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Abstract: A large number of temporary housings (THs) were used in the Yanqing zone of the Beijing
2022 Olympic and Paralympic Winter Games. Taking a kind of container house (CH) used in Yanqing
zone as a model, the objective of this paper is to analyze the effect of insulation thickness on heating
energy consumption and corresponding carbon emission. The effect of service life of THs on economic
thickness was also discussed. The simulation model was developed using EnergyPlus and the heating
energy consumption with different insulation materials was simulated based on the meteorological
parameters of the top of Xiaohaituo Mountain (2177.5 m) and the Olympic/Paralympic Village
(950 m) in Yanqing zone. In the simulation process, the thermal insulation performance of the CH was
enhanced with reference to the requirements of GB/T 51350-2019 Technical Standard for Nearly Zero
Energy Buildings (NZEB) on one hand. Additionally, the insulation performance was evaluated in
terms of payback period and carbon emission. On the other hand, the economic thickness of different
insulation materials (rock wool (RW), extruded polystyrene (XPS), polyurethane (PU)) and the high
performance vacuum insulation panel (HVIP)) for different service lives of CH was studied. Results
show that the U-values of the envelope meeting the NZEB standard can decrease approximately
21.4–32.8% of the heating energy consumption, compared with the original envelope. When the
service life of CH is extended to 20 years, the carbon emission is reduced by 18.5% and 29.5%. The
payback period of HVIP is longest, up to 31.4 a, and the results of economic thickness show that
when the service life of the CH ranges from 1 year to 20 years, the economic thickness range of RW is
47–235 mm, XPS is 41–197 mm, PU is 33–149 mm and HVIP is 4–18 mm at the altitude of 2177.5 m.
At the altitude of 950 m, the economic thickness range of RW is 28–158 mm, XPS is 26–131 mm, PU is
25–118 mm, and HVIP is 2–12 mm. From an economic point of view, the service life of a CH has a
significant impact on the choice of insulation thickness.

Keywords: container house; insulation materials; energy efficiency; carbon emission; economic analysis

1. Introduction

Temporary housings (THs), as a special type of building, have been widely used
for refuging survivors of natural disasters [1], for sheltering patients during widespread
disease, for residency of constructors in large engineering projects or for accommodat-
ing people in great public activities. The lifetime of TH is usually from 6 months to
5 years [2], or even longer depending on its function and quality. THs are generally prefab-
ricated with lightweight structures and easy to be built, dismantled and stored for future
reuse [3,4]. Compared to constructing permanent buildings, the utilization of THs can not
only progress the construction but also improve the energy efficiency and decrease carbon
dioxide emission on these special occasions. Container houses (CHs), as a kind of THs, are

Int. J. Environ. Res. Public Health 2022, 19, 16417. https://doi.org/10.3390/ijerph192416417 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph192416417
https://doi.org/10.3390/ijerph192416417
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://doi.org/10.3390/ijerph192416417
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph192416417?type=check_update&version=2


Int. J. Environ. Res. Public Health 2022, 19, 16417 2 of 17

increasingly and widely used, which originated from the reuse of shipping containers in
architecture [5]. They are manufactured in standard dimensions, which makes them an
excellent modular building [6]. However, some problems with the indoor environment are
found for THs including for CHs. Air quality is recognized as an important factor having a
major effect on human health and has been studied by many scholars [7–9]. For temporary
shelters, there are survey results showing that the total concentration of Volatile Organic
Compounds (VOCs) and Particulate Matter (PM) in the room is very high [10]. While
more problems are focused on the indoor thermal environment. Chen et al. [11] found that
poor sound and heat insulation are common problems for THs. Some scholars studied
the indoor thermal environment of THs in cold regions and hot summer and cold winter
zones in China, finding that the natural indoor temperature sometimes was not within the
comfort range of the human body [12–14]. The occupants’ satisfaction with the thermal
insulation performance of CHs is predominantly low [15]. Thapa et al. [16,17] conducted
a series of surveys on the indoor thermal environment and thermal comfort in four main
earthquake affected districts in Nepal and analyzed the total heat loss coefficient per floor
area of five shelters in Lalitpur during winter, which ranged from 11.3 to 15.2 W/(m2·K),
suggesting that thermal insulation was very low.

