
Citation: Chen, H.; Xu, Z.; Liu, Y.;

Huang, Y.; Yang, F. Urban Flood Risk

Assessment Based on Dynamic

Population Distribution and Fuzzy

Comprehensive Evaluation. Int. J.

Environ. Res. Public Health 2022, 19,

16406. https://doi.org/10.3390/

ijerph192416406

Academic Editors: Paul B.

Tchounwou and Nir Krakauer

Received: 17 October 2022

Accepted: 3 December 2022

Published: 7 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Urban Flood Risk Assessment Based on Dynamic Population
Distribution and Fuzzy Comprehensive Evaluation
Hao Chen 1,2, Zongxue Xu 1,2,*, Yang Liu 3, Yixuan Huang 1,2 and Fang Yang 4

1 College of Water Sciences, Beijing Normal University, Beijing 100875, China
2 Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing 100875, China
3 College of Geoscience and Surveying Engineering, China University of Mining and Technology,

Beijing 100875, China
4 The Pear River Hydraulic Research Institute, Pearl River Water Resources Commission,

Guangzhou 510000, China
* Correspondence: zxxu@bnu.edu.cn

Abstract: Floods are one of the most common natural disasters that can cause considerable economic
damage and loss of life in many regions of the world. Urban flood risk assessment is important for
urban flood control, disaster reduction, and risk management. In this study, a novel approach for
assessing urban flood risk was proposed based on the dynamic population distribution, improved
entropy weight method, fuzzy comprehensive evaluation method, and the principle of maximum
membership, and the spatial distribution of flood risk in four different sessions or daily time segments
(TS1–TS4) in the northern part of the Shenzhen River Basin (China) was assessed using geographic
information system technology. Results indicated that risk levels varied with population movement.
The areas of highest risk were largest in TS1 and TS3, accounting for 7.03% and 7.07% of the total area,
respectively. The areas of higher risk were largest in TS2 and TS4, accounting for 4.54% and 4.64% of
the total area, respectively. The findings of this study could provide a theoretical basis for assessing
urban flood risk management measures in Shenzhen (and even throughout China), and a scientific
basis for development of disaster prevention and reduction strategies by flood control departments.

Keywords: urban flood risk assessment; dynamic population; improved entropy weight; fuzzy
comprehensive evaluation; principle of maximum membership

1. Introduction

Floods are one of the most common natural disasters and can cause considerable
economic damage and loss of life in many regions of the world [1–4]. Previous studies
reported that floods accounted for 44% of all disaster events during 2000–2019, affecting
1.6 billion people worldwide and causing economic losses of US$651 billion [5]. Moreover,
with global climate change and acceleration of urbanization processes, the frequency and
risk level of floods are expected to increase in the future [6,7].

During the past two decades, China has been affected most by flooding, experiencing
an average of 20 floods per year that affected a total of 900 million people, i.e., approximately
55% of the total number of people affected by flooding worldwide [5]. Statistical data in
China’s flood and drought disaster prevention bulletin reveal that during 2000–2020 there
were 21,720 fatalities and economic losses of 3163.952 billion yuan directly attributable to
flooding. Urban floods, which have become an important factor of urban public security
in China, seriously restrict sustainable and healthy socioeconomic development [8]. As
an important tool for flood prevention, flood risk assessment has substantial practical
application in flood risk management. It not only provides scientific and technological
support for urban flood prevention and disaster reduction, but also leads to improvement
in public awareness of flood risk. Consequently, flood risk assessment has become a hot
topic in the field of natural science and technology over recent decades [9–11].
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Urban flood risk assessment performs comprehensive evaluation of hazard-formative
factors, hazard-formative environments, hazard-affected bodies, and the capability for
disaster prevention and reduction with the aim of obtaining accurate assessment of flood
risk levels [12]. Traditionally, flood risk assessment adopts three main approaches: historical
disaster mathematical statistics methods [13–15], multicriteria analysis (MCA) [16–19], and
scenario simulation analysis [20–23]. Among these three approaches, MCA is used more
widely in research on urban flood risk assessment because it can better reflect the chain of
urban flood disasters, and has the advantages of easy data acquisition and simple modeling.
However, related studies often use the average annual population distribution as one of the
indicators for analysis when using MCA for urban flood risk assessment, thereby ignoring
the dynamic changes of the population and reducing the accuracy of the assessment results.

