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Abstract: Recently, collisions between equipment and workers occur frequently on the road in
construction and surface mining sites. To prevent such accidents, we developed a smart helmet-based
proximity warning system (PWS) that facilitates visual and tactile proximity warnings. In this system,
a smart helmet comprising an Arduino Uno board and a camera module with built-in Wi-Fi was
used to transmit images captured by the camera to a smartphone via Wi-Fi. When the image was
analyzed through object detection and a heavy-duty truck or other vehicle was detected in an image,
the smartphone transmitted a signal to the Arduino via Bluetooth and, when a signal was received,
an LED strip with a three-color LED visually alerted the worker and the equipment operator. The
performance of the system tested the recognition distance of the helmet according to the pixel size of
the detected image in an outdoor environment. The proposed personal PWS can directly produce
visual proximity warnings to both workers and operators enabling them to quickly identify and
evacuate from dangerous situations.

Keywords: workforce safety; smart helmet; personal proximity warning system; image sensor;
artificial intelligence

1. Introduction

According to the US Bureau of Labor Statistics, 27% of the 1083 construction and
mining casualties in the US in 2017 was related to collisions with equipment [1]. A report
stated that 138 accidents due to collisions have occurred at surface mines in Western
Australia since 2015 [2]. Proximity warning systems (PWSs) have been developed to prevent
such equipment collisions in construction and mining sites [3]. PWSs provide visual and/or
audible proximity warnings to equipment operators, approaching pedestrians, or to other
equipment within a specified distance [4].

Many researchers have developed PWSs to prevent such collisions in construction and
surface mining sites. Ruff [5] investigated the detection of obstacles in a driver’s blind spot
using a variety of sensors attached to a 50-ton dump truck. Also, based on the experimental
results, the reliability and false-alarm rate of proximity detection technology using sensors
were analyzed [6]. Ruff and Hession-Kunz [7] developed a PWS using a radio frequency
identification system (RFID) and analyzed the problems through performance experiments.
Schiffbauer [8] proposed a PWS for an equipment operator approaching a continuous miner.
A wire loop antenna was installed on the continuous miner to generate a magnetic field,
and a receiver measured the magnetic field strength. Visual, audible, and vibration alerts
were generated to the equipment operator when a specific threshold was exceeded. Ruff [9]
performed a performance test of a PWS using radar-based proximity detection technology.
Ruff and Holden [10] developed a PWS using a global positioning system (GPS) and peer-
to-peer communication. In addition, comparative experiments were performed on various
proximity detection sensors that can be used for the development of PWSs [11,12]. Baek
and Choi [13] proposed a Bluetooth low energy (BLE) beacon-based PWS that provides
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proximity alerts to equipment operators using a smartphone. BLE beacons were attached
to the mining equipment and dangerous areas, and a smartphone was mounted on the
equipment. Table 1 summarizes the characteristics of sensor technology that have been
traditionally used for PWS development.

Table 1. Characteristics of sensor technology used for the development of PWSs (modified from [14]).

Sensing Technology Frequency Detection Range

Electromagnetic 70–140 kHz 10 m

Radar RFID 2.4 GHz 20–50 m

Ultra-High Frequency RFID 433 MHz, 860–960 MHz 20–100 m

Very Low Frequency RFID <15 kHz 20–100 m

Wi-Fi 2.4 GHz 20–100 m

Bluetooth Low Energy 2.4 GHz 20–100 m

Recently, researchers have proposed a variety of wearable PWSs to provide proximity
warnings to pedestrians. Unlike conventional PWSs, a signal transmitter is installed
on the device, and the receiver is attached to the pedestrian. Wearable PWSs can be
categorized into worn-type personal alarm devices (PADs), smart vests, and smart glasses.
PADs can be worn on the worker’s belt, pocket, and cap and mainly provide audible or
vibration alerts [15]. Examples of commercialized PAD products include ELOshield by
ELOKON [16], the SmartZone proximity system by Komatsu and JoyGlobal [17,18], and
HazardAvert® by SRATA [19–23]. Smart vests provide vibration alerts using haptic or
tactile sensors [24,25]. Smart glasses measure the received signal strength indicator (RSSI)
of a BLE signal transmitted from a Bluetooth beacon attached to the device and provide a
proximity warning when the RSSI exceeds a specified threshold [26].