While the thermal performance of temporary buildings is receiving a lot of attention,
the thermal technology is also improving. Honma [18] introduced that according to the spe-
cial specification of the Hokkaido government, glass wool insulation of 100 mm should be
applied in the wall and ceiling of emergency temporary housing. Soga et al. [19] mentioned
that different solutions on thermal technology of THs had be taken in different regions of
Japan, such as increasing the thickness of insulation in Hokkaido. In the Mediterranean
area, Cross-Laminated Timber (CLT) technology was applied to THs [20,21], which pro-
vides high insulation and good air tightness. It enables building structures to avoid thermal
bridging and allows achieving remarkable energy savings in the heating season [22]. For
CHs, Grębowski et al. [23] proposed that the envelope can be internally insulated, using
glass wool or insulated with sprayed polyurethane foams. Additionally, Berbesz et al. [24]
also pointed out that proper insulation is an important aspect for container house design.

In cold and severe cold regions, it is important to improve the insulation performance
of the envelope of THs. Mario et al. [25] proposed that increasing the thickness of the
insulation was required to achieve the adequate thermal transmittance coefficient that
corresponds to the location of the deployment of the troops by comparing the energy
efficiency requirements of the tents and containers that were used in military camps
and the energy-efficient design requirements that were demanded by the energy efficiency
standards for buildings in the civil sector. A simulation study by Liu et al. [26] on increasing
the different thickness of rock wool (RW) to the walls of a TH at a construction site in
Tianjin showed that the average indoor temperature increased with increasing insulation
thickness. Yang et al. [27] analyzed the energy performance of portable houses composed
of loess and porous materials in different climate zones and showed that the benefits of
increased insulation were higher in areas where heating energy was dominant, and an
insulation thickness of at least 100 mm is recommended. Furthermore, in Cornaro et al.’s
study [28], the average heating power demand decreased by 59.4% when they incorporated
aerogel into the walls and roof as well as used the modular floor consisting of polyethylene
grids to enhance the insulation performance of an emergency shelter tent.

In order to reduce energy consumption in buildings, many countries have introduced
measures to improve their building energy-efficiency standards and increasingly deployed
the zero/low energy buildings. The zero energy container units were investigated based
on a variety of energy efficiency technologies, where insulation is always a crucial con-
sideration [29–31]. Meanwhile, the heat transfer coefficient (U-values) of the envelope in
these studies is designed to be very low (0.1 or 0.26 W/(m2·K)), and Vacuum Insulation
Panels (VIPs) are mostly used, while considering the interior space of the CH. Yet, both the
improvement of energy-efficiency standards and the deployment of low-energy buildings
typically focus on reducing the energy use in building operation [32]. It is also impor-
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tant to consider the contribution of insulation materials to the life cycle environmental
impact. Pargana et al. [33] evaluated the environmental impacts on the production of
conventional thermal insulation materials (extruded and expanded polystyrene (XPS and
EPS), polyurethane, expanded cork agglomerate and expanded clay lightweight aggregates
(LWA)) by means of a cradle to gate LCA methodological approach, and concluded that dif-
ferent materials contribute differently to the environmental impact, with a low contribution
in EPS to all impact categories and the largest impact of LWA on global warming potential.
Llantoy et al. [34] developed a comparative life cycle assessment (LCA) of different insu-
lation materials (polyurethane, XPS, and mineral wool) in the Mediterranean continental
climate, whose results showed that XPS presented the worst environmental performance,
and the best environmental performance was for the mineral wool and the cubicles with
three insulation materials achieving an energy saving of 27%, 25%, 23%, respectively, in
comparison to the non-insulated cubicle. Tettey et al. [32] improved the original design of a
residential building to achieve reference buildings to different energy-efficiency levels and
at the same time varied the insulation materials in different parts of the reference build-
ings to achieve hypothetical options with similar energy-efficiency levels. Furthermore,
they compared the production primary energy and CO2 emission of the reference and
optimum designs of the buildings under the different energy-efficiency standards. The
results showed a reduction of approximately 6–7% in primary energy use and 6–8% in CO2
emission when the insulation material in the reference buildings is changed from RW to
cellulose fiber in the optimum versions. On the other hand, economic rationality is also
one of the factors that must be considered in the design of energy-saving buildings. With
these consideration, both environmental sustainability and cost should be highly concerned
in selecting the insulation material of a building. Annibaldi et al. [35] considered envi-
ronmental and economic factors to develop a framework to identify the optimal material
to be used to achieve the highest level of energy efficiency in building retrofits, and the
research was applied to an industrial factory in Italy. The optimal thickness of ten materials
with different origin were obtained and their results showed that all materials analyzed
displayed economical savings, and three of them showed reductions in the production of
emissions from an environmental point of view. Considering that the increase in insulation
thickness makes the cost of insulation higher, some studies used life cycle cost (LCC) to
evaluate the cost and benefit of the envelope and to find the optimal thickness of insulation
material [36–39]. However, most researches of the assessment of envelope insulation at
present were aimed at permanent buildings, rather than THs.

