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Abstract: Urban rail transit (URT) is a key mode of public transport, which serves for greatest
user demand. Short-term passenger flow prediction aims to improve management validity and
avoid extravagance of public transport resources. In order to anticipate passenger flow for URT,
managing nonlinearity, correlation, and periodicity of data series in a single model is difficult. This
paper offers a short-term passenger flow prediction combination model based on complete ensemble
empirical mode decomposition with adaptive noise (CEEMDAN) and long-short term memory neural
network (LSTM) in order to more accurately anticipate the short-period passenger flow of URT. In
the meantime, the hyperparameters of LSTM were calculated using the improved particle swarm
optimization (IPSO). First, CEEMDAN-IPSO-LSTM model performed the CEEMDAN decomposition
of passenger flow data and obtained uncoupled intrinsic mode functions and a residual sequence
after removing noisy data. Second, we built a CEEMDAN-IPSO-LSTM passenger flow prediction
model for each decomposed component and extracted prediction values. Third, the experimental
results showed that compared with the single LSTM model, CEEMDAN-IPSO-LSTM model reduced
by 40 persons/35 persons, 44 persons/35 persons, 37 persons/31 persons, and 46.89%/35.1% in SD,
RMSE, MAE, and MAPE, and increase by 2.32%/3.63% and 2.19%/1.67% in R and R?, respectively.
This model can reduce the risks of public health security due to excessive crowding of passengers
(especially in the period of COVID-19), as well as reduce the negative impact on the environment
through the optimization of traffic flows, and develop low-carbon transportation.

Keywords: urban rail transit; short-term passenger flow prediction; complete ensemble empirical
mode decomposition with adaptive noise; long-short term memory neural network; improved
particle swarm optimization; combination model; CEEMDAN-IPSO-LSTM

1. Introduction

The influence of human activities on the global climate, characterized by global
warming, has had serious negative impacts on public health. Energy conservation and
carbon reduction have become serious environmental development issues to address.
At the 75th United Nations General Assembly on 22 September 2020, China announced
it would reach a peak in CO, emissions by 2030 and achieve carbon neutrality before
2060 (hereinafter referred to as double carbon goals) [1].

With the continuous improvement of China’s urbanization level and the diversification
of urban transport logistics and travel demand, the transport sector has become the main
body of China’s energy consumption and carbon emissions growth [2]. A key strategy for
lowering urban carbon emissions is the expansion of public transportation [3,4]. Urban rail
transit (hereinafter referred to as URT) is a large-capacity public transport infrastructure
and the backbone of low-carbon transportation in cities. The URT in China has been
rapidly increasing, and its energy consumption and carbon emission reduction pressure
remains high. As of 30 September 2022, 52 mainland Chinese cities have put into operation
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9788.64 km of URT lines, including 7655.32 km of subway, accounting for 78.21% [5].
Passenger flow volume is rapidly growing along with URT’s quick expansion, which
is producing severe congestion in URT systems. Accurately predicting the short-term
flow volume and subsequently carrying out the necessary management procedures are
two ways by which to relieve traffic congestion [6,7]. Travelers can effectively change
their preferred method of transportation, route, or travel dates in advance by properly
forecasting the influx and outflow of each station in a URT, which reduces travel time
and costs [8,9]. Utilizing the prediction data, operators can identify crowded stations.
The relevant passenger control measures can be put in place at stations that are severely
congested to prevent congestion. Moreover, the timetable can be timely optimized so as to
transport more passengers during peak hours according to predictions results.

At present, the research on short-time passenger flow prediction of URT at home
and abroad is mainly conducted through three categories: statistical methods, traditional
machine learning methods, and deep learning methods. Statistical methods are more
sensitive to the linear relationship between variables, but they cannot capture the nonlinear
relationship in the data. Such methods mainly include Kalman Filter model [10,11], ARMA
model [12], and ARIMA model [13-15]. Traditional machine learning methods can better
capture the nonlinear features in time series, and the accuracy for rail transit passenger
flow prediction is higher. Such methods mainly include Support Vector Machine [16,17]
and neural network [18-20]. However, the prediction model using traditional machine
learning methods is prone to over-learning or under-learning problems when dealing with
massive passenger flow data, which affects the accuracy of prediction models [21]. With
the advancement of related theories and technologies, researchers have begun to use deep
learning models to predict URT passenger flow [22]. Due to the strong applicability of
the LSTM model in processing time series data, it has been widely used in passenger flow
forecasting research [23-25].

The achievement of a single model’s good prediction performance in real-world case
studies is undoubtedly difficult. As a result, more academics have increasingly concentrated
on combination forecasting models. Gong et al. [26] set up a passenger flow forecasting
framework combining the seasonal ARIMA-based method and Kalman filter-based method.
The framework was applied to the real bus line for passenger flow prediction. Qin et al. [27]
coupled a seasonal-trend decomposition approach with an adaptive boosting framework
to anticipate the monthly passenger flow on China Railway. A prediction model for
irregular passenger flow based on the combination of support vector regression and LSTM
was presented by Guo et al. [28]. A three-stage passenger flow forecasting model was
developed by Liu and Chen [29] using a deep neural network and stacked automated
encoder. The performance of the prediction was shown to be significantly impacted by the
choice and combination of important features.