A smart helmet is another type of device that could be used as a wearable PWS.
Recently, a smart helmet-based PWS was developed using BLE technology [15]. Mining
equipment, such as dump trucks, excavators, and loaders, had Bluetooth beacons, and
pedestrian workers recognized the BLE signal from the beacons using smart helmet-based
PWSs. Therefore, the smart helmet generated a visual proximity warning using light-
emitting diode (LED) lights when mining equipment approached a pedestrian worker.
Using the LED lights, both the machine operators and pedestrians on the road could
recognize proximity warnings. However, a limitation of this system is that it provides
proximity warnings to only those devices with a Bluetooth beacon installed. If equipment
without a Bluetooth beacon is put into the mine site, the smart helmet-based PWSs could
not provide a proximity warning to the workforce. So far, a smart helmet-based PWS has
not yet been developed that generates proximity warnings to a workforce by recognizing
unspecified equipment to which a sensor such as a Bluetooth beacon is not attached. To
overcome this limitation, we developed a smart helmet-based PWS using an image sensor
rather than a Bluetooth beacon.

The objective of this study is to develop a smart helmet-based PWS that facilitates
visual and tactile proximity warnings to workers and operators at surface mining sites.
The smart helmet PWS collects image data from a camera module that is analyzed in a
cloud server using an artificial intelligence (AI) technology to determine the proximity of a
hazardous object. When this object is approaching, the LED light turns on and a vibration
signal is sent to the smartphone to provide a hazard warning. The smart helmet PWS’s
recognition distance was analyzed in this study according to the set minimum diagonal
length, and its hazard warning accuracy was evaluated according to the face angle between
the camera module and the mining equipment.
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2. Methodology
2.1. Materials and Methods

Figure 1 illustrates the concept of the smart helmet-based PWS using an image sensor
and an AI approach. The smart helmet worn by a worker acquires images from the ESP32-
CAM and transmits them to a smartphone via Wi-Fi. This image is then sent to a cloud
server using an open application program interface (API), and the result based on the
object recognizer is received from the server. When a hazardous object, such as a truck or a
similar vehicle, is detected in the object recognition data, the smartphone sends a signal
to the Arduino via Bluetooth. When the Arduino receives the Bluetooth signal, it sends a
vibration signal to the smartphone and turns on the LED strip with the three-color LED
to visually alert the operator. To detect hazards that approach from the rear outside of
the worker’s field of vision, the ESP32-CAM module is attached to the back of the smart
helmet. The smart helmet wearer receives a tactile proximity warning via the smartphone’s
vibration actuator, which facilitates a swift detection and response to a dangerous situation.
The visual proximity warning is relayed via the LED lights enabling both the helmet wearer
and operator to quickly detect and respond to the dangerous situation. By setting a variety
of hazardous objects, the system can be applied to different sites, such as general urban
centers, mining sites, and construction sites.
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Figure 1. Overview of the AI-based smart helmet proximity warning system.

2.1.1. Development of BLE Transmitter Using ESP32-CAM

In the ESP32-CAM module [27], the Wi-Fi function and camera are integrated into one
board, and an SD card slot is attached, which can be used to cheaply and easily develop
CCTV recorders, video streaming devices, video transmission devices, and similar devices.
To use the ESP32-CAM module, after connecting to a desktop using the future technology
devices international (FTDI) programmer, the development environment was constructed
using the ESP32 board manager in the Arduino’s integrated development environment
(IDE), and the operation code was uploaded. After the code was uploaded, power was
supplied to the ESP32-CAM, and it was used as a video streaming server. As shown
in Figure 2, the images of the ESP32-CAM are received in real-time on the smartphone
webpage via Wi-Fi.
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Figure 2. Operation process of the ESP32-CAM.

To analyze the images from the ESP32-CAM, we developed a smartphone application
called AI Smart Helmet PWS. Figure 3 shows the interface and operating principles of the
AI Smart Helmet PWS. When the “Connect Bluetooth” button is pressed, it connects with
the Bluetooth module of the Arduino and, when the “Turn on Camera” icon is pressed, the
video transmitted from the ESP32-CAM is saved as JPG images at 2 s intervals, converted
to Base64 code, and displayed on the canvas. The converted Base64 code is transmitted
to the public AI open API platform provided by the Electronics and Telecommunications
Research Institute (ETRI) [28].
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The public AI open API platform provides the object detection service based on a
class-wise ensemble machine learning model named Rank of Experts [29]. The Rank of
Experts model decomposes an intractable problem of finding the best detections for all
object classes into small subproblems of finding the best ones for each object class. Then,
the detection problem is solved by ranking detectors in order of the average precision
rate for each class. The Rank of Experts model won 2nd place in the ILSVRC 2017 object
detection competition [29].
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In the smartphone application, the user can set hazardous objects using the checkboxes
below “Objects”. If the image contains a set hazardous object, then a red box and the object’s
name are displayed on the image. If the diagonal length of the red box is greater than the
length entered in the text box next to “Minimum diagonal length”, then a Bluetooth signal
is transmitted from the smartphone to the Arduino.

