure 4. Technology gap ratio between three different Chinese regions (2006–2020).

5.3. Malmquist–Luenberger Index Results

We analyzed the total factor water productivity changes in various cities, provinces,
and regions using the Malmquist–Luenberger index. Figure 5 indicates that the average
value of the MLI (2006–2020) was 1.13, representing an increase of 12.57% over the study
period. Further decomposing the MLI into TC and EC reveals that the MLI changes were
mainly determined by technological change. The average value of technical change was
1.1651, which indicates that technological progress has improved by 16.50%; however, the
average value of efficiency change EC was 0.98, which indicates that efficiency change has
decreased by 2.12%. It further demonstrates the MLI, EC, and TC trends during the study
period. These results show that although China’s water productivity improved during this
period, the main determinant is TC, as EC is below 1, indicating a decline. Therefore, on the
national level, the Chinese government needs to improve the technical efficiency in water
conversion to further enhance productivity growth. Efficient operational and management
practices and inputs (water, labor, capital) reduction and eliminating undesirable outputs
could help achieve the desired targets. The importance of EC in the growth of MLI and
recommendations and suggestions to increase efficiency change in different regions was
further discussed in many research studies [59–61].

Further, to explain the water policy on water productivity change, we divide the
results of MLI into two time chunks. The MLI score for 2006–2011 was 1.16, showing 16.4%
growth, while the 2012–2020 MLI score was 1.1045, showing 10.45% growth. These results
revealed that MLI declined after water policy implementation. The main culprit in this
decline is EC, which decreased from 0.99 to 0.97 in two periods. Inefficient management
practices, a wastage of input resources, and a decline in output are the potential causes
of efficiency decline. Similar kinds of reasons to improve the efficiency change in water
utilization of different sectors of an economy were discussed in different studies [62,63].

We compared the regional MLI of eastern, central, and western China from 2006 to
2020. An evaluation of water resources utilization efficiency and the technological level in
various regions of China would assist in establishing policies for water resources usage
and pollutant treatment. Table 4 shows the mean MLI of the three regions in China over
the study period. The western region was the best-performing region, with an average MLI
score of 1.15. The eastern and central regions had ML scores of 1.12 and 1.10, respectively. In
addition, the three regions all had adequate technological growth rates. The western region
had the highest technological growth of 1.19, followed by the eastern region at 1.16 and,
finally, the central region at 1.13. These results clearly show that during the study period, the
average growth rate of technology in the western provinces of China was 19.35%, taking the
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lead. The eastern and central regions also showed technological growth, with increases of
16% and 13%, respectively. The average efficiency change (EC) score of the eastern, western,
and central regions (0.98, 0.98, and 0.97) was below 1, clearly explaining the decline in
EC over the study period. Therefore, we conclude that the growth in MLI is mainly due
to TC in all three regions with different technology levels, while EC declined in all three
regions. Therefore, to further enhance MLI growth, all three regions need to increase their
EC by increasing efficiency through best management practices and operational strategies
in the water conversion process. Our results are backed by studies that elaborate on
the importance of EC in MLI growth [64,65]. Beijing, Jiangsu, Shanghai, Shaanxi, and
Chongqing are the only five provinces in all three regions whose EC is greater than 1.
It indicates that these administrative units grew in technical efficiency; therefore, their
policies and operational strategies are the benchmarks for all other provinces if they want
to improve their EC. Mainly due to technological progress, the output of water resources
utilization has improved. In contrast, water resources productivity has declined due to the
overall decline in technical efficiency. Therefore, we suggest all three regions improve water
productivity through technological innovation and management efficiency. The central
region needs to formulate and implement policies to reduce regional differences. Different
studies had similar results, which stress narrowing down the regional heterogeneity to
increase the MLI [66–68].
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in Chinese provinces (2006–2020).

5.4. Mann–Whitney U and Kruskal–Wallis Test Results

To further strengthen the results, the Mann–Whitney U test of independent samples
was applied to find the significant statistical difference between the average WUE of
two time periods (2006–2011 and 2012–2020). The results of Table 5 and Figure 6 show
that the significance value of 0.003 is less than 0.050; therefore, we reject the first null
hypothesis, which states that the distribution of the average WUE is identical for both
periods (2006–2011 and 2012–2020). It proves that the mean WUE declines after water
policy implementation and significantly differs from the mean WUE value before the policy
announcement. Further studies conclude that water usage efficiency in China decreased
over the study period [69,70].
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Table 4. Average MLI, EC, and TC in three different regions of China (2006–2020).

Region Province MLI EC TC.

Central Anhui 1.1097 0.9899 1.125
Central Henan 1.079 0.9656 1.1212
Central Heilongjiang 1.0768 0.9096 1.1938
Central Hubei 1.1235 0.9886 1.1396
Central Hunan 1.1153 0.9843 1.1404
Central Jilin 1.1096 0.9758 1.1324
Central Jiangxi 1.0792 0.9895 1.0951
Central Shanxi 1.0944 0.9759 1.1255

Ave. Central 1.0984 0.9724 1.1341

East Beijing 1.1214 1.0573 1.1527
East Fujian 1.1317 0.996 1.1438
East Guangdong 1.0996 0.9548 1.1554
East Hainan 1.1045 0.9825 1.1364
East Hebei 1.1633 0.9879 1.1812
East Jiangsu 1.1927 1.0012 1.2098
East Liaoning 1.0793 0.9753 1.116
East Shandong 1.111 0.937 1.2029
East Shanghai 1.1063 1.0223 1.084
East Tianjin 1.0715 0.9409 1.1734
East Zhejiang 1.1313 0.9724 1.1689