Although the accuracy of the aforementioned prediction methods has somewhat
increased, neither the interference of passenger flow data noise nor the manual trial-and-
error method of determining the hyperparameters of the neural network based solely
on empirical values has been considered. In order to address these issues, this paper
combines the CEEMDAN algorithm for reducing data noise interference with the IPSO
algorithm for hyperparameters optimization of LSTM neural networks to create a new
short-term passenger flow prediction model of URT based on CEEMDAN-IPSO-LSTM.
The model’s predictive performance is then thoroughly assessed using the benchmark
function, prediction error, and Taylor diagram. In a word, short-term passenger flow
accurate prediction of URT can improve the efficiency of transport infrastructure and
means of transport. At the same time, it can further put forward optimization suggestions
for URT operation management during the post-epidemic period, and provide a reference
for the early realization of the dual carbon goals.
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2. Methods
2.1. CEEMDAN Algorithm

The complete ensemble empirical mode decomposition with adaptive noise (CEEM-
DAN) algorithm is a time-frequency domain analysis method that excels at nonlinear and
non-stationary data due to its excellent adaptivity and convergence [30]. Through the
addition of adaptive noise, the modal effects are further diminished. This algorithm can
decompose complex time series data into intrinsic modal functions (IMFs) and a residual
(Res), so as to effectively solve problems such as boundary effects and low computational
efficiency that EMD [31], EEMD [32], and CEEMD [33] are prone to.

The following are the specific steps of the CEEMDAN algorithm.

x(t) is the original passenger flow time series; IMF(t) is the kth IMF obtained by
CEEMDAN decomposition; EMD; () represents the jth IMF obtained by EMD decomposi-

tion; Bx(k =2,3,-+---- ,K) is a scalar coefficient that is used to adjust the signal-to-noise
ratio at each stage, determining the standard deviation of the Gaussian white noise in the
process; w;(t)(i=1,2,------ ,n) is the Gaussian white noise that adheres to the standard

normal distribution.

Step 1: The acquired x(t) is utilized for the first decomposition by adding a white
noise w;(t) with a signal-to-noise ratio By to the original time series x;(f), as indicated in
Equation (1).

xi(t) = x(t) + Powi(t) €]

where t stands for the various time points, 7 for the ith addition of white noise, and 7 for all
the additions of white noise.

Step 2: Use EMD to decompose x;(t) 1 times, then obtain IMF} (¢). The average value
is calculated using Equation (2) to obtain the first IMF of CEEMDAN. The first residual
Rq(t) is produced using Equation (3), and EMD; (*) represents the first IMF obtained
through EMD. Theoretically, since white noise has an average value of zero, the influence
of white noise can be reduced by finding the average value.

IMF, (t) = %ZIMF{(t) = %EMDl [x;:(£)] )
i=1

Ry(t) = x(t) — IMF(t) ®)

Step 3: The first IMF derived by EMD with the inclusion of white noise w;(t) and
signal-to-noise ratio B is the adaptive noise term. The first residual Ry () is then combined
with the adaptive noise term to create a new time series. The second IMF of CEEMDAN is
then obtained by decomposing a fresh time series using Equation (4). Equation (5) is used
to generate the second residual Ry (#).

TMF5(t) = © Y~ EMD, {Ry(t) + 1 EMD; [y (1)) @
i=1

Ry(t) = Ry(t) — IMFy(t) ®)

Step 4: Repeat Step 3, adding the new adaptive noise component to the residual term
to create the new time series. After that, break it down to get the kth IMF of CEEMDAN.
Equations (6) and (7) in particular are as follows:

- 1¢
IMF(t) = -} EMD1{Ry_1(t) + Bt EMDy_1[wi(£)]} (6)

i=1

Ri(t) = Re—1(t) — IMF(t) @)
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Step 5: The CEEMDAN algorithm reaches a conclusion when the residual term is
unable to proceed with the decomposition since it does not exceed two extreme points. The
last residual R(t) at that point is a clear trend term. Equation (8) links the complete IMF to
the initial time series of passenger flow.

K
x(t) = ) IME(t) + Re(t) ®)
k=1

2.2. LSTM Neural Network

Long short-term memory neural network (LSTM) is a special variant of recurrent
neural networks (RNN) [34]. The gating mechanism is introduced in comparison to the
original RNN, and it may recognize long-term dependencies in the input data. It can
address issues like gradient explosion, gradient disappearance, and the difficulty to manage
long-term dependencies brought on by intricate network layers. Although URT’s passenger
flow significantly varies over the short period, it still depends on changes in both the
long-term and current passenger flow levels. Therefore, accurate short-term passenger flow
estimates can be made using the LSTM model. Figure 1 depicts the LSTM model structure.

, \ , , 1
yr ¥a ¥ Vr | he !
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Output Output Output Output [eS] —p o @ ° :
A A 7'} I 1
l 1
hr R L _h_:_/ b, ! Memory :
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Figure 1. LSTM structure diagram.

The forget gate, shown as f; in the architectural diagram above, determines whether
the upper layer of the LSTM’s hidden cellular state is filtered. i; stands for the input gate,
Ci—1 for the cell state at the time of the previous moment, C; for the current moment,
and O; for the output gate. The current input and output are represented by x; and F,
respectively. The hyperbolic tangent function is represented by the symbol tanh, and the
sigmoid function is represented by ¢. The wy, Wi, Wo, and w, stand for the forget gate,
input gate, output gate, and weight matrix of the cell state, respectively. The offset vectors
for the forget gate, input gate, output gate, and cell state are denoted by bf, b;, b,, and b,
respectively. Below is a description of each control gate’s calculating principles.