In this paper, the geometric model was created based on a CH that was used in the
Yanqing zone of the Beijing 2022 Olympic and Paralympic Winter Games. We resorted to
EnergyPlus to simulate the indoor air temperature and validated the simulation results with
the measured values tested in the Yanqing zone. Then, the heating energy consumption of
CH with different insulation materials was simulated under the meteorological parameters
of the Yanqing zone. In the simulation process, we enhanced the thermal insulation
performance of the CH with reference to the limit values of the U-values of the envelope
according to energy-efficiency standards of permanent buildings. Environmental and
economic benefits were analyzed for the production stage of insulation materials and
the operation stage of the building. Furthermore, considering that the service life of the
CH variables in the application situation, the economic thickness of the insulation materials
with a service life of 1 to 20 years was analyzed using the life cycle cost method.

2. Methodology
2.1. Environmental Conditions

Yanqing National Alpine Skiing Centre is located in the south of Xiaohaituo Mountain,
which has a wide range of altitude variations and a distinct vertical distribution of climate.
The altitude of the Yanqing Olympic/Paralympic Village is approximately 950 m, while the
altitude of the Top Starting Area is approximately 2177.5 m. Figure 1 shows the monthly
mean temperature of the two altitudes and of the typical year in Beijing. Compared to
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the typical year in Beijing, the monthly mean temperature ranged from 7.3 to 17.1 ◦C
lower at the altitude of 2177.5 m and from 0.9 to 6.6 ◦C lower at the altitude of 950 m.
It can be seen that the hottest monthly average temperature at both sites did not exceed
21 ◦C, and the lowest average daily temperature was −36.2 ◦C at the altitude of 2177.5 m
and −24.2 ◦C at the altitude of 950 m. Heating degree days (HDD18) represents the sum
of the daily difference between the conventional heating temperature of 18 ◦C and the
average monthly outdoor air temperatures according to GB 50176-2016 Code for Thermal
Design of Civil Building [40]. In addition, the HDD18 were calculated to be 6520 ◦C·d
and 3748 ◦C·d for the two altitudes, indicating a high heating demand. Since the daily
mean temperature at both sites did not exceed 26 ◦C, summer cooling was not considered.
According to different heating degree days, the high altitude location (2177.5 m) belongs to
severe cold A regions and the low altitude location (950 m) belongs to cold regions [40],
while the two locations belong to very cold and cool regions, respectively, according to
Table Annex1-4 of the ASHRAE Standard 90.1-2019 [41]. With reference to the regulations
for the heating season in the severe cold region of Harbin and the cold region of Beijing,
the heating energy consumption calculation periods for the two regions are determined in
this paper: 20/10-20/4 (2177.5 m) and 15/11-15/3 (950 m), respectively.
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Figure 1. Monthly mean temperature (a) 2177.5 m; (b) 950 m; (c) typical year.