Accurate information of the actual population distribution and its temporal patterns
is of high importance for calculating populations at risk for human or natural disasters, to
assess vulnerabilities, or to derive health and development indicators [24,25]. However,
information about the actual human distribution is often scarce and predominantly based on
static population data derived from national population censuses and registers. Although
the increasing use of global positioning and geographic information system technologies
has supported the improved collection of census data and their processing, these much-
used datasets only provide information about the static population rather than the actual
distribution of people at different times of the day [26,27]. In recent years, with the
popularity of mobile phones, how to capture population dynamics in space and time has
fundamentally changed, because they can reveal the precise digital footprints of individuals
in space and time. Analyses of population dynamic distribution based on mobile phone
data are of great significance for improving the accuracy of disaster risk assessment and
the response to disasters [28,29]. However, to date, the applications of dynamic population
distribution in urban flood risk assessment are still rare. Therefore, in this study, we
integrated the dynamic population into MCA to develop a multi-index system of flood
risk assessment.

The assignment of index weights in MCA is crucial to the result of its application to ur-
ban flood risk assessment [30]. Common methods to determine appropriate index weights
include the analytic hierarchy process (AHP) [1,31–33] and the entropy method [34,35].
These two methods have their own specific advantages and disadvantages. For example,
the AHP is greatly affected by the expert cognitive level of the user and it exhibits strong
randomness. The entropy method is mainly affected by the characteristics of the data distri-
bution, without considering the practical significance of the indexes [23,36,37]. Therefore,
an improved entropy weight (EW) method that incorporates the advantages of both the
AHP and the entropy method was adopted in this study.

We propose a novel approach for assessing urban flood risk based on the dynamic
population distribution, improved EW method (combined weight method), fuzzy compre-
hensive evaluation method, and the principle of maximum membership, and we assess the
spatial distribution of flood risk in the northern part of the Shenzhen River Basin (China)
with the support of geographic information system (GIS) technology. The remainder of
this paper is organized as follows. In Section 2, the study area and data are introduced.
Section 3 describes the methods adopted in this study, including the combined weight
method and fuzzy comprehensive evaluation. The results of the flood risk assessment
based on the dynamic population distribution, combined weight method, fuzzy compre-
hensive evaluation method, and the principle of maximum membership in the study area
are reported and discussed in Section 4. Finally, the derived conclusions are described in
Section 5.

2. Study Area and Data Description
2.1. Study Area

The Shenzhen River Basin is located to the east of the Pearl River Estuary in Southeast
China, which is an important part of the Guangdong–Hong Kong–Macao Greater Bay Area.
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The catchment is bordered by mountains to the north, east, and south and by Shenzhen
Bay to the west. The basin area to the north of the Shenzhen River belongs to the city
of Shenzhen and the area to the south belongs to the Hong Kong SAR. The Shenzhen
River originates at Niuweiling in the Wutong Mountains and flows southwestward over
a distance of 33.4 km into Shenzhen Bay. Its major tributaries include the Shawan, Buji,
and Futian rivers on the Shenzhen side, and the Pingyuan, Wutong, and Xintian rivers
on the Hong Kong side. We selected the northern part of the Shenzhen River Basin (total
area: 192.69 km2; Figure 1) as the study area for urban flood risk assessment based on the
dynamic population distribution. The study area has a maritime subtropical monsoon
climate with average annual precipitation of 1764.14 mm.
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The study area, which includes central and eastern parts of Futian District, all of Luohu
District, the southwest of Longgang District, and the western edge of Yantian District,
represents the most economically developed and densely populated area of Shenzhen.
Owing to its special geographical location, this area is vulnerable to joint impact from
rainfall and tide level, which means urban floods occur frequently and seriously hinder
the sustainable socioeconomic development of the region. On the evening of 11 April
2019, Shenzhen was hit by short-time extreme heavy rainfall, which led to sudden floods
in several regions of the city, resulting in disaster in some areas and 11 deaths. All the
dead were concentrated in Luohu and Futian District. From 29 to 30 August 2018, heavy
rainstorms occurred in Shenzhen for two consecutive days, with the maximum 24-h rainfall
reaching 413 mm. Different degrees of disasters have occurred in the whole city, with Luohu
and Longgang District suffering the most. Furthermore, in the “5.11” (2014), “6.13” (2008)
and other heavy rainstorm events in Shenzhen, the study area was the most severely
affected. Therefore, it is very important that urban flood risk assessment be undertaken in
this area.