First, the candidate state value C of the input cell at time ¢ and the value of the input
gate i; are calculated:

it = o(wj - [hy_1,x¢] + b;) 9)

C = tanh(we - [h4—1, x¢] + bc) (10)

The forget gate’s activation value f; is then determined at time ¢:

fr = U(Wf heo1,xe] + bf) (11)

It is possible to determine the cell state C; at time t by using the values discovered in

the previous two steps: _
Ci=ft - Co1+ir-C (12)
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The output gate values can be derived after getting the cell state update values:
Or = o(wo - [hy—1,X¢] + Do) (13)

ht = Ot . tanh(Ct) (14)

For the LSTM model selected in this paper, the number of training iterations K, the
learning rate L,, and the number of neurons in the LSTM hidden layer L,, L;, are four
hyperparameters that have a significant impact on the algorithm’s performance. The
IPSO algorithm is used to adjust and improve the LSTM model, and these four essential
hyperparameters are used as features for the particle search.

2.3. PSO Algorithm and Improvement

A swarm intelligence optimization technique called particle swarm optimization (PSO)
mimics the social behavior of animals like fish and birds [35]. Velocity and position are
the only two characteristics of the particle. Each particle’s position indicates a potential
resolution to the issue, and the information that describes it is provided by its position,
velocity, and fitness value. Calculating a certain fitness function yields the fitness value.

PSO begins with a set of random particles and uses continual updating and iteration
to locate the best solution. Each particle will choose its own position and speed throughout
each iteration based on p; and g;. Equations (15) and (16) are used to update the particle’s
velocity and position after determining these two best values.

Uf“ = wolp + c11 (pbf — xf) + o1y (gbf — xf) (15)

Xt = x4 ot (16)

where v; is the velocity of the particle; x; is the particle’s position; c; and c; are the learning
factors; r1 and r; are the random numbers between [0, 1]; w is the inertia weight.

PSO has been successful in many real-world applications, however the standard PSO
still struggles with local optimization and has poor convergence accuracy. This study
focuses on the three improvement options listed below to address the aforementioned
issues.

2.3.1. Improved Adaptive Inertia Weight

The weight of inertia has a major role in determining the convergence of PSO. The
local optimization capability is poor but the global capability is higher when the inertia
weight is high. The inverse is also accurate. Due to the wide variety of neural network
parameters, it is simple to reach a local extremum when using a typical linear decreasing
technique, as illustrated in Equation (17). The adaptive change inertia weight, as described
in Equation (18), is used in this research to navigate around this restriction.

Wmax — Wmin

W = Winay — —Dax — min oy (17)
tmax
D
NY.g,/D
W=01--—2+ (18)

N [D

L [Z v/ D]

i=1L1

where wmax and wnin represent the variable’s maximum and minimum values; t and #max
represent the current iteration’s and maximum iteration’s iterations, respectively.

The IPSO algorithm’s early stages are characterized by a modest declining trend, a
powerful global search capability, and the potential for a broadly applicable solution. The
diminishing trend of W is accelerated in this algorithm’s latter stages. The convergence
velocity of IPSO can be accelerated after a good solution is identified in the early stage.
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2.3.2. Improvement of Learning Factors

The learning factors c; and c; are used to regulate the step duration and reposition
the particles to reach both the local and the global ideal positions. As the iterative process
moves forward in actual applications, it is typically required to adjust the c¢; value from
large to tiny in order to speed up the search speed in the initial iterations and enhance
the capability of global search. To help with the local refinement search in the subsequent
iteration of the iteration and enhance the local search capacity, the c; value is changed from
small to large. Typically, the PSO algorithm sets ¢; = cp = 2. However, this falls short of
what is required for real-world applications. The linear change learning factors C; and Cy,
as shown in Equations (19) and (20), are introduced to improve the global and local search
performance of PSO.

t

Ci(t) =252 x (19)
max
t

Co(t) = 0542 x (20)
max

2.3.3. Improvement of Velocity and Position Update Equation

By inserting a linear model of and as indicated in Equations (21) and (22), the better
particle velocity update Equation (23) is created.

p— P t8 (21)
2
G, — P8 (22)
2
‘/itJr] _ W‘/lt 4 Clrl (Pblt — xf) + C21’2 (be — Xf) (23)

In addition, the average dimensional information conceptual Equation (24) and adap-
tive determination condition Equation (25) are introduced to further enhance the local and
global search capability of particles by adaptively updating the particle positions using
“X=X+V"and “X = WX + (1 — W)V” segments.