2.2. Experimental CH and Model Validation

A large number of THs (tents, cabins and CHs) were used in the Yanqing zone of
the Beijing 2022 Olympic and Paralympic Winter Games. Figure 2 shows the grand-
stand and CHs whose functions are Commentary Position, Broadcast Information of-
fice and so on of the Technical Finish Area. In this research, a CH with dimensions of
6.00 m (L) × 3.00 m (W) × 2.9 m (H) was studied, which was the Traffic service Staff
Lounge at Road Two, as shown in Figure 3a. A window (2.67 m × 0.9 m) and a glazed door
(1.47 m × 2.57 m) on a 3 m × 2.9 m wall, respectively (Figure 3b). The thermophysical
parameters of envelope enclosure is demonstrated in Tables 1 and 2.
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Table 1. Thermophysical parameters of non-transparent envelope.

Envelope Structures Thickness mm Thermal
Conductivity W/(m·K)

Specific Heat
J/(kg·K) Density kg/m3

Wall
Steel panel 1.2 45 300 7800

RW 75 0.04 1220 160
Aluminum honeycomb panel 9 0.88 300 10

Floor

Steel panel 1.2 45 300 7800
RW 75 0.04 1220 160

Cement pressure plate 18 0.039 900 350
reflective coating 1 0.039 837 2710

Composite wood board 12 0.24 1500 800

Roof
Steel panel 1.2 45 300 7800

RW 75 0.04 1220 160
Aluminum honeycomb panel 5 0.88 300 10

Table 2. Thermophysical parameters of transparent envelope.

Envelope Structure Heat Transfer
Coefficient of Glass W/(m2·K)

Solar Heat Gain
Coefficient (SHGC)

Window/Door
6 mm Low-E glass

1.8 0.4312 mm air layer
6 mm clear glass

A simulation model for the CH was established using EnergyPlus, as shown in
Figure 3c. For the purpose of model validation, a field research of the CH was carried out.
The indoor air temperature and internal surface temperature of glass door were measured.
Figure 4 shows the position of temperature measuring points. Indoor air temperature was
measured in the corner of the CH at a height of 0.45 m from the floor to avoid the effects of
solar radiation and the measuring point of surface temperature was 1.3 m from the floor.
The USB temperature and humidity recorder with an accuracy of ±0.1 ◦C and SMD tem-
perature recorder with an accuracy of ±0.2 ◦C were used to measure air temperature and
surface temperature, respectively, as shown in Figure 5a,b. In addition, weather parameters
including outdoor air temperature, relative humidity, horizontal global solar radiation,
horizontal diffuse radiation, atmospheric pressure, wind direction and wind speed were
recorded by a meteorological station nearby, as shown in Figure 5c.
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All the measuring instruments were calibrated before use. The measurement time
interval for all parameters was 5 min. The measurement started on 1 October 2021 and
ended on 10 October 2021 to collect experimental data for model validation. During the
measurements, the indoor temperature was affected on 6 October by the entry of staff into
the room, so the data from the 6th was excluded when comparing the actual measurement
with the simulated data later. The door and the windows were closed at all other times of
the measurements, and there were no occupants and heat-generation equipment inside the
experimental CH.

The comparisons between the simulated and measured temperature are as shown
in Figure 6. As seen, a good agreement between the simulated and measured indoor
air temperatures was achieved. To further ascertain the validation accuracy, two basic
statistical parameters were calculated. One was the Mean Absolute Error (MAE) and the
other coefficient of Root Mean Square Error (RMSE), using Equations (1) and (2), as follows:

MAE =
1
N ∑N

i=1 |mi − si| (1)

RMSE =
√

∑N
i=1 (mi − si)2/N (2)

where mi and si are the respective measured temperature and simulated temperature for
each time interval ‘i’, and N is the total number of hours used for validation.
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Figure 6. Comparisons between the measured and simulated (a) indoor air temperatures; (b) internal
surface temperatures of glass door.

The MAE and RMSE for air temperature are 0.98 ◦C and 1.22 ◦C, respectively, and
are 1.23 ◦C and 1.69 ◦C for the surface temperature of the glass door, which are within the
permissible error range [42]. Therefore, the accuracy of the simulation was verified with
experiments. Then, the simulation method was utilized to calculate the heating energy
consumption of the CH.