Ave. East 1.1193 0.9843 1.1568

West Gansu 1.1218 0.9689 1.1683
West Guangxi 1.1167 0.9909 1.1255
West Guizhou 1.1501 0.9891 1.1654
West Inner Mongolia 1.1725 0.921 1.2896
West Ningxia 1.0947 0.9934 1.094
West Qinghai 1.0782 0.9935 1.091
West Shaanxi 1.2182 1.0206 1.2287
West Sichuan 1.1155 0.9927 1.1302
West Tibet 1.359 0.9064 1.5836
West Xinjiang 1.0806 0.962 1.1245
West Yunnan 1.1464 0.9787 1.1823
West Chongqing 1.1439 1.0182 1.1384

Ave. West 1.1498 0.9779 1.1935

Table 5. The Mann–Whitney U table to indicate significant statistical differences between the WUE
and productivity results for two time periods (2006–2011 and 2012–2020).

Hypothesis Test Summary

Null Hypothesis Test Sig. Decision

1 The distribution of Avg. WUE is identical for
both time periods.

Independent-Samples
Mann–Whitney U Test 0.003 a Reject the null hypothesis.

2 The distribution of Avg. MLI is identical for
both time periods.

Independent-Samples
Mann–Whitney U Test 0.066 a Retain the null hypothesis.

3 The distribution of Avg. TC is identical for both
time periods.

Independent-Samples
Mann–Whitney U Test 0.234 a Retain the null hypothesis

4 The distribution of Avg. EC is identical for both
time periods.

Independent-Samples
Mann–Whitney U Test 0.278 a Retain the null hypothesis

a Asymptotic significances are displayed. The significance level is 0.050.
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To assess if a statistically significant difference exists between the average MLI before
and after the 2011 water policy, we divided the time into two chunks and applied the
second hypothesis. The distribution of Avg. MLI results show that the significance value
of 0.066 is greater than 0.050; therefore, we retain our second hypothesis and conclude
that although there was a gradual decline after 2011, no significant difference was found
between the MLI of the two periods (2006–2011 and 2012–2020). It shows that although
there was a deterioration in MLI, on average, no significant difference was found over the
study period. A similar conclusion was argued in recent studies about the MLI change in
Chinese water usage efficiency [71,72].
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There are two determinants for the change in MLI (EC and TC). Therefore, we have
developed third and fourth hypotheses to test the significant difference between technology
change and efficiency change in the two time periods. The results in Table 5 and Figure 6
show no significant difference between the levels of technological change in the two
time periods. Further, efficiency has not changed significantly during this period, as the
significance values are greater than 0.50, so we retain the third and fourth null hypothesis
and conclude that the mean EC and TC for the two periods does not show any statistically
significant difference. Slow technological and efficiency change was also found in recent
studies evaluating water utilization in different sectors of the Chinese economy [73,74].

Results for the three different Chinese regions demonstrate that WUE, MLI, TC, and
EC of the east, central, and west are diverse and at different levels, as water usage efficiency,
technology, and MLI is higher in the eastern region. Therefore, to strengthen our results’
validity and for robustness analysis, we applied the Kruskal–Wallis test to gauge the
statistically significant differences among WUE, MLI, TC, and EC in all three regions of
China. Table 6 and Figure 7 show the results of the Kruskal–Wallis test. As the significance
value 0.02 is less than 0.050, we reject our fifth null hypothesis that the distribution of Avg.
WUE is the same for three different regions of China. Furthermore, we conclude that water
usage efficiency is significantly different among the three regions of China. Similarly, the
significance values of the sixth and seventh hypotheses are below the significance level of
0.050. Hence, we reject our null hypothesis stating that the distribution of the Avg. MLI
change and TC are the same for three different regions of China. This proves that water
productivity change and technology change are significantly different for the three regions
of China. Average WUE, MLI, and TC are different in the three regions of China and were
also proved by researchers in different periods [75,76]. However, our last hypothesis, that
the distribution of the Avg. Efficiency change is the same for the three regions of China,
was not rejected as the significance value is greater than 0.050. Hence, we conclude that EC
in all three regions is not significantly different.

Table 6. The Kruskal–Wallis test indicates the significant statistical difference between WUE and
productivity results for the three regions of China.

Hypothesis Test Summary

Null Hypothesis Test Sig. Decision

1 The distribution of Avg. WUE is identical
across China’s three distinct regions.

Independent-Samples
Kruskal–Wallis Test 0.002 Reject the null hypothesis.

2 The distribution of Avg. MI change is identical
across China’s three distinct regions.

Independent-Samples
Kruskal–Wallis Test 0.000 Reject the null hypothesis

3 The distribution of Avg. Technology is identical
across China’s three distinct regions.

Independent-Samples
Kruskal–Wallis Test 0.007 Reject the null hypothesis

4 The distribution of Avg. Efficiency change is
identical across China’s three distinct regions.

Independent-Samples
Kruskal–Wallis Test 0.350 Retain the null hypothesis

Asymptotic significances are displayed. The significance level is 0.050.