5:%Zﬁ (24)
i=1
o= @ Ulu]) 5
exp{ & L 1101}
Fla(®] = Ly 150~ x(o) 26)

£1
XfH:{ WX+ (1-W)V/",Q; > 6 @7)

t+1
Xf+‘/i+,Qi<5

where J is the average of each particle’s dimensions information; Q; is the ratio between the
current particle’s fitness value and the population’s average fitness value; f(x) is the fitness
value of a particle. When Q; > J, it implies that IPSO is in the early stages of its search or
that the current particle distribution is dispersed, as opposed to the middle or late stages of
its search or the concentrated current particle distribution, which are indicated by Q; < 4.
In summary, the IPSO algorithm finally improves Equations (15) and (16) to Equation
(28).
{WH:WW+QH@$WD+QWWQ—@ Q>0
X =wx! 4 (1 - W)V s

Vl-H_1 = WVit + Cirg (th - Xlt) + Corp (be - Xlt)

{ XzH_l — Xlt + ‘/it-‘rl

(28)
,Qi <46
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2.4. Evaluation Indicators
2.4.1. Benchmark Function

The performance of the proposed IPSO algorithm was evaluated in this study using
simulated experiments using the 10 common benchmark functions shown in Table 1 [36].
The prediction model’s convergence precision increases as the test function’s optimized
value (f,pt) gets nearer to zero.

Table 1. Benchmark functions.

Function Formulation Range Jopt
Sphere filx) = T 22 (100, 100] 0
1
i=1
Sum Squars folx) = g (ix;)? [—5.21,5.21] 0
i=1
Sum of Different Power f3(x) = g |xi|i+1 [—1,1] 0
i=1
D
Rosenbrock falx) = El [lOO(xl-H _ xiz)z ¥ (xi— 1) [—30,30] 0
i=
. D
Quartic f5(x) — _Zl(ixi)z + rundom(O,l) [7128,128} 0
i=
. D
Rastigrin fo(x) = .zl [x2 — 10 cos(27x;) + 10] [—5.21,5.21] 0
i=
Ackley 12 1 2 [—32,32] 0
f7(x) = =20exp| 0.2/ 5 X (x;)° | —exp| 5 L cos(2mrx;) | +20+e ’
i=1 i=1
. D _ _
Griewank folx) = ﬁg’l 2 -T2, COS(%) +1 [—600, 600] 0
n 02 L=t 2 in2 2
fo(x) = F<10sin*(my;) + 421 (yi — 1)°[1 4+ 10sin*(7ryit1)] + (yu — 1)
iz
Penalized b k(xi—a)",x; > a [—50,50] 0
+ ¥ U(x;,10,100,4),y; = 1+ X (x; + 1), U(x;,a,k,m) = 0,—a<x<a
i=1 k(—x;—a)",x; < —a
g in2 Lot 2 in2 2
fro(x) = F{10sin*(my1) + ¥ (yi — 1) [1+10sin*(7y;41)] + (Y — 1)
i=
Penalized2 D1 k(xi—a)",x; >a [—50,50] 0
+ ¥ U(x;,5,100,4),y; = 1+ (x; + 1), U(x;,a,k,m) = 0,—a<x<a
i=1 k(—x; —a)",x; < —a

2.4.2. Prediction Errors

For evaluating model performance, choosing suitable performance criteria is crucial.
All models used in this research are statistically evaluated using the standard deviation (SD),
root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error
(MAPE), correlation coefficient (R), and coefficient of determination (R?). The following
values would correspond to the projected value and actual value: SD = 0, RMSE = 0,
MAE = 0, MAPE = 0, CC = 1, and RZ = 1. The following is a list of the mathematical
representations:

SD = \/ itil{w) — ()] = [y(t) —7(1)]} @)

RMSE = [--3 " [y(t) - x(1)] (30)
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MAE jlflw(t) ~x(1)] 61)
f=
MAPE = li y(t)—x(t)‘ (32)
n4= x(t)

R = f (33)
\/El ly(t) — .v(ﬂ]z\/t;1 [x(t) — %(t)]?
[y(t) — x(t))?
RZ=1-"1! (34)

~

where 7 is the total number of time series samples, y(t) and x(t) are the predicted value
and actual value at time ¢, j(t) and X(t) are the mean value of the predicted value and
actual value.

2.4.3. Taylor Diagram

In addition, this paper further qualitatively evaluates the performance of the prediction
models through a Taylor diagram [37]. This diagram can provide a statistical assessment
of how well each model matches the other in terms of its SD, RMSE, and R, as well as a
simple summary of the degree of connection between simulated and observed fields. The
value of R, RMSE, and SD differences between prediction models are all represented by
a single point on a two-dimensional plot in a Taylor diagram. Although this diagram’s
structure is generic, it is particularly helpful when assessing complex models.

2.5. CEEMDAN-IPSO-LSTM Model

The complexity and non-smoothness of the original passenger flow time series of URT
interfere with the neural network prediction and the problems of neural network hyperpa-
rameters determined by trial-and-error with only empirical values seriously affecting the
accuracy of the prediction model. In this study, we use the CEEMDAN algorithm to break
down the time series data for the passenger flow, use the LSTM hyperparameters as the
object of optimization, combine them with the IPSO algorithm to determine the optimal
value of the LSTM hyperparameters, and build a combined CEEMDAN-IPSO-LSTM model
to accurately predict the short-term passenger flow of URT systems. Figure 2 depicts the
precise prediction method, and the subsequent steps are presented in the prediction process.

Step 1: Data decomposition. CEEMDAN is used to decompose passenger flow data to
obtain IMFs and Res.

Step 2: A training set and a test set are created from the passenger flow sequence that
was obtained from CEEMDAN decomposition.

Step 3: Construct LSTM neural network. Initialize the batch size, hidden layer unit
number, gradient limit, and other parameters of LSTM.

Step 4: Initialize the IPSO parameters at random. The size of the population, the
maximum number of iterations, and the size of the particles are chosen at random.