2.3. Numerical Simulation
2.3.1. Simulation Parameters Setting

EnergyPlus was used to simulate the heating energy consumption of the CH, and the
parameters were set according to the actual conditions of the Olympic and Paralympic
Winter Games. The occupancy schedule is 07:00–17:00. The density of lighting is 4 W/m2,
and the number of people in the room is 1. Given the function of the room, no considera-
tion was given to electrical equipment, such as printers, computers, etc. No mechanical
ventilation was set up, the airtightness of the doors and windows was class V [43], and
the infiltration air volume was 0.01 m3/s, meeting the minimum fresh air volume of
30 m3/s required by personnel [44]. Electric heaters were used for heating, with an electric
heat conversion efficiency of 90%, and the design heating temperature is 18 ◦C from 07:00
to 17:00, and 10 ◦C for the rest of the time.

In this research, we conducted the comparative simulations between the conventional
insulation materials (rock wool (RW), extruded polystyrene (XPS) and polyurethane (PU))
and the high performance vacuum insulation panel (HVIP) of which core material is fumed
silica. Related studies have proposed a linear temperature-dependent law that displays a
decreased thermal conductivity at low temperatures [45–47]; the thermal conductivity of
the HVIP was tested at different temperatures and the results showed 0.0039 W/m·K at
−20 ◦C and 0.0048 W/m·K at 25 ◦C. Thus, in order to unify the temperature conditions, the
thermal conductivity of the material at room temperature is used in this paper. Despite that,
the results calculated at room temperature conditions will be larger than actual results since
the actual environment has a low temperature, this is for the sake of safer consideration.
The performance parameters of materials are shown in Table 3, where the parameters
of HVIP are provided by qualified third-party testing institution and other materials are
referred to [40,48–50].
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Table 3. Characteristics of the selected insulation materials.

Insulation
Material

Thermal
Conductivity

(W/m·K)

Specific Heat
(J/kg·K) Density (kg/m3) Fire Rating

RW 0.04 1220 160 A
XPS 0.03 1380 35 B1
PU 0.024 1380 35 B1

HVIP 0.005 876 200 A

2.3.2. Insulation Thickness under the NZEB Standard

The original envelope of CH was improved with reference to the limits on the U-values
of the envelope by permanent building standard GB/T 51350-2019 Technical Standard for
Nearly Zero Energy Buildings (NZEB) [51]. Table 4 shows the U-values for severe cold regions
and cold regions. It is noted that the U-values are within the range required by the standard,
rather than the lower limit value in order to ensure that the thicknesses of the materials
are all integers. Table 5 is insulation materials with required thicknesses in the different
building parts under the NZEB standard. The walls, roof and floor of the original envelope
are insulated with 75 mm RW.

Table 4. U-values of envelope under the NZEB standard.

Building Part
U-Value (W/m2·K)

Severe Cold Region Cold Region

Wall 0.24 0.298
Roof 0.194 0.299
Floor 0.3 0.395

Table 5. Insulation material thicknesses for different parts of envelopes required under the
NZEB standard.

Building Part
2177.5 m 950 m

RW XPS PU HVIP RW XPS PU HVIP

Wall 160 120 96 20 128 96 77 16
Roof 200 150 120 25 128 96 77 16
Floor 104 78 62.5 13 72 54 43 9

2.4. Indicators of Economic and Environmental Analysis

Economic rationality is one of the factors that must be considered in the design of
energy-saving buildings and is equally important for THs. Using original envelope as the
baseline scheme, the financial payback effect of the energy efficiency schemes under the
NZEB standard is measured by calculating the payback period. There are two methods to
calculate the payback period: the simple payback and discount payback. However, simple
payback period is usually shorter than the latter in an inflationary economic context since
it is calculated by omitting the time value of currency. So, the discount payback period that
is calculated by taking into account the time value of currency and converting the future
energy savings into the present value is more likely to be in line with the economic reality.
Hence, this paper calculated the discount payback period of each insulation material under
NZEB standard by Equations (3) and (4) [52].

PD = T′ − 1 +
|∑T′−1

t=0 (CI − CO)t(P/F, r, t)|
(CI − CO)T′(P/F, r, T′)

(3)

(P/F, r, t) =
1

(1 + r)t (4)



Int. J. Environ. Res. Public Health 2022, 19, 16417 9 of 17

where PD is the discount payback period, T′ is the number of years with positive cumulative
discounted value, CI represents cash inflow and its value equals to annual saving electric
charge, CO represents cash outflow and its value equals to the increased cost of insulation,
P/F is present-value compound interest factor and r is discount rate.