2.2. Data Description

The selection of risk index varies by region and depends on the specific characteristics
of the location [10]. One index could have a high degree of impact toward flood risk in
one area but could be neglected in another area [38]. According to the actual conditions
of hazard-formative factors, hazard-formative environments, hazard-affected bodies, and
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the capability for disaster prevention and reduction, starting from the two risk elements of
hazard and vulnerability, this study selected 10 flood risk indexes for analysis: maximum
1-day rainfall amount (Rx1day), number of heavy rainfall days above 50 mm (R50mm),
digital elevation model (DEM), slope (SL), land use pattern (LUP), distance to the river (DR),
gross domestic product density (GDP), dynamic population (D-POP), building density
(BD), and pipe network density (PD). Each index is described in detail in the following.

• Maximum 1-day rainfall amount (Rx1day, mm). Precipitation is a direct factor leading
to urban flooding. Rx1day reflects the extreme precipitation leading to floods in the
study area. The Rx1day index was calculated according to daily precipitation data
recorded at observational stations during 1986–2019. The data were obtained from
Shenzhen hydrological data almanacs and the University of Hong Kong.

• Number of heavy rainfall days above 50 mm (R50 mm, number/year). R50 mm reflects
the frequency of extreme precipitation. The length and source of the data series were
consistent with those of Rx1day.

• Digital elevation model (DEM, m). This index reflects the topographical conditions
of the study area. Areas at low elevation are generally more prone to flooding be-
cause rainfall flows from areas of high elevation to areas of low elevation under
natural conditions. The DEM data were accessed from the Geospatial Data Cloud
(https://www.gscloud.cn/, accessed on 20 May 2020).

• Slope (SL, degree). This index is used to reflect the degree of topographic change.
Mountain areas generally have severe slopes that prevent water collection, whereas
lowlands or flatlands have gentle slopes that result in a constant threat of flooding.
The index was calculated from the DEM using GIS techniques.

• Land use pattern (LUP). Runoff conditions vary considerably under different patterns
of land use. A runoff coefficient was used to differentiate the LUP. Seven patterns
were selected and assigned different runoff coefficients according to the Code for
the Design of Building Water Supply and Drainage of China (GB50015-2003) and
the Code for the Design of Outdoor Wastewater Engineering of China (GB50014-
2006). The runoff coefficient of forest land, herbaceous land, wet land, crop land,
bare area, built-up area, and water bodies was set as 0.15, 0.2, 0.5, 0.6, 0.7, 0.9, and
1, respectively. The land use data were accessed from the European Space Agency
(https://viewer.esa-worldcover.org/worldcover, accessed on 20 May 2020).

• Distance to the river (DR, km). Regions near rivers might be prone to flooding because
of dyke breaching or overtopping. Conversely, regions far away from rivers are
generally safer. The DR index was set to 0 at the river and its value increased as the
distance to the river increased. This step was conducted using Euclidean distance in
the GIS.

• Gross domestic product density (GDP, yuan/km2). This index is important for reflect-
ing the economic situation and the level of social development of the study area in
2019. The data were derived from a geographic remote sensing ecological network.

• Dynamic population (D-POP, people/km2). Population distribution is crucial regard-
ing the accuracy of the results of urban flood risk assessment. In this study, D-POP
reflected the dynamic change of population within the study area. The data were
accessed based on location information clustering of Baidu products (e.g., web search,
maps, weather, and music) accessed by smartphones.

• Building density (BD). The index refers to the ratio of the building area in each grid to
the total grid area within the study area. The data were accessed from BIGMAP.

• Pipe network density (PD, km/km2). The index refers to the length of the drainage
pipe network in each grid, which reflects the capability of urban flood control and
disaster reduction to a certain extent. The drainage pipe network data were provided
by the China Institute of Water Resources and Hydropower Research.