Step 5: Create the CEEMDAN-IPSO-IPSO-LSTM prediction model and build a combi-
nation prediction model; the hyperparameters (L1, Ly, Ly, K) of LSTM are computed using
IPSO. If the iteration termination conditions are met, output the optimal value of LSTM
hyperparameters. If it is not satisfied, make t = ¢ + 1, and repeat steps 2-5.

Step 6: Evaluate the prediction model. CEEMDAN-IPSO-IPSO-LSTM model is evalu-
ated by the prediction error and Taylor diagram.
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Original date time series ‘ Initialize the velocity and position of each particle

Data processing

‘Calculate the fitness value of each particle -«

S
------
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Update optimal value and the global

Initialize LSTM
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IPSO-LSTM training
and testing
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LSTM parameter

Output predicted values

‘ Prediction model evaluation index ‘

‘ Prediction error ‘ ‘ Taylor diagram ‘

Figure 2. Flowchart of CEEMDAN-IPSO-LSTM prediction model.

3. Results
3.1. Data Set

The experimental data are the inbound and outbound passenger flow data of Yangji
Station of Guangzhou Metro from 1 July 2019 to 28 July 2019 from 6:15 to 23:15. The time
series was smoothed by aggregating flow data into nonoverlapping 15-min intervals [38].
This resulted in 96 samples per day. Based on the above CEEMDAN-IPSO-LSTM model, the
first 75% of the data were taken as the training set and the last 25% as the test set. The sliding
window length was 3; that is, the data of the first 3 weeks were used to predict the next week.

Figure 3 depicts how Yangji Station’s inbound/outbound passenger flow statistics
changed throughout the experiment. Additionally, because the subway station is close to
sizable residential neighborhoods, commuters frequently utilize it during the working week,
and significant morning and evening peak characteristics exist, which aids in improving
forecast performance. The passenger flow significantly varies during the course of a single
day, as shown in Figure 3. Its pattern is quite similar during the working week, with
two peaks visible each day. The first inbound/outbound peak typically occurs between
7:30 and 8:45 and 7:30 and 9:30 in the morning, and the second inbound/outbound peak
usually occurs between 17:15 and 19:15 and 17:45 and 19:00 in the afternoon. The passenger
volume during the morning and/or afternoon peaks is often two to three times more than
during off-peak times. Weekend trends diverge from weekday trends, and there are no
clear morning and afternoon peaks. Between 11:00 and 19:00, there are frequently high
passenger loads. In general, Saturday has a greater passenger volume than Sunday. Due to
entertainment and social events, it is also observed that there is an increase in passenger
traffic late on Friday and Saturday nights.

3.2. CEEMDAN Decomposition

The inbound passenger flow time series was divided using CEEMDAN into a total of
12 subseries with various amplitudes and frequencies, comprising 11 IMF components and
a Res component, as shown in Figure 4. It is clear that when the IMF is further decomposed,
it becomes less volatile and cyclical, which is consistent with the decomposed IMF's features.
IMF1 has the highest frequency and the shortest wavelength. As the wavelength rises, the
frequency of IMF2 to IMF11 drops in turn. The trend term of the inbound passenger flow
sequence is represented by the residual term.
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3.3. Benchmark Function and Comparison Algorithm

Four other evolutionary algorithms (SOA [39], WOA [40], GWO [41], and PSO) were
chosen for comparison with IPSO to assess the IPSO algorithm’s performance. All compari-
son algorithms made use of the same set of parameters to ensure fairness. The maximum
number of iterations was 1000, and the population size was set at 50. Additionally, each
algorithm was individually run 50 times on each benchmark function to lessen the effect of
random numbers on algorithm performance.

Table 2 compares five evolutionary algorithms across ten benchmark functions. The
operation results in Table 2 show that, for the identical benchmark function, the IPSO
algorithm’s minimum, maximum, mean, and SD values are, for the most part, smaller
than those of other algorithms. It can be seen from the operation results in Table 2 that,
under the same benchmark function, the value of minimum, maximum, mean, and SD
obtained by the IPSO algorithm are smaller than other algorithms, in most cases. The IPSO
algorithm performs better than other algorithms in the whole iteration process, which can
enable particles to gather more stably near the global optimal value and more easily find
the global optimal solution.

Table 2. Comparison results between IPSO and other evolutionary algorithms.