If we describe the WUE results of each region in detail, the eastern region is much
higher than the central and western regions. The main reason for the low efficiency of the
central and western regions is the excessive usage of inputs, including water resources,
capital, and labor. A further discharge of unprocessed sewage and technological gaps are
also potential causes. Sun et al. [77] also devised similar recommendations to improve
WUE and technological gaps in different regions of China. To improve the MLI, TC and
EC are the main determinants. The western and central regions’ MLI can be enhanced by
upgrading their technological infrastructure and improving the technical efficiency in the
conversion processes.
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6. Conclusions and Recommendations

This article examined the impact of the Chinese government’s Three Red Lines water
policy on water usage efficiency, technology heterogeneity, and the productivity of water
resources utilization in China, taking sewage discharge into account. Total water con-
sumption, labor, and capital were chosen as input indices, and regional GDP and sewage
emissions were selected as output indices. Firstly, the WUE values of all provinces were
estimated using the Super-SBM-DEA model to determine efficiency changes across the
study period (2006–2020) and among the three regions. The regional variation in production
technology of the three Chinese regions was measured through Meta-frontier analysis. The
ML productivity index and its components (TE and EC) were gauged using MLI to measure
each province’s productivity and technical efficiency changes. Finally, Kruskal–Wallis and
Mann–Whitney U tests were used to gauge the statistical difference in mean WUE, MLI,
TE, and EC among pre- (2006–2011) and post (2012–2020)-water policy and three different
regions. The main conclusions of this study are as follows:

(1) Research shows that the mean WUE (2006–2020) in all Chinese provinces was 0.52,
with an improvement potential of 48%. Compared with other provinces in China, Shanghai
had the highest average WUE value of 1.2. In addition, there were three provinces with
an average WUE greater than 1, namely, Beijing (1.08), Shaanxi (1.02), and Tianjin (1.01).
After the announcement and implementation of the “Three Red Lines” water policy in
2011, the annual average WUE showed an upward trend from 2012 to 2015. However,
afterwards, a gradual and continued decline in WUE was witnessed. The average WUE
before the water policy (2006–2011) was 0.5787. The mean efficiency score after the water
policy implementation was 0.48. It demonstrates that, on average, there was more than
a 9% decline in water usage efficiency level after the implementation of the water policy.
Results revealed that the mission to increase water efficiency was not achieved in relation
to its targets. In addition, Chinese provinces could not use water resources efficiently with
sustainable development. (2) Meta-frontier analysis proved that there are giant production
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technology gaps in the three regions of China. The eastern region recorded the highest
water usage efficiency in the Meta frontier with a value of 0.74. It demonstrates that the
eastern region is more efficient in water usage compared to the central (0.38) and western
(0.42) regions. Eastern provinces, such as Beijing, Shanghai, Shaanxi, and Tianjin, have
demonstrated higher efficiency within the group and national level; therefore, they are
announced to be the benchmark for inefficient provinces. The TGR in the eastern region
was far greater than that in the western and central regions; during the entire sample period,
the technology gap ratio in the east was maintained near 1. This proved that the eastern
provinces have the most advanced water resources utilization technology. The technology
gap ratio in the west was 0.5158, which lagged behind that in the east but was superior to
the central region (0.45). (3) The average MLI (2006–2020) was 1.12, indicating that MLI
has increased by 12.57% over the study period. Further decomposing the MLI into TC and
EC revealed that the MLI changes were mainly determined by technological change. The
average value of technical change was 1.1651, which indicates that technological progress
has improved by 16.50%; however, the average value of efficiency change (EC) was 0.98,
indicating that the efficiency change has declined by 2.12% over the period. The MLI score
for 2006–2011 was 1.16, while the MLI Score for the period (2012–2020) was 1.10, showing a
small decline after water policy implementation. EC was the main culprit in MLI’s decline
over the period. The western region was the best-performing region, with an average
MLI score of 1.1498. The remaining eastern and central regions had ML scores of 1.12 and
1.10, respectively. TC was the main determinant in the growth of all three regions. (4) A
statistically significant difference in mean WUE was found among pre- and post-water
policy announcement and implantation. For MLI, TC, and EC, no significant difference
was found for both periods. In contrast, the mean WUE, MLI, and TC among the three
different regions are significantly different, while the mean EC is the same across three
different regions.

Based on these findings, the following policy recommendations can be made. At
present, China’s agricultural production is a major user of water resources. Therefore,
fostering innovation in agricultural production methods and technology, on the one hand,
and raising public knowledge about the importance of water conservation could increase
water usage efficiency. In particular, the following actions are recommended:

(i) Developing regionally unique water use and water conservation strategies. We
cannot analyze GDP growth in isolation while neglecting the negative consequences of bad
output on production. Therefore, the industrial structure must be reformed, firms with
high pollution and low value-added manufacturing must be punished, and businesses with
low water consumption and high value-added production must be encouraged for further
investments. (ii) Enhancing investment in education, science, and technology. Specifically,
new water conservation courses should be established to increase citizens’ water conserva-
tion awareness. Increase science and technology contributions to modernize technologies,
improve water conservation, and use efficiencies. (iii) The Chinese government should
strictly enforce sewage treatment policies on industrial units to reduce polluted water dis-
charge. The western and central regions should develop or acquire production technologies
to narrow their TGR. Modern irrigation technologies should be developed and applied to
secure excessive water utilization in agriculture. (iv) Water resources productivity could
be further enhanced through EC development. Therefore, provincial governments need
to improve their operational strategies and increase technical efficiency to reduce inputs
such as water consumption, labor cost, and capital with sustainable economic growth
and least emissions. Sewage data for the agriculture sector are missing, which is a study
limitation. In the future, if sewage data from the agriculture sector is available, the water
usage efficiency and productivity change of the agriculture sector can be gauged.
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Appendix A

Table A1. Regional distribution in China.

East Central West

Beijing Anhui Gansu
Fujian Henan Guangxi

Guangdong Heilongjiang Guizhou
Hainan Hubei Inner Mongolia
Hebei Hunan Ningxia

Jiangsu Jilin Qinghai
Liaoning Jiangxi Shaanxi

Shandong Shanxi Sichuan
Shanghai Tibet

Tianjin Xinjiang
Zhejiang Yunnan

Chongqing

Table A2. Meta frontier of all three regions over the period 2006–2020.