Owing to the different treatment of positive and negative indexes, and according to
the above description and analysis of each index, the indexes were divided into positive
(Rx1day, R50mm, LUP, GDP, D-POP, and BD) and negative (DEM, SL, DR, and PD) indica-

https://www.gscloud.cn/
https://viewer.esa-worldcover.org/worldcover
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tors (Table 1). The greater the value of positive indicators, the higher the risk. Negative
indicators were the opposite.

Table 1. Urban flood risk assessment indexes and their attributes.

Schemes Criteria Indices Units Attributes of
Indices

Hazard

Hazard-formative factors
Rx1day mm +
R50mm number/year +

Hazard-formative
environment

DEM m -
SL degree -

LUP / +
DR km -

Vulnerability Hazard-affected bodies
GDP yuan/km2 +

D-POP people/km2 +
BD / +

The capability of disaster
prevention and reduction PD km/km2 -

3. Method

The overall framework and procedure of urban flood risk assessment are shown
in Figure 2. The approaches used in this study involve two main components: weight
calculation and fuzzy comprehensive evaluation. Each of these two approaches is described
in detail in the following.
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3.1. Calculation of the Weights for the Indexes
3.1.1. Analytic Hierarchy Process (AHP)

The AHP is a multicriteria decision-making method for assessing and integrating
the impacts of various factors [39]. It can make full use of the knowledge and experience
of experts, and can explore the inherent laws of data to guarantee the rationality of the
results and to reduce randomness. It includes four steps: establishment of a hierarchical
model, construction of a judgment matrix, calculation of the weight of each layer, and a
consistency check [40]. In this study, the AHP was used as a method to determine the
subjective weights of the indexes.

3.1.2. Entropy Weight (EW)

Entropy is a measure of the degree of disorder of information of a specific system
and it can be used to fully exploit the information contained in original data [41]. The EW
can indicate useful information provided by an index; however, it relies excessively on
objective data that cannot reflect the knowledge and practical experience of experts, such
that the results are occasionally inconsistent with reality and individual understanding. In
recent years, the EW method has been used widely to calculate index weights. In this study,
EW was used to determine the objective weights of the indexes. The main steps of the EW
method are summarized in the following.

Step 1: An initial sample evaluation matrix X was constructed for m evaluated objects
and n evaluation indexes:

X =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

 (1)

Step 2: Because the units of measurement of the various indexes are not unified,
they must be normalized before being used to calculate comprehensive indexes, thereby
overcoming the problem of homogenization of various heterogeneous index values.
Moreover, because the values of the positive and negative indexes represented different
meanings, we used different algorithms for data normalization of the positive and
negative indexes. Therefore, sample matrix X was converted into normalized matrix Y
as follows:

(a) normalize the positive indexes:

yij =
xij −min(xij)

max(xij)−min(xij)
(2)

(b) normalize the negative indexes:

yij =
max(xij)− xij

max(xij)−min(xij)
(3)

where yij is the normalized value of the i-th sample of the j-th index (I = 1, 2, . . . , m; j = 1,
2, . . . , n).

Step 3: The entropy of the j-th index was defined as follows:

let pij = yij/
m

∑
i=1

yij (4)

then, ej = (−
m

∑
i=1

pij ln pij)/ln m (5)
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Step 4: The deviation degree Dj of the j-th index was calculated as follows:

Dj = 1− ej (6)

Step 5: Finally, the weight of the j-th index was calculated as follows:

w′j = Dj/(
n

∑
j=1

Dj ) (7)

3.1.3. Combined Weights

The combined weight method, which integrates the advantages of the AHP and EW
methods, can make full use of the knowledge and experience of experts, and can explore
the inherent laws of the data to guarantee the rationality of the results and to reduce
randomness. In this study, we used the AHP method to determine the subjective weight
w∗j of the index, and the EW method to determine the objective weight w′j of the index. The
combined weight wj of the j-th index was calculated as follows:

wj = (w∗j w′j)/(
n

∑
j=1

w∗j w′j) (8)

3.2. Fuzzy Comprehensive Evaluation

A fuzzy set can quantify the fuzziness of an object and make a reasonable evalua-
tion through the membership function [42]. In comparison with traditional evaluation
methods, the concepts and methods of fuzzy mathematics are more suitable for risks
with fuzzy characteristics. Therefore, using fuzzy mathematics to establish a fuzzy eval-
uation model of flood risk is more in accord with the actual situation in comparison with
using traditional evaluation methods. The basic steps of the procedure are described in
the following.