Function Value SOA WOA GWO PSO IPSO
Min 343 x 1073 459 x10°18 538 x 1072 1.12 x 10 1.83 x 10735
Max 6.33 x 10 378 x 10712 1.96 x 10V 1.79 x 10 1.51 x 10732
fi Mean 521 x 10° 154 x 10712 1.49 x 10718 1.49 x 10 2.70 x 10~
Std 1.26 x 10 883 x 10713 371 x10°18 146 x 10 3.62 x 10~
Rank 5 3 2 4 1
Min 343 x107% 314x10710 538x10°13 1.42 x 10 6.06 x 1072
Max 6.33 x 10 130 x 107°  2.88 x 107? 1.78 x 10 311 x 107V
f Mean 5.21 x 10° 6.15x 10710 456 x 10°10 1.59 x 10 7.02 x 10720
Std 1.26 x 10 219 x 10710 718 x 10710 945 x 1071 626 x 1072
Rank 4 3 2 5 1
Min 1.59 x 10° 1.15 x 10* 411 x 10718 423 x 10 2.09 x 10~ 11
Max 1.40 x 103 2.34 x 10* 1.73 x 10712 8.92 x 10 7.04 x 1077
f3 Mean 6.69 x 10° 1.62 x 10* 6.59 x 104 6.82 x 10 6.57 x 108
Std 3.65 x 10° 2.85 x 10% 2.19 x 10°10 1.15 x 10 1.43 x 1077
Rank 4 5 1 3 2
Min 9.74 x 100 1.25 x 10 141 x 10711 1.31 x 10° 1.61 x 107
Max 3.96 x 10 2.68 x 10 7.01 x 107 1.71 x 100 6.49 x 10°8
fa Mean 2.32 x 10 2.00 x 10 1.37 x 10~ 1.55 x 10° 1.83 x 10°8
Std 9.64 x 10° 3.63 x 10° 168 x 1072 959 x 1072 153 x 108
Rank 5 4 2 3 1
Min 1.00 x 1074 9.19 x 10 1.43 x 10 1.76 x 102 0.00 x 100
Max 1.26 x 102 1.87 x 102 1.44 x 102 2.57 x 102 2.07 x 100
fs Mean 3.01 x 10 1.46 x 102 6.34 x 10 2.21 x 102 6.91 x 1072
Std 2.99 x 10 2.64 x 10 3.09 x 10 1.56 x 10 379 x 1071
Rank 5 3 2 4 1
Min 7.18 x 10 247 x 10 2.85 x 10 1.66 x 10% 2.54 x 10
Max 5.02 x 10* 456 x 10 2.87 x 10 5.20 x 103 2.79 x 10
fe Mean 7.00 x 10° 2.72 x 10 2.87 x 10 3.20 x 103 2.66 x 10
Std 1.21 x 10* 3.58 x 10° 3.20 x 1072 9.90 x 102 7.18 x 107!
Rank 5 4 3 2 1
Min 4.29 x 100 366 x 10713 157 x 1072 1.07 x 10 2.05 x 107>
Max 1.79 x 10 298 x 10712 1.39 x 1071 1.81 x 10 1.01 x 10°
f7 Mean 7.75 x 100 152 x 10712 6.56 x 1072 1.53 x 10 4.64 x 1071
Std 3.34 x 100 721 x 10718 3.03 x 1072 1.99 x 10° 3.24 x 107!
Rank 5 4 3 2 1
Min 5.24 x 100 334 x1072 246 x10°° 1.62 x 102 237 x 10°*
Max 2.89 x 10° 820x 1072 711 x10°* 4.18 x 102 2.62 x 1073
fs Mean 4.69 x 10* 533 x 1072 240 x 10~ 2.65 x 102 1.31 x 1073
Std 7.42 x 10* 140 x 1072 1.86 x 1074 6.37 x 10 597 x 10~

Rank 5 4 3 2 1
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Table 2. Cont.

Function Value SOA WOA GWO PSO IPSO
Min —112x10° —1.66 x 103> —130x 10> —152x10° —1.49 x 10°
Max —7.88x 102 —133x10° —9.10x 102 —9.46 x 102 —1.08 x 103
fo Mean —934 x 102 —934x 102 —1.09 x10®> —1.19 x10* —1.24 x 10°
Std 7.27 x 10 7.97 x 10 1.03 x 102 1.47 x 102 8.49 x 10
Rank 2 1 5 3 4
Min 334x10°!  1.00x1072 500x10"* 202x10°! 0.00 x 10°
Max 2.53 x 10 231 x10°1 485 x 1071 7.98 x 100 523 x 1072
f1o Mean 2.30 x 109 276 x 10720 685 x 1072 1.37 x 100 2.18 x 1072
Std 5.49 x 10° 508 x 10720 1.41 x 107! 1.81 x 10° 1.26 x 1072
Rank 5 4 2 3 1
Total Rank 45 35 25 31 14
Final Rank 5 4 2 3 1

Figure 5 displays the ideal iterative convergence curves for each benchmark function.
The convergence curve of the IPSO algorithm on most benchmark functions is below that
of other algorithms. It demonstrates that IPSO not only has great convergence accuracy
throughout the whole search process for each specified benchmark function, but also a faster
convergence speed. The IPSO algorithm’s adaptive strategy significantly enhances the
efficiency of particle optimization, avoids PSO’s inefficient iteration process, and achieves a
balance between local and global search.
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Figure 5. Cont.
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Figure 5. Average convergence curves of 10 benchmark functions. (a—j) represent the average

convergence curve of function f1—f1o.

3.4. CEEMDAN-IPSO-LSTM Results

The fitness function employed in this study is the best mean square error (MSE) that
the LSTM could attain throughout training. The hyperparameters derived from the opti-
mization are Ly, Ly, Ly, and K, which correspond to the minimum MSE. Figure 6a depicts the
error convergent curve during the training process. It was discovered that as the iteration
count increased, the error of the CEEMDAN-IPSO-LSTM model soon converged. Within
four iterations, the CEEMDAN-IPSO-LSTM fitness evolution curve attained the necessary
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precision and then maintained the ideal fitness value, demonstrating strong learning abil-
ity. The initial and final errors of CEEMDAN-IPSO-LSTM are one order of magnitude
fewer than those of CEEMDAN-PSO-LSTM, and the model accuracy significantly increases.
Figure 6b displays the estimated outcomes of the LSTM hyperparameters, which are
L1 =65,L, =173, L, =0.007, and K = 60, which were optimized by PSO and IPSO.