Year East Central West

2006 0.7959 0.4784 0.5273
2007 0.8019 0.4668 0.4988
2008 0.7876 0.4159 0.5256
2009 0.7857 0.3894 0.4661
2010 0.8414 0.4499 0.4328
2011 0.7511 0.3989 0.4203
2012 0.7424 0.3949 0.4457
2013 0.7475 0.3949 0.4395
2014 0.7341 0.3841 0.438
2015 0.8017 0.3698 0.4085
2016 0.7286 0.3906 0.4113
2017 0.7342 0.3899 0.3987
2018 0.6167 0.2893 0.3247
2019 0.4999 0.2626 0.3088
2020 0.5504 0.274 0.3164

Avg. 0.7279 0.3833 0.4242

http://www.stats.gov.cn/tjsj/ndsj/
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Table A3. Group frontier of all three regions over the period 2006–2020.

Year East Central West

2006 0.7968 0.7183 0.8995
2007 0.8022 0.7976 0.9073
2008 0.7876 0.8146 0.88
2009 0.7879 0.9444 0.852
2010 0.8461 0.9317 0.8688
2011 0.7557 0.9839 0.8015
2012 0.7453 0.985 0.7634
2013 0.7502 0.9618 0.7978
2014 0.7367 0.9535 0.7799
2015 0.8042 0.9399 0.7763
2016 0.7299 0.9267 0.7745
2017 0.7543 0.8924 0.8454
2018 0.6488 0.7938 0.8609
2019 0.5392 0.768 0.8788
2020 0.5504 0.7735 0.8552

Avg. 0.7357 0.879 0.8361

Int. J. Environ. Res. Public Health 2022, 19, x  21 of 24 
 

 

Avg. 0.7279 0.3833 0.4242 

Table A3. Group frontier of all three regions over the period 2006–2020. 

Year East Central West 
2006 0.7968 0.7183 0.8995 
2007 0.8022 0.7976 0.9073 
2008 0.7876 0.8146 0.88 
2009 0.7879 0.9444 0.852 
2010 0.8461 0.9317 0.8688 
2011 0.7557 0.9839 0.8015 
2012 0.7453 0.985 0.7634 
2013 0.7502 0.9618 0.7978 
2014 0.7367 0.9535 0.7799 
2015 0.8042 0.9399 0.7763 
2016 0.7299 0.9267 0.7745 
2017 0.7543 0.8924 0.8454 
2018 0.6488 0.7938 0.8609 
2019 0.5392 0.768 0.8788 
2020 0.5504 0.7735 0.8552 
Avg. 0.7357 0.879 0.8361 

 
Figure A1. Average WUE across 31 Chinese provinces (2006–2020). 

References 
1. Wu, J. Challenges for Safe and Healthy Drinking Water in China. Curr. Environ. Health Rep. 2020, 7, 292–302. 

https://doi.org/10.1007/s40572-020-00274-5. 
2. Jiang, Y. Economics of Water Scarcity in China. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: 

Oxford, UK, 2020. https://doi.org/10.1093/acrefore/9780199389414.013.485. 
3. Li, Y.; Shen, J.; Lu, L.; Luo, Y.; Wang, L.; Shen, M. Water environmental stress, rebound effect, and economic growth of China’s 

textile industry. PeerJ 2018, 6, e5112. https://doi.org/10.7717/peerj.5112. 
4. Yuan, B.; Li, C.; Xiong, X. Innovation and environmental total factor productivity in China: The moderating roles of economic 

policy uncertainty and marketization process. Environ. Sci. Pollut. Res. 2021, 28, 9558–9581. https://doi.org/10.1007/s11356-020-
11426-3. 

5. China Water Use, Resources and Precipitation—Worldometer. Available online: https://www.worldometers.info/water/china-
water/ (accessed on 9 October 2022). 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

An
hu

i
Be

iji
ng

Fu
jia
n

Ga
ns
u

Gu
an

gd
on

g
Gu

an
gx
i

Gu
izh

ou
Ha

in
an

He
be

i
He

na
n

He
ilo

ng
jia
ng

Hu
be

i
Hu

na
n

Jil
in

Jia
ng

su
Jia

ng
xi

Lia
on

in
g

In
ne

rM
on

go
lia

Ni
ng

xia
Q
in
gh

ai
Sh

an
do

ng
Sh

an
xi

Sh
aa
nx
i

Sh
an

gh
ai

Si
ch
ua

n
Ti
an

jin
Ti
be

t
Xi
nj
ia
ng

Yu
nn

an
Zh

ej
ia
ng

Ch
on

gq
in
g

Ave. Water Usage Efficiency

Figure A1. Average WUE across 31 Chinese provinces (2006–2020).

References
1. Wu, J. Challenges for Safe and Healthy Drinking Water in China. Curr. Environ. Health Rep. 2020, 7, 292–302. [CrossRef] [PubMed]
2. Jiang, Y. Economics of Water Scarcity in China. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press:

Oxford, UK, 2020. [CrossRef]
3. Li, Y.; Shen, J.; Lu, L.; Luo, Y.; Wang, L.; Shen, M. Water environmental stress, rebound effect, and economic growth of China’s

textile industry. PeerJ 2018, 6, e5112. [CrossRef] [PubMed]
4. Yuan, B.; Li, C.; Xiong, X. Innovation and environmental total factor productivity in China: The moderating roles of economic

policy uncertainty and marketization process. Environ. Sci. Pollut. Res. 2021, 28, 9558–9581. [CrossRef] [PubMed]
5. China Water Use, Resources and Precipitation—Worldometer. Available online: https://www.worldometers.info/water/china-

water/ (accessed on 9 October 2022).
6. He, C.; Harden, C.P.; Liu, Y. Comparison of water resources management between China and the United States. Geogr. Sustain.