As the service life of a container house varies with application situation, it is necessary
to determine the thickness of the insulation according to its service life. Life Cycle Cost
(LCC) is one of the popular financial analysis methods, which has been used to evaluate
the cost and benefit of the building envelope [53]. This analysis method considers the
initial cost of the insulation materials plus the ongoing energy cost over the expected
lifetime of the insulation [37]. Through the use of the LCC, the optimal isolation level
may be defined keeping costs to a minimum. Equations (5) and (6) are the proposed LCC
calculation expressions.

LCC = EH × ET × PVF× (CP + CI)× c (5)

PVF =
(1 + r)N − 1

r× (1 + r)N (6)

where EH is the heating energy consumption per unit area, which is simulated by Energy-
Plus; ET is electricity tariff, which was based on the field investigation after the Paralympic
Winter Games in Yanqing; PVF is the Present Value Function; CP is the price of thermal
insulation; CI is the installation cost of the insulation material; c is the consumption of
insulation materials; N is the service life for the CH in a place. The details of calculation
parameters are shown in Table 6.

Table 6. Calculation parameters.

Parameter Value Unit

CP

RW 750

RMB/m3
XPS 800
PU 1100

HVIP 15,000

CI 240 RMB/m3
ET 1.05 RMB/kWh
N 1~20 [30,54] year(s)
r 5% [53,55] -

EFOPE 0.5839 [56] kgCO2/(kW·h)

EFPRO

RW 316.8 [57]

kgCO2/m3
XPS 296.6 [58]
PU 363.7 [58]

HVIP 2220 [59]

In this paper, the maximum service life of the CH is 20 years. For the long-term
application of insulation materials, there are aging phenomena that exist. Relevant research
related to the variation of thermal conductivity of insulation materials influenced by
aging showed that the thermal conductivity of different insulation materials affected by
multiple factors, such as material properties, production process level, and application
conditions [60–64], while the variation of thermal conductivity of four insulation materials
with the practical climate conditions has not been conducted in this paper. So, it was
assumed that the thermal conductivity of the four materials is fixed in this paper.

Accurate accounting of building carbon emissions can promote the healthy devel-
opment of green buildings and can enable them to truly achieve their original goal of
energy saving and emission reduction. Scholars have developed process-based method,
input–output method, and hybrid method for the emission assessment of buildings [65].
Process-based method combines activity data with relevant emission factors to assess the
emissions and has been widely used in the analysis of individual buildings [66]. Therefore,
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the process-based method was chosen to calculate the carbon emissions. The total carbon
emissions in this research include the production stage of insulation material and the
operation stage of the CH, as shown in Equation (7):

CT = M× EFPRO + W × EFOPE (7)

where M and EFPRO are the consumption and emission factor for insulation materials,
respectively; W and EFOPE are the electricity consumption and electricity carbon emission
factors, respectively. Although renewable energy was used in the Beijing 2022 Olympic and
Paralympic Winter Games, the carbon emission factor of electricity issued by Ministry of
Ecology and Environment of the People’s Republic of China was used to make the study
more universal. Carbon emission factors are presented in Table 6.

3. Results and Discussions
3.1. High Insulation Performance CH
3.1.1. Usable Area and Volume of the Room

From Table 5, it can be seen that when the U-values are within the range required
by NZEB standard in severe cold region, the required thickness of RW can be as high as
200 mm, which is far beyond 25 mm, the maximum thickness of HVIP. HVIP insulation
consistently gives the lowest thickness required. For the internal insulation of container
houses, the thickness of the insulation material will greatly affect the internal usable area
and volume of the room. Table 7 shows the usable area (S) and the usable volume (V) of
the room under different schemes. With the improvement of insulation performance, both
S and V drop steeply when conventional insulation materials are used for insulation due to
the dramatic increase in material thickness. However, if HVIP is used, the usable area of
the room when reaching the NZEB standard is also larger than the original envelope.

Table 7. Usable area (S) and usable volume (V) under the NZEB standard.