0.105 0.070 180 85 200 183
1408 75 160 /7 1181
0.100 0065 \ \ s 2 R
0.095 0.060 ~ ol \ \os 80 {17
) > \ | J \l175
Z0.09 0.055 0| \ {45 — !
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g X107 X107
£0.080 0.045 e X 9
H — ] 35 80
0.075 | 0.040 I e a0 70
> LMy ag [\ kos [ 60
0.070F ! 0035 7] 5L \ L
Lo oo J W 2N TR
0.065—+—~—1 L1 10,030 15 40
12345 6 7 8 910 12 3 67 8 910 101;3456;89103()
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(@ (b)

Figure 6. (a) The error convergence curves of CEEMDAN-PSO-LSTM model and CEEMDAN-IPSO-
LSTM model in the training process. (b) The hyperparameters optimization results of CEEMDAN-
PSO-LSTM model and CEEMDAN-IPSO-LSTM model.

3.5. Prediction Results of Inbound and Outbound Passenger Flow

The LSTM, CEEMDAN-LSTM, and CEEMDAN-PSO-LSTM models were employed
for comparison testing to confirm the accuracy of the proposed CEEMDAN-IPSO-LSTM
model. Figure 7 displays the outcomes of several model predictions of data on the inbound
and outgoing passenger flow. As can be observed, the trend of the actual value curves,
whether during the peak time or off-peak period, is largely consistent with the forecast
curves derived by various models. The CEEMDAN-IPSO-LSTM model, on the other hand,
correlates to a prediction curve through thorough local observation, which has greater
forecast accuracy than the other models and is more similar to the real monitoring curve,
indicating the CEEMDAN-IPSO-LSTM model has strong robustness.

2.5 —— True value
2 —— LSTM

AN-LSTM
—— CEEMDAN-PSO-LSTM
—— CEEMDAN-IPSO-LSTM

2.0

1.5

051t

-0.5

15min cumulative passenger flow/10° person

-2.0

Figure 7. Prediction results of inbound and outbound passenger flow of different models in the
last week.



Int. |. Environ. Res. Public Health 2022, 19, 16433 15 of 19

3.6. Evaluation Indicators of Prediction Models
3.6.1. Quantitative Analysis Based on Prediction Errors

Table 3 shows the performance of the CEEMDAN-IPSO-LSTM model comparison to
other models (LSTM, CEEMDAN-LSTM, CEEMDAN-PSO-LSTM) for both inbound and
outbound passenger flow data. It can be seen that the CEEMDAN-IPSO-LSTM model re-
spectively reduces SD, RMSE, MAE, and MAPE of inbound/outbound passenger flow data
concerning the whole day of month by 12~40 persons/13~35 persons, 13~44 person/12~35
persons, 6~37 persons/12~31 persons and 5.08~46.89%/6.5~35.1%, R and R? respectively
increased by 0.07~2.32%/0.86~3.63% and 0.13~2.19%/0.67~1.67%. At the same time, the
proposed model can achieve favorable prediction results for the different periods during
weekdays and also on the weekend. This demonstrates once more the higher prediction
accuracy of the CEEMDAN-IPSO-LSTM model suggested in this study.

Table 3. Comparison of prediction errors.

Inbound Outbound
Period Error Ll cLl  CPL! CIP-L! L1 cL!  CPL! CIP-L!
SD 67 55 39 27 89 83 67 54
RMSE 69 55 38 25 89 84 66 54
Monh Da MAE 57 4 26 20 66 60 47 35
ont y MAPE 82.36 73.19 40.55 35.47 83.68 80.11 55.08 48.58
R 97.24 98.15 99.49 99.56 95.16 96.65 97.93 98.79
R2 97.69 99.10 99.75 99.88 97.57 97.87 98.57 99.24
SD 62 49 33 25 86 78 45 37
RMSE 61 47 33 24 87 78 45 37
Day MAE 44 36 24 19 63 56 ) 36
MAPE 73.34 65.84 40.02 3533 72.04 70.53 57.82 40.68
R 98.81 99.17 99.49 99.70 96.34 97.04 98.02 99.33
R2 98.34 99.42 99.74 99.86 98.21 98.57 99.52 99.67
SD 124 112 86 78 199 151 124 100
RMSE 123 110 87 75 203 151 126 101
Weekday MAE 91 83 67 52 159 112 91 83
MAPE 63.17 58.84 47.37 32.01 61.77 57.84 47.02 41.63
R 88.33 94.54 96.24 98.7 74.20 80.66 90.12 94.73
R2 93.98 94.73 9753 98.35 87.01 93.40 95.11 97.24
SD 43 4 32 26 69 59 41 32
RMSE 43 40 33 27 70 57 4 32
MAE 33 29 23 20 50 43 30 25
Off-Peak  \1apE 72.82 62.72 50.49 4773 70.25 68.56 56.14 52.08
R 95.11 95.80 97.28 96.79 87.98 91.77 95.73 97.39
R2 97.54 97.92 98.70 99.43 93.91 95.80 97.97 98.69
SD 116 9 60 41 120 99 73 52
RMSE 119 93 60 4 118 100 73 55
D MAE 87 71 50 46 89 75 50 4
Weekend ay MAPE 37.28 26.27 18.71 15.00 43.31 40.19 35.71 32.00
R 79.88 83.48 88.37 92.84 73.88 80.48 89.35 91.84
R2 84.06 89.64 93.18 96.88 86.29 90.64 94.18 97.59

I The names of LSTM, CEEMDAN-LSTM, CEEMDAN-PSO-LSTM, and CEEMDAN-IPSO-LSTM models are
abbreviated as L, C-L, C-P-L, and C-IP-L in Table 3.