2020, 1, 98–108. [CrossRef]
7. China Water Resources Bulletin 2011—Hydropower Knowledge Network. China Water Resources and Hydropower Press.

Available online: http://waterpub.com.cn/shop/detail_523458.html (accessed on 9 October 2022).
8. Me-Nsope, N.; Larkins, M. Regional and Sectoral Impacts of Water Redline Policy in China: Results from an Integrated Regional

CGE Water Model. J. Gend. Agric. Food Secur. 2016, 1, 1–22.

http://doi.org/10.1007/s40572-020-00274-5
http://www.ncbi.nlm.nih.gov/pubmed/32350777
http://doi.org/10.1093/acrefore/9780199389414.013.485
http://doi.org/10.7717/peerj.5112
http://www.ncbi.nlm.nih.gov/pubmed/30042880
http://doi.org/10.1007/s11356-020-11426-3
http://www.ncbi.nlm.nih.gov/pubmed/33146825
https://www.worldometers.info/water/china-water/
https://www.worldometers.info/water/china-water/
http://doi.org/10.1016/j.geosus.2020.04.002
http://waterpub.com.cn/shop/detail_523458.html


Int. J. Environ. Res. Public Health 2022, 19, 16459 21 of 23

9. Emrouznejad, A.; Yang, G.L. A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Econ. Plan.
Sci. 2018, 61, 4–8. [CrossRef]

10. Shah, W.U.H.; Hao, G.; Yasmeen, R.; Kamal, M.A.; Khan, A.; Padda, I.U.H. Unraveling the role of China’s OFDI, institutional
difference and B&R policy on energy efficiency: A meta-frontier super-SBM approach. Environ. Sci. Pollut. Res. 2022, 29,
56454–56472. [CrossRef]

11. Xu, T.; You, J.; Li, H.; Shao, L. Energy efficiency evaluation based on data envelopment analysis: A literature review. Energies
2020, 13, 3548. [CrossRef]

12. di Liu, K.; Yang, G.L.; Yang, D.G. Industrial water-use efficiency in China: Regional heterogeneity and incentives identification. J.
Clean. Prod. 2020, 258, 120828. [CrossRef]

13. Wang, J.F.; Zhang, T.L.; Fu, B.J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [CrossRef]
14. Azad, M.A.S.; Ancev, T.; Hernández-Sancho, F. Efficient Water Use for Sustainable Irrigation Industry. Water Resour. Manag. 2015,

29, 1683–1696. [CrossRef]
15. Amit Kumar, T.K.T.; Mishra, S.; Bakshi, S.; Upadhyay, P. Response of eutrophication and water quality drivers on greenhouse gas

emissions in lakes of China: A critical analysis. Ecohydrology 2022, e2483. [CrossRef]
16. Kumar, A.; Palmate, S.S.; Shukla, R. Water Quality Modelling, Monitoring, and Mitigation. Appl. Sci. 2022, 12, 11403. [CrossRef]
17. Hu, J.L.; Wang, S.C.; Yeh, F.Y. Total-factor water efficiency of regions in China. Resour. Policy 2006, 31, 217–230. [CrossRef]
18. Rahman, M.T.; Nielsen, R.; Khan, M.A. Agglomeration externalities and technical efficiency: An empirical application to the

pond aquaculture of Pangas and Tilapia in Bangladesh. Aquac. Econ. Manag. 2019, 23, 158–187. [CrossRef]
19. Xu, H.; Yang, R.; Song, J. Agricultural water use efficiency and rebound effect: A study for China. Int. J. Environ. Res. Public

Health 2021, 18, 7151. [CrossRef]
20. Veettil, P.C.; Speelman, S.; van Huylenbroeck, G. Estimating the Impact of Water Pricing on Water Use Efficiency in Semi-arid

Cropping System: An Application of Probabilistically Constrained Non-parametric Efficiency Analysis. Water Resour. Manag.
2013, 27, 55–73. [CrossRef]

21. Guerrini, A.; Romano, G.; Campedelli, B. Economies of Scale, Scope, and Density in the Italian Water Sector: A Two-Stage Data
Envelopment Analysis Approach. Water Resour. Manag. 2013, 27, 4559–4578. [CrossRef]

22. Manjunatha, A.V.; Speelman, S.; Chandrakanth, M.G.; van Huylenbroeck, G. Impact of groundwater markets in India on water
use efficiency: A data envelopment analysis approach. J. Environ. Manag. 2011, 92, 2924–2929. [CrossRef]

23. Lombardi, G.V.; Stefani, G.; Paci, A.; Becagli, C.; Miliacca, M.; Gastaldi, M.; Giannetti, B.F. CMVB Almeida, The sustainability of
the Italian water sector: An empirical analysis by DEA. J. Clean. Prod. 2019, 227, 1035–1043. [CrossRef]

24. Zhao, F.; Wu, Y.; Ma, S.; Lei, X.; Liao, W. Increased Water Use Efficiency in China and Its Drivers During 2000–2016. Ecosystems
2022, 1–17. [CrossRef]

25. Pan, Z.; Wang, Y.; Zhou, Y.; Wang, Y. Analysis of the water use efficiency using super-efficiency data envelopment analysis. Appl.
Water Sci. 2020, 10, 139. [CrossRef]

26. Deng, G.; Li, L.; Song, Y. Provincial water use efficiency measurement and factor analysis in China: Based on SBM-DEA model.
Ecol. Indic. 2016, 69, 12–18. [CrossRef]

27. Molinos-Senante, M.; Maziotis, A. Drivers of productivity change in water companies: An empirical approach for England and
Wales. Int. J. Water Resour. Dev. 2020, 36, 972–991. [CrossRef]