Step 1: The combined weights of each index were calculated according to Equation (8),
and the weight matrix W was constructed as follows:

W = (w1, w2, · · · , wn) (9)

Step 2: Each index was divided into five levels, and a comment set V = (v1, v2, v3, v4, v5)
was established, corresponding to the lowest risk, lower risk, medium risk, higher risk, and
highest risk respectively. The upper limit value of each index was the maximum value and the
lower limit value was the minimum value. Five segmentation points (a1, a2, a3, a4, a5) were
selected for each index using the natural break method.

Step 3: Membership function is an important part of the fuzzy comprehensive evalua-
tion method, which directly affects the accuracy of the evaluation results. In this study, the
descending half trapezoid, ascending half trapezoid, and triangular distribution functions
were selected to calculate the membership degree of each index to each risk level in the
evaluation set. If rjk represented the membership degree of the j-th index to risk level k, the
membership function could be expressed as follows:

rj1 =


1(x ≤ a1)

a2−x
a2−a1

(a1 < x ≤

0(x > a2)

a2) (10)

rjk =


x−ak−1
ak−ak−1

(ak−1 < x ≤ ak)

ak+1−x
ak+1−ak

(ak < x ≤ ak+1)

0(x > ak+1 or x ≤ ak−1)

(11)
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rj5 =


0(x ≤ a4)

x−a4
a5−a4

(a4 < x ≤ a5)

1(x > a5)

(12)

where x is the actual data of an evaluation index, and ak is the critical value of the corre-
sponding risk level. According to the membership functions, the fuzzy relationship matrix
R between sample matrix X and comment set V was obtained.

Step 4: Using the algorithm of fuzzy mathematics, the weight matrix W and fuzzy
relationship matrix R were calculated to obtain the composite fuzzy vector B:

B = W·R = (w1, w2, · · · , w10)·


r11 r12 · · · r15
r21 r22 · · · r25
...

...
. . .

...
r101 r102 · · · r105

 = (b1, b2, b3, b4, b5) (13)

3.3. Determination of Flood Risk Level

According to the principle of maximum membership degree, the fuzzy comprehensive
evaluation vector B was compared, and the maximum value was selected as the basis
for evaluation of flood risk level. For example, in the evaluation vector of an evaluation
unit, max(b1, b2, b3, b4, b5) = b4 indicates that the risk level of the evaluation unit was the
higher risk.

4. Results and Discussion
4.1. Quantification of the Indexes

Based on the principles of being scientific, systematic, quantitative (measurable),
operational, and universal, the indexes of Rx1day, R50mm, DEM, SL, LUP, DR, GDP, D-
POP, BD, and PD were selected to construct a flood risk assessment system for the northern
part of Shenzhen River Basin. Except for the D-POP index, the other indicators were
transformed into grid layers by GIS wherein the raster scale was set to 30 × 30 m, and the
study area was divided into 214,280 grids, as shown in Figure 3.

4.2. Dynamic Population Analysis

In the process of urbanization, the number of super large cities with highly dense
population is increasing, and population mobility is becoming more complex and diverse.
Based on the average annual population distribution, urban flood risk assessment has
gradually been unable to satisfy the requirements of urban flood prevention and disaster
reduction. Establishment of an urban flood risk assessment system based on the dynamic
population distribution is an inevitable requirement of urban development. In this study,
we obtained the dynamic population distribution of Shenzhen from 20 April 2020 to
20 May 2020 based on the location information clustering of Baidu products accessed by
smartphones, with 1-h temporal resolution and 200-m spatial resolution. The dynamic
population of the study area was analyzed based on a GIS platform.

We selected four typical areas (Figure 1), including a commercial center, park, residen-
tial area, and administrative center, to analyze the daily dynamic changes in population, as
shown in Figure 4.
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(1) Commercial center. Figure 4a shows the dynamic changes in population of the
Shenzhen Huaqiang North Commercial Area (1.44 km2), which is the most densely pop-
ulated area in Shenzhen. The population began to increase at 09:00 local time (LT) and
reached a peak at around 13:00 LT. After 22:00 LT, the population was broadly stable
at 60,000.