3.6.2. Qualitative Analysis Based on Taylor Diagram

Additionally, a Taylor diagram was created for each model’s prediction errors in
order to qualitatively assess the characteristics of how prediction errors are distributed
among different prediction models. According to Figure 8, the comprehensive ranking
of prediction results is as follows: LSTM < EMD-LSTM < EEMD-LSTM < CEEMD-LSTM
< CEEMDAN-LSTM < EMD-PSO-LSTM < EEMD-PSO-LSTM < CEEMD-PSO-LSTM <
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CEEMDAN-PSO-LSTM < EMD-IPSO-LSTM < EEMD-IPSO-LSTM < CEEMD-IPSO-LSTM
< CEEMDAN-IPSO-LSTM. Among the peer models, the CEEMDAN-IPSO-LSTM model
has the highest accuracy and can meet the demands for accurate short-term predictions of
passenger flow.
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Figure 8. Taylor diagram of 13 prediction models. (a) represents the inbound passenger flow,
(b) represents the outbound passenger flow.

4. Discussion

In this paper, we verified that the CEEMDAN-IPSO-LSTM model can accurately pre-
dict short-term passenger flow of URT. The error statistics of inbound passenger flow and
outbound passenger flow demonstrate that the proposed model, combining the strong
noise-resistant robustness of the CEEMDAN and the nonlinear mapping of the LSTM,
outperforms other models in terms of prediction performance. Compared with the single
LSTM model, the CEEMDAN-IPSO-LSTM model reduce by 40 person/35 person, 44 per-
son/35 person, 37 person/31 person, and 46.89%/35.1% in SD, RMSE, MAE, and MAPE,
and increase by 2.32%/3.63% and 2.19%/1.67% in R and R?, respectively. The performance
improvement of CEEMDAN-IPSO-LSTM for the LSTM is significantly higher than that of
the other models.

Because of the sensitivity of the short-term prediction model to the original passenger
flow time series, it can consider the impact of various factors on the passenger flow series.
For further study, more effective pretreatment methods of noise reduction for passenger
flow data should be explored and applied to further enhance the algorithm performance.
The methods that could be explored include variational mode decomposition [42], syn-
chrosqueezing wavelet transform [43], savitzky-golay filter [44], etc.

In this paper, we only analyzed a basic prediction model of LSTM. There exist some
other improvements to this model. For example, the Bi-directional LSTM [45] and gated re-
current neural network [46]. Therefore, more base models with various denoising methods
should be compared and analyzed, to further strengthen the applicability of the IPSO-LSTM
model in passenger flow prediction.

In addition, the CEEMDAN-IPSO-LSTM model proposed in this paper is also valuable
for time series prediction of other traffic flows. At the same time, the model can be further
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extended from one subway station to one subway line, or even to the entire subway network,
to improve the accurate prediction of short-term passenger flow in the URT system.

5. Conclusions

There are increasing traffic pollution issues in the process of urbanization in many
countries. URT is low-carbon and widely regarded as an effective way to solve such prob-
lems. The accurate prediction of short-term passenger flow in URT systems can improve
the efficiency of transport infrastructure and vehicles, and provide reference for the devel-
opment of low-carbon transportation. In this study, a short-term passenger flow prediction
model for URT was proposed based on CEEMDAN-IPSO-LSTM, including the framework
design of CEEMDAN-IPSO-LSTM and the determination of model parameters, which
successfully addresses the issues of easy local optimum fall-off, slow late convergence,
and early convergence in the conventional PSO algorithm. The experimental findings
showed that the CEEMDAN-IPSO-LSTM model beat other comparison models in terms
of overall performance. Specifically, the CEEMDAN-IPSO-LSTM model respectively re-
duced SD, RMSE, MAE, and MAPE of inbound/outbound passenger flow data concerning
the whole day of month by 12~40 person/13~35 person, 13~44 person/12~35 person,
6~37 person/12~31 person and 5.08~46.89%/6.5~35.1%, R and R? respectively increased
by 0.07~2.32%/0.86~3.63% and 0.13~2.19%/0.67~1.67%. At the same time, the proposed
model achieved favorable prediction results during weekdays and at the weekend. In
summary, this research validates the applicability and robustness of the CEEMDAN-IPSO-
LSTM model in the area of predicting short-term passenger flow for URT systems, and
extends the use of ensemble learning technology.

However, there are still a number of restrictions in this study. For instance, the current
case study examined the station’s passenger flow statistics, but did not address the relation-
ships between other lines, nor did investigate how service interruptions and spatiotemporal
impacts can affect passenger flow. Additionally, multi-source data pertaining to factors
such as weather, traffic, and accidents might be investigated in the future. Further research
into the proposed model’s applicability to other spatial-temporal data mining applications,
such trajectory prediction, would also be interesting.
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