28. Zhong, S.; Li, A.; Wu, J. The total factor productivity index of freshwater aquaculture in China: Based on regional heterogeneity.
Environ. Sci. Pollut. Res. 2022, 29, 15664–15680. [CrossRef]

29. Ji, J.; Wang, P. Research on China’s aquaculture efficiency evaluation and influencing factors with undesirable outputs. J. Ocean
Univ. China 2015, 14, 569–574. [CrossRef]

30. Molinos-Senante, M.; Maziotis, A.; Sala-Garrido, R. Assessment of the Total Factor Productivity Change in the English and Welsh
Water Industry: A Färe-Primont Productivity Index Approach. Water Resour. Manag. 2017, 31, 2389–2405. [CrossRef]

31. Maziotis, A.; Sala-Garrido, R.; Mocholi-Arce, M.; Molinos-Senante, M. Total factor productivity assessment of water and sanitation
services: An empirical application including quality of service factors. Environ. Sci. Pollut. Res. 2021, 28, 37818–37829. [CrossRef]

32. Oulmane, A.; Chebil, A.; Frija, A.; Benmehaia, M.A. Water-Saving Technologies and Total Factor Productivity Growth in Small
Horticultural Farms in Algeria. Agric. Res. 2020, 9, 585–591. [CrossRef]

33. Luo, Y.; Yin, L.; Qin, Y.; Wang, Z.; Gong, Y. Evaluating water use efficiency in China’s western provinces based on a slacks-based
measure (SBM)-undesirable window model and a malmquist productivity index. Symmetry 2018, 10, 301. [CrossRef]

34. Koehuan, J.E.; Suharto, B.; Djoyowasito, G.; Susanawati, L.D. Water total factor productivity growth of rice and corn crops using
data envelopment analysis—Malmquist index (West timor, indonesia). Agric. Eng. Int. CIGR J. 2020, 22, 20–30.

35. Goh, K.H.; See, K.F. Measuring the productivity growth of Malaysia’s water sector: Implications for regulatory reform. Util.
Policy 2021, 71, 101198. [CrossRef]

36. Li, T.; Shi, Z.; Han, D. Research on the impact of energy technology innovation on total factor ecological efficiency. Environ. Sci.
Pollut. Res. 2022, 29, 37096–37114. [CrossRef] [PubMed]

37. Song, M.; Peng, L.; Shang, Y.; Zhao, X. Green technology progress and total factor productivity of resource-based enterprises: A
perspective of technical compensation of environmental regulation. Technol. Forecast. Soc. Chang. 2022, 174, 121276. [CrossRef]

38. Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 204, 694–697. [CrossRef]

http://doi.org/10.1016/j.seps.2017.01.008
http://doi.org/10.1007/s11356-022-19729-3
http://doi.org/10.3390/en13143548
http://doi.org/10.1016/j.jclepro.2020.120828
http://doi.org/10.1016/j.ecolind.2016.02.052
http://doi.org/10.1007/s11269-014-0904-8
http://doi.org/10.1002/eco.2483
http://doi.org/10.3390/app122211403
http://doi.org/10.1016/j.resourpol.2007.02.001
http://doi.org/10.1080/13657305.2018.1531948
http://doi.org/10.3390/ijerph18137151
http://doi.org/10.1007/s11269-012-0155-5
http://doi.org/10.1007/s11269-013-0426-9
http://doi.org/10.1016/j.jenvman.2011.07.001
http://doi.org/10.1016/j.jclepro.2019.04.283
http://doi.org/10.1007/s10021-021-00727-4
http://doi.org/10.1007/s13201-020-01223-1
http://doi.org/10.1016/j.ecolind.2016.03.052
http://doi.org/10.1080/07900627.2019.1702000
http://doi.org/10.1007/s11356-021-16504-8
http://doi.org/10.1007/s11802-015-2679-9
http://doi.org/10.1007/s11269-016-1346-2
http://doi.org/10.1007/s11356-021-13378-8
http://doi.org/10.1007/s40003-019-00446-2
http://doi.org/10.3390/sym10080301
http://doi.org/10.1016/j.jup.2021.101198
http://doi.org/10.1007/s11356-021-18204-9
http://www.ncbi.nlm.nih.gov/pubmed/35032260
http://doi.org/10.1016/j.techfore.2021.121276
http://doi.org/10.1016/S0377-2217(01)00324-1


Int. J. Environ. Res. Public Health 2022, 19, 16459 22 of 23

39. Tone, K. Dealing with Undesirable Outputs in DEA: A Slacks-Based Measure (SBM) Approach; GRIPS Research Report Series; GRIPS:
Tokyo, Japan, 2003.

40. Wang, N.; Chen, J.; Yao, S.; Chang, Y.C. A meta-frontier DEA approach to efficiency comparison of carbon reduction technologies
on project level. Renew. Sustain. Energy Rev. 2018, 82, 2606–2612. [CrossRef]

41. Hang, Y.; Sun, J.; Wang, Q.; Zhao, Z.; Wang, Y. Measuring energy inefficiency with undesirable outputs and technology
heterogeneity in Chinese cities. Econ. Model. 2015, 49, 46–52. [CrossRef]

42. Chiu, C.R.; Lu, K.H.; Tsang, S.S.; Chen, Y.F. Decomposition of meta-frontier inefficiency in the two-stage network directional
distance function with quasi-fixed inputs. Int. Trans. Oper. Res. 2013, 20, 595–611. [CrossRef]

43. Chung, Y.H.; Färe, R.; Grosskopf, S. Productivity and undesirable outputs: A directional distance function approach. J. Environ.
Manag. 1997, 51, 229–240. [CrossRef]