2.1.2. Development of Receiver

The Arduino UNO board reads the inputs such as light from sensors and button presses
and converts them to outputs that operate motors, turn on LEDs, etc. The board can be
instructed to perform different tasks by sending an instruction set to its microcontroller [30].
The HC-06 Bluetooth module is inexpensive, consumes very little power, and can interface
with almost any controller or processor because it uses the UART interface [31]. To receive
the Bluetooth signal transmitted from the smartphone, the smart helmet receiver used
in this study was designed by combining the HC-06 Bluetooth module, Arduino Uno
board, LED strip, and three-color LED. As part of the approach, a structural diagram was
visualized based on the circuit diagram in Figure 4.
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Figure 5 shows the algorithm for the overall process in which the receiver of the AI
smart helmet receives the Bluetooth signal and generates a hazard warning. The principle
of the algorithm is as follows:

(a) The video captured by the ESP32-CAM is loaded onto the smartphone via Wi-Fi.
The acquired video is saved as JPG images in real time, and the saved images are
converted into Base64 code using the smartphone app.

(b) The converted code is sent to the public AI open API server via HTTP and analyzed
using the object detection learning model.

(c) When the processing for object detection is completed on the server, the analyzed
information is returned as java script object notation (JSON) text data via an HTTP
response message to the AI Smart Helmet PWS.

(d) An analysis is performed on the smartphone to determine whether the object informa-
tion sent from the server contains any user-set hazardous objects. If such an object is
detected, it is enclosed by a red box, and its name is displayed on the smartphone.

(e) When a hazardous object enters the hazard area, the smartphone sends a Bluetooth
signal to the smart helmet, which turns on the LED strip and three-color LED and
vibrates the smartphone to provide a hazard warning.
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Pedestrian workers or operators who wear the helmet receive tactile and visual warn-
ings, and nearby operators or workers are visually alerted by the LED strip, thereby
facilitating quick detection and response to the dangerous situation.

2.1.3. Recognition Distance Experiment According to Input Minimum Diagonal Length

Assuming that the helmets will be used by riders of two-wheeler vehicles and personal
mobility devices, the experiment was performed on a straight road within a university
campus with the smart helmet worn by the rider of an electric scooter. As the electric
scooter traveled at a speed of 10 km/h, a test vehicle moved toward the helmet wearer
at a speed of 30 km/h from a distance of 100 m. We then measured the recognition
distance at which the test vehicle was detected by the ESP32-CAM attached to the rear
of the smart helmet. During the experiment, the minimum diagonal lengths for the AI
Smart Helmet PWS app were set at 25-pixel intervals from 25 to 125 pixels (Figure 6), and
10 measurements were acquired for each input value. It should be noted that the minimum
diagonal length was determined by counting the number of diagonal pixels in the lower
left and upper right corners of the red rectangle drawn on the smartphone screen when the
vehicle was recognized.
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2.2. Experimental Measurement of Hazard Warning Accuracy

We conducted an experiment based on the assumption of use by a mining site worker
to evaluate whether the developed AI smart helmet could provide additional safety when
used by field workers at construction or mining sites. The field experiment was performed
at a Samyang Resources iron mine in Pocheon-si, Gyeonggi-do, South Korea (38◦07′04′′ N,
127◦13′20′′ E) (Figure 7).

Int. J. Environ. Res. Public Health 2022, 19, x 7 of 15 
 

 

 
Figure 6. Overview of the experiment to measure the recognition distance according to input mini-
mum diagonal length. 

2.2. Experimental Measurement of Hazard Warning Accuracy  
We conducted an experiment based on the assumption of use by a mining site worker 

to evaluate whether the developed AI smart helmet could provide additional safety when 
used by field workers at construction or mining sites. The field experiment was performed 
at a Samyang Resources iron mine in Pocheon-si, Gyeonggi-do, South Korea (38°07′04″ N, 
127°13′20″ E) (Figure 7). 

 
Figure 7. View of the experimental site. 