S (m2)/V (m3) Original Envelope
2177.5 m 950 m

RW XPS PU HVIP RW XPS PU HVIP

S 16.7 15.2 15.9 16.3 17.6 15.8 16.3 16.6 17.7
V 45.8 39.5 42.5 44.3 50.5 42.6 44.8 46.3 50.9

The thickness corresponding to different insulation materials are shown in Table 5.

3.1.2. Heating Energy Consumption

Table 8 shows the heating energy consumption based on both of the two meteorological
parameters. The heating energy consumption is 32.8% and 21.4% lower than the original
envelope at the altitude of 2177.5 m and 950 m, respectively, when the U-values of CH meet
the NZEB standard. It is important to improve the insulation performance of CHs, from
the point of view of building energy efficiency. The annual heating energy consumption
per floor area under the NZEB standard was 193.3 kW·h/(m2·a) and 113.92 kW·h/(m2·a)
on average at the altitude of 2177.5 m and 950 m, respectively. One of the main reasons for
the high energy consumption is that CH, as a single building, has a shape factor of 1.69
in this paper, while GB 55015-2021 General Code for Energy Efficiency and Renewable Energy
Application in Buildings [67] specifies a shape factor of 0.5 or less for public buildings in
severe cold and cold regions. An excessively large shape factor will lead to a great heat
dissipation on the external surface and more energy consumption.
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Table 8. The heating energy consumption.

2177.5 m 950 m

Original Envelope RW XPS PU HVIP Original Envelope RW XPS PU HVIP

Energy
consumption

(kW·h)
4588.9 3065 3087.9 3088.1 3089.5 2372.7 1857.6 1866 1866.4 1867.7

The thickness corresponding to different insulation materials are shown in Table 5.

3.1.3. Economic and Environmental Assessment

The payback period for schemes under the NZEB standard was calculated as shown
in Table 9. HVIP has long payback periods at both the altitudes. On one hand, the
upfront investment cost of HVIP is high and, on the other hand, the energy savings in the
operational phase of the CH are not significant especially for the altitude of 950 m. As a
result, the savings in the operational phase of the CH take a longer time (even more than
20 years) to cover the upfront capital investment. It is revealed that the payback period of
conventional insulation materials lasts less than 10 years.

Table 9. The payback periods.

2177.5 m 950 m

RW XPS PU HVIP RW XPS PU HVIP

Payback period (year) 3.96 2.5 2.8 13.6 6.4 2.9 3.5 31.4

The thickness corresponding to different insulation materials are shown in Table 5.

Figure 7 shows the total carbon emissions of the CH at the altitude of 2177.5 m and
950 m, in terms of different service lives. Carbon emissions are reduced as the service
lives of CH increase and energy efficiency standards improve. At the altitude of 2177.5 m,
the reduction in carbon emissions increased from 13.6% to 29.5% compared to original
envelope when the service life of CH is extended from 3 years to 20 years, and at the
altitude of 950 m, the carbon emissions of cases under the NZEB standard are reduced by
15.6% and 18.5% at 10 and 20 years, respectively, compared to original envelope. So, from
an environmental point of view, energy saving becomes equally important when CHs are
used in the long term. The difference in total carbon emissions when CH is insulated with
conventional and high performance insulation materials, respectively, is not significant,
with a maximum difference of 0.9 t when the service life of CH is 20 years under the same
meteorological parameter. Although the carbon emission factor of conventional insulation
materials is seven times smaller than that of HVIP, its high dosage puts it at a disadvantage.
On the other hand, the difference in heating energy consumption between the two under
the same standard is not large either.
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Figure 7. Carbon emissions of the original envelope and the optimized envelope, in terms of different
service lives (a) 2177.5 m; (b) 950 m. Note: The U-values of the optimized envelope meet the
NZEB standard.
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3.2. Economic Thickness

Figure 8 shows the variation of cost with insulation thickness for a container house
with a service life of 5 years. As expected, the cost of heating energy consumption decreases
with the increase in insulation thickness while the initial cost increases. The total cost
decreases and then increases as the thickness of the insulation increases.
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Figure 8. Variation of cost with insulation thickness (a) RW; (b) XPS; (c) PU; (d) HVIP.