44. Mann, H.B.; Whitney, D.R. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. Ann. Math.
Stat. 1947, 18, 50–60. [CrossRef]

45. Wilcoxon, F. Individual Comparisons by Ranking Methods. Biom. Bull. 1945, 1, 80–83. [CrossRef]
46. Theodorsson-Norheim, E. Kruskal-Wallis test: BASIC computer program to perform non-parametric one-way analysis of variance

and multiple comparisons on ranks of several independent samples. Comput. Methods Programs Biomed. 1986, 23, 57–62. [CrossRef]
[PubMed]

47. Peyrache, A.; Rose, C.; Sicilia, G. Variable selection in Data Envelopment Analysis. Eur. J. Oper. Res. 2020, 282, 644–659. [CrossRef]
48. Tone, K. Dealing with undesirable outputs in DEA: A Slacks-Based Measure (SBM) approach. Oper. Res. Soc. Jpn. 2004, 44–45.
49. Byrnes, J.; Crase, L.; Dollery, B.; Villano, R. The relative economic efficiency of urban water utilities in regional New South Wales

and Victoria. Resour. Energy Econ. 2010, 32, 439–455. [CrossRef]
50. Ali, M.K.; Klein, K.K. Water Use Efficiency and Productivity of the Irrigation Districts in Southern Alberta. Water Resour. Manag.

2014, 28, 2751–2766. [CrossRef]
51. Linderson, M.L.; Iritz, Z.; Lindroth, A. The effect of water availability on stand-level productivity, transpiration, water use

efficiency and radiation use efficiency of field-grown willow clones. Biomass Bioenergy 2007, 31, 460–468. [CrossRef]
52. Chen, L.; Huang, Y.; Li, M.J.; Wang, Y.M. Meta-frontier analysis using cross-efficiency method for performance evaluation. Eur. J.

Oper. Res. 2020, 280, 219–229. [CrossRef]
53. Kang, L.; Wu, C.; Liao, X.; Wang, B. Safety performance and technology heterogeneity in China’s provincial construction industry.

Saf. Sci. 2020, 121, 83–92. [CrossRef]
54. Wang, R.M.; Tian, Z.; Ren, F.R. Energy efficiency in China: Optimization and comparison between hydropower and thermal

power. Energy Sustain. Soc. 2021, 11, 36. [CrossRef]
55. Wang, S.; Wang, H.; Zhang, L.; Dang, J. Provincial carbon emissions efficiency and its influencing factors in China. Sustainability

2019, 11, 2355. [CrossRef]
56. Bwambale, E.; Abagale, F.K.; Anornu, G.K. Smart irrigation monitoring and control strategies for improving water use efficiency

in precision agriculture: A review. Agric. Water Manag. 2022, 260, 107324. [CrossRef]
57. Ding, N.; Liu, J.; Yang, J.; Lu, B. Water footprints of energy sources in China: Exploring options to improve water efficiency. J.

Clean. Prod. 2018, 174, 1021–1031. [CrossRef]
58. Kumar, A.; Mishra, S.; Taxak, A.K.; Pandey, R.; Yu, Z.G. Nature rejuvenation: Long-term (1989–2016) vs short-term memory

approach based appraisal of water quality of the upper part of Ganga River. India. Environ. Technol. Innov. 2020, 20, 101164.
[CrossRef]

59. Zhang, Y.; Li, X.; Song, Y.; Jiang, F. Can green industrial policy improve total factor productivity? Firm-level evidence from China.
Struct. Change Econ. Dyn. 2021, 59, 51–62. [CrossRef]

60. Zhang, H.; Huang, L.; Zhu, Y.; Si, H.; He, X. Does low-carbon city construction improve total factor productivity? Evidence from
a quasi-natural experiment in China. Int. J. Environ. Res. Public Health 2021, 18, 11974. [CrossRef]

61. Fan, H.; Tao, S.; Hashmi, S.H. Does the construction of a water ecological civilization city improve green total factor productivity?
Evidence from a quasi-natural experiment in China. Int. J. Environ. Res. Public Health 2021, 18, 11829. [CrossRef]

62. Manouseli, D.; Kayaga, S.M.; Kalawsky, R. Evaluating the Effectiveness of Residential Water Efficiency Initiatives in England:
Influencing Factors and Policy Implications. Water Resour. Manag. 2019, 33, 2219–2238. [CrossRef]

63. Zaini, F.M.; Kwong, Q.J.; Jack, L.B. Water efficiency in Malaysian commercial buildings: A green initiative and cost–benefit
approach. Int. J. Build. Pathol. Adapt. 2021, 39, 702–719. [CrossRef]

64. Cheng, L.; Song, S.; Xie, Y. Evaluation of Water Resources Utilization Efficiency in Guangdong Province Based on the DEA–
Malmquist Model. Front. Environ. Sci. 2022, 17, 819693. [CrossRef]

65. Song, M.; Wang, R.; Zeng, X. Water resources utilization efficiency and influence factors under environmental restrictions. J. Clean.
Prod. 2018, 184, 611–621. [CrossRef]

66. Lu, W.; Liu, W.; Hou, M.; Deng, Y.; Deng, Y.; Zhou, B.; Zhao, K. Spatial-temporal evolution characteristics and influencing factors
of agriculturalwater use efficiency in northwest China-based on a super-DEA model and a spatial panel econometric model.
Water 2021, 13, 632. [CrossRef]