(2) Park. Figure 4b shows the dynamic changes in population of Lotus Hill Park. The
main feature of the population change in this area is the two peaks that formed at 09:00
and 14:00 LT.

(3) Residential area. Figure 4c shows the dynamic changes in population of the Lower
Merlin community. This area (0.47 km2) is dominated by residential areas and supporting
commercial areas. The population began to decline from 06:00 LT, fluctuated slightly during
09:00–16:00 LT, and gradually increased after 17:00 LT.
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(4) Administrative center. Figure 4d shows the dynamic changes in population of
the Shenzhen Civil center. The area (0.14 km2) is dominated by public services such as
municipal government administrative offices and the library. The population of this area
began to increase from 06:00 LT, fluctuated during 09:00–16:00 LT, and decreased rapidly
after 17:00 LT.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 11 of 18 
 

 

populated area in Shenzhen. The population began to increase at 09:00 local time (LT) and 
reached a peak at around 13:00 LT. After 22:00 LT, the population was broadly stable at 
60,000. 

(2) Park. Figure 4b shows the dynamic changes in population of Lotus Hill Park. The 
main feature of the population change in this area is the two peaks that formed at 09:00 
and 14:00 LT. 

(3) Residential area. Figure 4c shows the dynamic changes in population of the Lower 
Merlin community. This area (0.47 km2) is dominated by residential areas and supporting 
commercial areas. The population began to decline from 06:00 LT, fluctuated slightly dur-
ing 09:00–16:00 LT, and gradually increased after 17:00 LT. 

(4) Administrative center. Figure 4d shows the dynamic changes in population of the 
Shenzhen Civil center. The area (0.14 km2) is dominated by public services such as munic-
ipal government administrative offices and the library. The population of this area began 
to increase from 06:00 LT, fluctuated during 09:00–16:00 LT, and decreased rapidly after 
17:00 LT. 

 
Figure 4. Dynamic changes in population of typical areas of Shenzhen: (a) commercial center, (b) 
park, (c) residential area, and (d) administrative center. 

Based on the daily dynamic changes in population of the typical areas of Shenzhen, 
we divided a day into four sessions or time segments: TS1 (06:00–08:00 LT), TS2 (09:00–
16:00 LT), TS3 (17:00–22:00 LT), and TS4 (23:00–05:00 LT), and we calculated the hourly 
average population of each session based on the GIS platform. Similarly, the results were 
converted into grid layers based on the GIS platform, and the raster scale was also set to 
30 × 30 m. The results are shown in Figure 5. 
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Based on the daily dynamic changes in population of the typical areas of Shenzhen, we
divided a day into four sessions or time segments: TS1 (06:00–08:00 LT), TS2 (09:00–16:00 LT),
TS3 (17:00–22:00 LT), and TS4 (23:00–05:00 LT), and we calculated the hourly average popula-
tion of each session based on the GIS platform. Similarly, the results were converted into grid
layers based on the GIS platform, and the raster scale was also set to 30 × 30 m. The results
are shown in Figure 5.

As can be seen from Figure 5, because TS1 covered the morning rush hour, the popula-
tion was most dispersed, and the maximum population density was only 80,837 people/km2.
The population distribution of TS2 was the most concentrated, and the maximum popu-
lation density reached 235,420 people/km2. The population was concentrated mainly in
the most economically developed areas in the southwest of the study area, including the
east of Futian District and the west of Luohu District. TS3 covered the late rush hour, and
the population gathered in the southwest of the study area gradually migrated toward the
north. TS4 covered the nighttime period during which the population was concentrated
mainly in the residential areas of Futian District, Luohu District, and Longgang District.
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4.3. Calculation of the Weights

As described in Section 3.1, the index weights were calculated using the combined
weight method that integrates the advantages of the AHP and EW methods. First, the
AHP method was applied to determine the relative degree of importance between the
indexes. We invited 10 experts in the field of urban flooding and asked them to rank the
significance of the indexes in terms of flood risk. Based on the significance assigned by the
experts to the indexes in terms of flood risk, the judgment matrices of the indexes were
determined (Table 2), with a consistency ratio CR = 0.021 < 0.1, thereby indicating that the
judgment matrix was reasonable. Subsequently, the EW method was used to determine
the objective weights based on the deviation degree within the index in different sessions.
Table 3 provides details of the inconsistency between the entropy weights and the AHP
weights. For example, DEM was considered an important index for flood risk estimation
in the AHP method, whereas its weight was relatively low in the entropy method owing
to the flat terrain in the study area and the small variation in elevation. Therefore, it was
considered unreasonable to determine weights using only the AHP method or the EW
method. The final index weights of the different sessions determined by the combined
weight method are listed in Table 3.
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Table 2. Judgment matrix for the AHP method.