Assuming that the mining equipment in question approaches the field worker from 
the rear, the hazard area between the worker and mining equipment was set to a distance 
of 20 m. We investigated whether the hazard warning was activated before the mining 
equipment reached the hazard area when approaching the helmet wearer (experimental 
subject) from the rear at a speed of 20 m/s. The minimum diagonal length was set to 50 
pixels. Using three face angles of 0°, 15°, and 30°, we conducted the experiment 10 times 
for each face angle between the subject’s smart helmet and the approaching mining equip-
ment (Figure 8). Angles over 30° could not be tested since the mining equipment did not 

Figure 7. View of the experimental site.

Assuming that the mining equipment in question approaches the field worker from
the rear, the hazard area between the worker and mining equipment was set to a distance
of 20 m. We investigated whether the hazard warning was activated before the mining
equipment reached the hazard area when approaching the helmet wearer (experimental
subject) from the rear at a speed of 20 m/s. The minimum diagonal length was set to
50 pixels. Using three face angles of 0◦, 15◦, and 30◦, we conducted the experiment
10 times for each face angle between the subject’s smart helmet and the approaching mining
equipment (Figure 8). Angles over 30◦ could not be tested since the mining equipment did
not enter the camera module’s field of view when approaching the set hazard area. The
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parameters used to evaluate the accuracy were set as “True-positive”, “False-negative”,
and “Recall”.
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3. Results

An AI smart helmet was developed using an Arduino Uno board, a camera module
(ESP 32-CAM), a Bluetooth module (HC-06), an LED strip, and a three-color LED with a
hard hat worn by field workers. Power was supplied via a portable battery. Figure 9a,b
shows the front and rear of the device’s exterior, respectively.
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Figure 10 presents an overview of the developed AI smart helmet-based PWS system.
Image information was acquired from the ESP32-CAM module and transmitted to the
smartphone via Wi-Fi, and the acquired images were analyzed using the developed app
on the smartphone. An object detection learning model was used to analyze the image
data. Using this information, when a hazardous object approached the helmet wearer
and reached the hazard area, a hazard warning was generated. This warning was in the
form of tactile feedback that was produced in response to a vibration signal from the
smartphone, and a Bluetooth signal was transmitted to the AI smart helmet. When the
Bluetooth module (HC-06) attached to the AI smart helmet received the signal, it produced
a visual warning via the LED strip and the three-color LED. Thus, using the LED visual
warning and smartphone vibration tactile warning, not only the helmet wearer but also
nearby operators and workers can recognize the hazard beforehand and quickly prevent
an accident from occurring.
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To provide an appropriate warning when a hazardous object approaches the helmet
wearer by analyzing the image data, we developed an AI Smart Helmet PWS for Android
OS. Six types of hazardous objects can be set in the app: person, bicycle, motorcycle, car,
bus, and truck. Figure 11 shows that the app can recognize different hazardous objects.
Given that the user can set various hazardous objects, the helmet can be used in a variety
of environments, such as urban centers, mining sites, and construction sites.
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Figure 12 shows the results from the recognition distance experiment according to
the input minimum diagonal length. A hazard warning is not produced until a vehicle
that approaches the helmet wearer from the rear enters the recognition distance range
(Figure 12a). A warning is generated when the vehicle enters the recognition distance range
of the AI smart helmet (Figure 12b). Table 2 shows the main statistics for the recognition
distance of the AI smart helmet according to the input minimum diagonal length. The
average recognition distance was 63.25 m at 25 pixels, 24 m at 50 pixels, 14.25 m at 75 pixels,
11 m at 100 pixels, and 6.25 m at 125 pixels. Hence, as the minimum diagonal length
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increased, the recognition distance of the AI smart helmet decreased. In all experiments,
when a vehicle came within detection range, the AI smart helmet detected the vehicle and
provided a proximity alert in real time.
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Figure 12. Visual warning via the LED strip and the three-color LED from the AI smart helmet.
(a) Helmet wearer before the vehicle reaches hazardous area; (b) Helmet wearer when the vehicle
reaches the hazardous area.

Table 2. Results of the recognition distance (m) of the AI smart helmet according to the input
minimum diagonal length (pixels).