The minimum total life cycle cost of the four insulation materials and the correspond-
ing insulation thickness for each year from 1 to 20 years were calculated, and, the variation
of economic thickness and total cost with service life are presented in Figure 9. It can be
seen that the service life of CH has a significant effect on economic thickness and total life
cycle cost whose values increase with the length of the service life, showing a trend of rapid
increase and then slow growth, which is consistent with the results in [68,69].

Therefore, from an economic point of view, the thickness of insulation materials can be
selected according to the service life (1–20 years) of the CH: at the altitude of 2177.5 m, the
economic thickness range of RW is 47–235 mm, with a total cost of 1–4.97 × 104 RMB; the
economic thickness range of XPS is 41–197 mm, with a total cost of 0.92–4.66× 104 RMB; the
economic thickness range of PU is 33–149 mm, with a total cost of 0.93–4.73 × 104 RMB; the
economic thickness range of HVIP is 4–18 mm, with a total cost of 1.28–6.41 × 104 RMB. At
the altitude of 950 m, the economic thickness range of RW is 28–158 mm, with a total cost of
0.65–3.26 × 104 RMB; the economic thickness range of XPS is 26–131 mm, with a total cost
of 0.59–3 × 104 RMB; the economic thickness range of PU is 25–118 mm, with a total cost of
0.55–2.8 × 104 RMB; the economic thickness range of HVIP is 2–12 mm, with a total cost of
0.76–3.89 × 104 RMB. It can be seen that the economic thickness of conventional insulation
materials spans a wide range, especially for RW.
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Figure 9. Variation of economic thickness and total cost with service life (a) RW; (b) XPS; (c) PU;
(d) HVIP.

Meanwhile, the carbon emissions corresponding to the economic thickness of the four
insulation materials were calculated, as shown in Figure 10. Due to the high price of HVIP,
its economic thickness is much smaller compared to conventional insulation materials in the
same year, while the heating energy consumption required will be larger than conventional
insulation materials, so its carbon emission is higher than conventional insulation materials.
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4. Conclusions

In this study, the insulation of a CH was improved with reference to the require-
ments of NZEB standard for thermal performance of the envelope, the heating energy
consumption of CH with different insulation materials was simulated and their economic
and environmental benefits were analyzed. Meanwhile, the economic thickness of different
insulation materials was calculated considering the service life of the CH.

Improving the insulation performance of CH has a great energy-saving effect. The
annual heating energy consumption of CH is reduced by 32.8% at the altitude of 2177.5 m
and 21.4% at the altitude of 950 m compared to the original envelope when the U-values of
the envelope meet the NZEB standard. In addition, carbon emissions are reduced as the
service lives of CH increase. After reducing the U-values of the envelope to meet NZEB
standard, carbon emissions are 18.5% lower at the altitude of 2177.5 m and 29.5% lower
at the altitude of 950 m, if the CH is used for 20 years. Therefore, it is evidently seen that
HVIP has the longest payback period, up to 31.4 years at the altitude of 950 m, which is
less economically beneficial when meeting the NZEB standard.

What is more, the service life of the CH has a great impact on the economic thickness.
When the service life is from 1 to 20 years, the economic thickness range is 47–235 mm
for RW, 41–197 mm for XPS, 33–149 mm for PU, and 4–18 mm for HVIP at the altitude
of 2177.5 m. At the altitude of 950 m, the economic thickness range is 28–158 mm for
RW, 26–131 mm for XPS, 25–118 mm for PU, and 2–12 mm for HVIP. The total cost and
carbon emission of the economic thickness of HVIP is still higher than that of conventional
insulation materials. If HVIP is widely used in the future, the price may be reduced, which
is likely to result in the reduction of the total cost and carbon emission reduced.

CHs are now a commonly used prefabricated element in the building industry. The
CHs achieved a variety of functional applications during the Beijing 2022 Olympic Winter
Games. After the game, as sustainable legacies, the CHs have been recycled and trans-
formed as convenience stores, reading bars, hotel rooms and so on to play an important
role in urban comprehensive development and urban renewal. Although the research of
this paper is based on the meteorological parameters of Xiaohaituo Mountain, the results
are also appropriate for similar climate conditions.
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