Indices Rx1day R50mm DEM SL LUP DR GDP D-POP BD PD

Rx1day 1 4 5 7 6 5 3 2 7 2
R50mm 1 2 4 3 2 1/2 1/3 4 1/3

DEM 1 3 2 1 1/3 1/4 3 1/4
SL 1 1/2 1/3 0.2 1/6 1 1/6

LUP 1 1/2 1/4 1/5 2 1/5
DR 1 1/3 1/4 3 1/4

GDP 1 1/2 5 1/2
D-POP 1 6 1

BD 1 1/6
PD 1

Table 3. Determination of index weights based on the AHP, EW, and combined weight methods.

Indices

Methods

AHP
EW Combined Weights

TS1 TS2 TS3 TS4 TS1 TS2 TS3 TS4

Rx1day 0.2596 0.0292 0.0286 0.0286 0.0283 0.0855 0.0816 0.0821 0.0801
R50mm 0.0808 0.0223 0.0217 0.0218 0.0215 0.0203 0.0193 0.0194 0.0190

DEM 0.0533 0.0033 0.0032 0.0032 0.0032 0.0020 0.0019 0.0019 0.0018
SL 0.0237 0.0066 0.0065 0.0065 0.0064 0.0018 0.0017 0.0017 0.0017

LUP 0.0352 0.2584 0.2523 0.2530 0.2499 0.1023 0.0977 0.0982 0.0959
DR 0.0533 0.0295 0.0288 0.0288 0.0285 0.0177 0.0169 0.0170 0.0166

GDP 0.1189 0.1591 0.1554 0.1558 0.1539 0.2129 0.2033 0.2044 0.1996
D-POP 0.1759 0.2432 0.2609 0.2588 0.2680 0.4816 0.5051 0.5024 0.5141

BD 0.0237 0.2428 0.2371 0.2378 0.2349 0.0648 0.0619 0.0622 0.0607
PD 0.1759 0.0057 0.0055 0.0056 0.0055 0.0112 0.0107 0.0108 0.0105

4.4. Urban Flood Risk Assessment

In this study, we assessed the urban flood risk of the study area based on the combined
weight method, fuzzy comprehensive evaluation method, and the principle of maximum
membership. The upper limit values of the nine indexes (Rx1day, R50mm, DEM, SL, LUP,
DR, GDP, BD, and PD) were the maximum values, and the lower limit values were the
minimum values. Because the maximum value of the D-POP index in the different sessions
was different, the maximum value of the D-POP index in the four sessions was selected as
the upper limit. Five segmentation points were selected for each index using the natural
break method. The results are shown in Table 4. The calculation results obtained using the
combined weights method for the different sessions are shown in Table 3. Finally, maps of
the spatial distribution of flood risk level in the different sessions in the study area based
on the fuzzy comprehensive evaluation were prepared, as shown in Figure 6.

Table 4. Segmentation points of evaluation grade of each index.

Indices a1 a2 a3 a4 a5 Range of Indices

Rx1day 140.46 150.31 158.63 166.71 176.05 124.06–188.41
R50mm 5.92 7.04 7.97 8.84 9.65 4.09–10.56

DEM 522.00 335.00 196.00 105.00 48.00 4–928
SLOP 34.00 26.00 19.00 12.00 5.00 0–60
LUP 0.20 0.50 0.60 0.70 0.90 0.15–1
DR 5.99 4.60 3.32 2.09 0.97 0–8.21