67. Liu, X.; Han, X.; Zhang, X.; Wang, X.; Yang, L.; Chang, Z.; Liu, H. Using SEBAL Model and HJ Satellite Data to Calculate Regional
Evapotranspiration and Irrigation Water Use Efficiency. J. Irrig. Drain. 2021, 40, 136–144. [CrossRef]

http://doi.org/10.1016/j.rser.2017.09.088
http://doi.org/10.1016/j.econmod.2015.04.001
http://doi.org/10.1111/itor.12008
http://doi.org/10.1006/jema.1997.0146
http://doi.org/10.1214/aoms/1177730491
http://doi.org/10.2307/3001968
http://doi.org/10.1016/0169-2607(86)90081-7
http://www.ncbi.nlm.nih.gov/pubmed/3638187
http://doi.org/10.1016/j.ejor.2019.09.028
http://doi.org/10.1016/j.reseneeco.2009.08.001
http://doi.org/10.1007/s11269-014-0634-y
http://doi.org/10.1016/j.biombioe.2007.01.014
http://doi.org/10.1016/j.ejor.2019.06.053
http://doi.org/10.1016/j.ssci.2019.09.005
http://doi.org/10.1186/s13705-021-00311-7
http://doi.org/10.3390/su11082355
http://doi.org/10.1016/j.agwat.2021.107324
http://doi.org/10.1016/j.jclepro.2017.10.273
http://doi.org/10.1016/j.eti.2020.101164
http://doi.org/10.1016/j.strueco.2021.08.005
http://doi.org/10.3390/ijerph182211974
http://doi.org/10.3390/ijerph182211829
http://doi.org/10.1007/s11269-018-2176-1
http://doi.org/10.1108/IJBPA-09-2020-0080
http://doi.org/10.3389/fenvs.2022.819693
http://doi.org/10.1016/j.jclepro.2018.02.259
http://doi.org/10.3390/w13050632
http://doi.org/10.13522/j.cnki.ggps.2020578


Int. J. Environ. Res. Public Health 2022, 19, 16459 23 of 23

68. Abu-Sharar, T.M.; Al-Karablieh, E.K.; Haddadin, M.J. Role of Virtual Water in Optimizing Water Resources Management in
Jordan. Water Resour. Manag. 2012, 26, 3977–3993. [CrossRef]

69. Xu, R.; Wu, Y.; Wang, G.; Zhang, X.; Wu, W.; Xu, Z. Evaluation of industrial water use efficiency considering pollutant discharge
in China. PLoS ONE 2019, 6, e20592. [CrossRef] [PubMed]

70. Zhang, W.; Du, X.; Huang, A.; Yin, H. Analysis and comprehensive evaluation of water use efficiency in China. Water 2019,
11, 2620. [CrossRef]

71. Liu, Y.; Geng, J.; Zhang, L.; Jiang, X.; Fu, Y.; Lin, L. Analysis of Agricultural Water Use Efficiency in Shandong Province Based on
DEA and Malmquist Model. IOP Conf. Ser. Earth Environ. Sci. 2020, 585, 012090. [CrossRef]

72. Wang, S.; Tian, N.; Dai, Y.; Duan, H. Measurement of Resource Environmental Performance of Crop Planting Water Consumption
Based on Water Footprint and Data Enveloped Analysis. Water Resour. Manag. 2022, 36, 641–658. [CrossRef]

73. Zhou, X.; Xue, Z.; Seydehmet, J. An empirical study on industrial eco-efficiency in arid resource exploitation region of northwest
China. Environ. Sci. Pollut. Res. 2021, 28, 53394–53411. [CrossRef]

74. Yu, K.; Ying, J.; Gong, R.; Chang, Z. Preliminary discussion of agricultural cost effectiveness evaluation with drip irrigation.
Custos E Agronegocio 2021, 17, 251–263.

75. Zhou, Q.; Zhang, Y.; Wu, F. Evaluation of the most proper management scale on water use efficiency and water productivity: A
case study of the Heihe River Basin, China. Agric. Water Manag. 2021, 246, 106671. [CrossRef]

76. Li, C.; Jiang, T.T.; Luan, X.B.; Yin, Y.L.; Wu, P.T.; Wang, Y.B.; Sun, S.K. Determinants of agricultural water demand in China. J.
Clean. Prod. 2021, 292, 126067. [CrossRef]

77. Sun, B.; Yang, X.; Zhang, Y.; Chen, X. Evaluation of water use efficiency of 31 provinces and municipalities in China using
multi-level entropy weight method synthesized indexes and data envelopment analysis. Sustainability 2019, 11, 4556. [CrossRef]

http://doi.org/10.1007/s11269-012-0116-z
http://doi.org/10.1371/journal.pone.0221363
http://www.ncbi.nlm.nih.gov/pubmed/31454367
http://doi.org/10.3390/w11122620
http://doi.org/10.1088/1755-1315/512/1/012090
http://doi.org/10.1007/s11269-021-03045-5
http://doi.org/10.1007/s11356-021-14438-9
http://doi.org/10.1016/j.agwat.2020.106671
http://doi.org/10.1016/j.jclepro.2020.125508
http://doi.org/10.3390/su11174556

	Introduction 
	Literature Review 
	Water Usage Efficiency and Regional Production Technology Heterogeneity 
	Water Usage Total Factor Productivity and Its Determinants 

	Methodology 
	Super-Efficiency SBM Model with Undesirable Outputs 
	DEA Meta-Frontier Model 
	Malmquist–Luenberger Index 
	Mann–Whitney U and Kruskal–Wallis Tests 

	Inputs-Outputs Selection and Data Sources 
	Results and Discussion 
	SBM-DEA Results 
	Meta-Frontier DEA Results 
	Malmquist–Luenberger Index Results 
	Mann–Whitney U and Kruskal–Wallis Test Results 

	Conclusions and Recommendations 
	Appendix A
	References