Signal Receive
Distance (m)

Minimum Diagonal Length

25 Pixel 50 Pixel 75 Pixel 100 Pixel 125 Pixel

Mean 63.25 24 14.25 11 6.25
STD 1 1.21 2.11 2.37 2.11 2.12
Max 2 65 27.5 17.5 15 10
Min 3 62.5 20 10 7.5 2.5

1 Standard deviation; 2 Maximum value; 3 Minimum value.

Figure 13 shows the accuracy of the evaluation results of the hazard warning according
to the face angle between the camera module and the mining equipment. The AI smart
helmet does not produce a hazard warning before the mining equipment reaches the
hazardous area (Figure 13a). A warning is generated when the mining equipment reaches
the hazardous area (Figure 13b).

Table 3 shows the statistics for the accuracy of the evaluation of the AI smart helmet
hazard warning according to the face angle between the camera module and the mining
equipment. When the face angle between the camera module and mining equipment
was 0◦ and 15◦, the helmet produced a positive hazard warning in all 10 rounds of the
experiment, and no false hazard warning was observed. At a face angle of 30◦, however,
it generated a positive hazard warning in eight rounds out of ten, and two false hazard
warnings were observed. Thus, it yielded a recall of 100% at 0◦ and 15◦ and 80% at 30◦.
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Table 3. Results of the accuracy evaluation of the hazard warning of the AI smart helmet according
to the face angle between the camera module and the mining equipment.

Type of Warning Alert
Angle between the Mining Equipment and the Pedestrian

0◦ 15◦ 30◦

Trials 10 10 10
True positives 10 10 8

False negatives 0 0 2
Recall (%) 100 100 80

4. Discussion
4.1. Acceptability of Developed AI Smart Helmet-Based Personal PWS in the Field

Various sensing technologies have been used to develop PWSs for mining sites. Elec-
tromagnetic sensor technology is mainly used for ultra-close detection. Generating an
electromagnetic field in a device to which a sensor is attached can detect objects within
10 m of the device or detect them on other equipment [32]. In the case of GPS, location
and time information provided by the satellite navigation system are used. In accordance
with the 2008 Standard Positioning Service (SPS) Performance Standard, the accuracy
of the user range error (URE) is based on a measurement of approximately 7.8 m at a
95% confidence level [33]. Radar sensor technology generates a signal at a set frequency
and measures the return echo and can be detected within 20–50 m of the surface mine
environment. This technology can be used alone and can also be used with RFID tags.
Microwave RFID is the most commonly used technique in proximity detection methods,
which detects radio signals by sending them to RFID tags within the response range. It is
possible to detect objects in the 20–100 m range in an open-air mine environment. Ultra-low
frequency RFID also has a similar operating principle to microwave RFID. Wi-Fi technology
converts identity information into a wireless signal using a wireless adapter and transmits a
specific frequency to the router. Similar to microwave RFID, it is detected in the 20 to 100 m
range in a surface mine environment [34]. Based on existing research cases, a minimum
signal-receive distance of 20 m is expected to be appropriate on average. Therefore, it is
appropriate to use the pixel value of the AI smart helmet system at 50 pixels in the field.

The developed AI smart helmet PWS is a system designed to ensure the safety of
field workers. However, when the face angle between the camera module attached to
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the smart helmet and the recognition object is 30 degrees, there is a limitation that the
recognition accuracy drops to 80%. Since this is a problem related to the safety of field
workers, an accuracy of 80% is unacceptable in the field. Therefore, to improve this, we
propose a complementary method in Figure 14. The proposed method is to compensate for
the decrease in the recognition rate due to face angle by covering an angle that cannot be
covered with one camera module with multiple camera modules.
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4.2. Advantages of Developed AI Smart Helmet-Based Personal PWS

The AI smart helmet PWS has several noteworthy advantages. First, this system
can address the limitations of conventional PWSs. In conventional systems, drivers need
to repeatedly check their smartphones to receive proximity warnings, which reduces
their concentration. Smart glasses cause discomfort due to sliding or when wearing
regular glasses. Traditional smart helmets only generate proximity warnings for vehicles
associated with Bluetooth beacons. In contrast, the AI smart helmet can provide both
drivers and pedestrians visual proximity warnings without interrupting their work, thereby
facilitating quick identification and evacuation of dangerous situations. It also provides
accurate proximity warnings for all hazardous objects set in the app instead of only vehicles
associated with the Bluetooth beacons. Second, the AI smart helmet is highly scalable; the
system can be scaled by adding sensors as needed. Finally, it can be implemented and used
in various environments, such as general urban centers, mining sites, and construction
sites, at a relatively low cost. Given that the system uses Arduino and MIT App Inventor,
configuring the components (microcontroller board and sensors) is relatively inexpensive.
Therefore, regardless of the size of the applied domain, multiple sets of AI smart helmets
can be deployed and used.