GDP 83,665.00 182,638.00 267,973.00 404,129.00 680,763.00 38,844–962,809
POP 7385.71 20,310.71 36,005.34 58,162.48 110,785.67 0–235,420
BD 0.07 0.18 0.30 0.44 0.64 0–1
PD 7.52 5.41 3.81 2.30 0.71 0–11.99
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It can be seen from Figure 6 that the areas with the highest flood risk level are con-
centrated mainly in the east of Futian District and the southwest of Luohu District. In
TS1, the areas with the highest risk of urban flooding are concentrated mainly in the port
area of Luohu District, owing to the large size of the outbound and traveling population
gathered in this area during the morning rush hour, the relatively closeness of this area to
the Shenzhen River, and the higher level of economic development. The flood risk level in
Longgang District is mainly medium and low. During TS2, parts of the Luohu port area
with the highest risk transform into high- and medium-risk areas, and the areas of highest
risk decrease. Similarly, parts of the medium-risk areas in Longgang District transform into
areas with lower risk. During TS3, the areas with highest risk gradually spread northward.
Parts of Longgang District with lower risk transform into medium-risk areas. During
TS4, the areas of highest risk in the east of Futian District and the southwest of Luohu
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District decrease, and some areas of Longgang District transform from medium-risk areas
to higher-risk areas.

For the different sessions, the proportions of the areas with different risk levels to
the total study area are listed in Table 5. It can be seen that the areas of highest risk in
TS1 and TS3 were largest, accounting for 7.03% and 7.07% of the total area of the study
area, respectively. This was because TS1 and TS3 covered the morning and late rush hours
when the population was relatively scattered. The areas of higher risk in TS2 and TS4 were
largest, accounting for 4.54% and 4.64% of the total area of the study area, respectively. This
was because people were mainly in office areas and residential areas in TS2 and TS4, i.e.,
the population was relatively concentrated, which caused parts of the areas of highest risk
to transform into areas of higher risk.

Table 5. Areal proportions of different risk levels in different sessions in the study area (%).

Sessions
Risk Levels

Lowest Risk Lower Risk Medium Risk Higher Risk Highest Risk

TS1 58.32 19.47 12.00 3.17 7.03
TS2 59.32 21.28 8.88 4.54 5.99
TS3 59.61 18.88 10.66 3.78 7.07
TS4 62.97 17.16 10.00 4.64 5.22

5. Conclusions

The study proposed a novel approach for assessing urban flood risk based on the
dynamic population distribution, improved EW method (combined weight method), fuzzy
comprehensive evaluation method, and the principle of maximum membership. With the
support of GIS technology, the proposed approach was applied to assess the spatial distribu-
tion of the urban flood risk in different sessions in the northern part of the Shenzhen River
Basin. Ten flood risk indexes (i.e., Rx1day, R50mm, DEM, SL, LUP, DR, GDP, D-POP, BD,
and PD) were selected to construct the index system of urban flood risk assessment based
on the principles of being scientific, systematic, quantitative (measurable), operational,
and universal.

The assignment of index weights is crucial to the results of urban flood risk assessment.
The AHP and EW methods were used to calculate subjective and objective weights of the
indexes, and the results demonstrated inconsistency between the weights of the EW method
and those of the AHP method. Therefore, it was considered unreasonable to determine
index weights using only subjective methods or objective methods. In this study, we
calculated the index weights based on a combined weight method that incorporates the
advantages of both the AHP and the EW methods.

Finally, maps of the spatial distribution of flood risk level in different sessions were
developed for the study area based on the dynamic population distribution, combined
weight method, fuzzy comprehensive evaluation method, and the principle of maximum
membership. The study results indicated that the highest risk areas were concentrated
mainly in the east of Futian District and the southwest of Luohu District. The areas of
highest risk were largest in TS1 and TS3, accounting for 7.03% and 7.07% of the total area of
the study area, respectively. The areas of higher risk were largest in TS2 and TS4, accounting
for 4.54% and 4.64% of the total area of the study area, respectively.

The study developed a new method for urban flood risk assessment based on the
dynamic population distribution, which is expected to provide a theoretical basis for as-
sessing urban flood risk management measures in Shenzhen (and even throughout China),
and a scientific basis for development of disaster prevention and reduction strategies by
flood control departments. In the future, with further developments of big data and other
technologies, e.g., real-time traffic data and commuter travel data, a more comprehensive
index system and more accurate urban flood risk assessment results could be obtained.
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