4.3. Limitations of Current Work and Future Research

In this study, the demonstrations and experiments of the smart helmet PWS were
conducted on the roads on which real vehicles and trucks were moving. Due to the safety
issue of the experimenter, there was a limit to controlling the vehicle and performing a
large number of repeated experiments. Therefore, additional repeated experiments will
be needed to secure a high reliability of the experimental results. The developed smart
helmet PWS was tested in a surface environment with good lighting conditions. In order to
confirm that the smart helmet PWS operates normally even in dark environments, repeated
experiments in various light source environments will be required.

Using AI for decision-making carries a risk of misjudgment. There are five points
that can give rise to AI risks (data difficulties, technology troubles, security snags, model
misbehaviors, and human–machine interactions) [35]. Especially, misbehaving AI models
used to recognize dangerous objects could be a critical problem for the smart helmet PWS.
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Therefore, the performance monitoring of AI models is necessary on a regular basis to
reduce the risk of misjudgment. Also, more importantly, the developed smart helmet PWS
does not completely eliminate the obligation of field workers to observe their surroundings.

Last, some sensors attached to the AI smart helmet such as cameras can potentially
invade privacy. There is still insufficient research on the security and privacy of the data
collected using the AI smart helmet. The proposed personal PWS collects and analyzes
image data from the camera module to produce a hazard warning, but it cannot accurately
generate hazard warnings for hazardous objects that approach from outside the camera’s
field of view. Additionally, although various sensors can be attached to the AI smart helmet
as needed, this increases the helmet’s weight and may make it inconvenient to wear. There
is limited research on the associated discomfort and health effects of AI smart helmets. The
following are requirements for future AI smart helmets:

1. Wearing comfort: Owing to the various sensors and microcontroller, it is relatively
heavy compared to conventional hard hats. This can cause discomfort to motorcyclists
and field workers. For the developed helmet to function as a wearable device, its
weight must be reduced by using lightweight materials and components.

2. Human health and safety: Given that the developed AI smart helmet is worn on the
head, the effects of electromagnetic fields emitted from sensors or microcontrollers on
human health should be investigated.

3. Durability: Workers who wear AI smart helmets often work in very dusty and humid
environments. Given that the microcontroller and camera module are exposed on
the outside of the AI smart helmet, they are potentially vulnerable to the associated
conditions. Research on the enhancement of the AI smart helmet’s durability is
necessary to improve functionality even in poor work environments.

4. Accuracy: Depending on the camera module’s field of view, the developed AI smart
helmet may not yield high accuracy. As such, to mitigate this issue caused by the
camera module’s restricted field of view, research on the synthesis and analysis of
image information from not one but multiple camera modules is needed.

5. Privacy and data security: The developed AI smart helmet collects a variety of informa-
tion from the images of the attached camera module. However, this information can
sometimes lead to privacy issues. For example, it is possible that unauthorized users
may intercept information acquired by the AI smart helmet. Accordingly, continuous
research on privacy and data security issues related to the use of this device is necessary.

5. Conclusions

In this study, a personal PWS was developed that generated visual and tactile prox-
imity warnings to aid workers and operators. This was achieved by collecting image data
from a camera module using an AI smart helmet, which was subsequently analyzed using
a cloud server. To assess the personal PWS’s performance, the device’s recognition distance
was evaluated according to the input minimum diagonal length and the hazard warning
accuracy according to the face angle between the camera module and mining equipment
on a straight road and in a mining site. According to the input minimum diagonal length,
the average recognition distance was 63.25 m at 25 pixels, 24 m at 50 pixels, 14.25 m at
75 pixels, 11 m at 100 pixels, and 6.25 m at 125 pixels. This indicated that, as the minimum
diagonal length increased, the AI smart helmet’s recognition distance decreased. The AI
smart helmet exhibited a hazard warning accuracy of 100% when the face angle between
the camera module and the mining equipment was 0◦ and 15◦, and an accuracy of 80%
when the angle was 30◦.

In this study, we developed a smart helmet-based PWS that detects moving equipment
such as trucks to prevent collision accidents. In future work, it would be interesting to
consider other types of accidents or hazards using the smart helmet-based PWS. Another
extension of the current work is to add various sensors, such as an alcohol sensor or a heart
rate sensor, to check the condition of the workers, and a methane gas sensor or carbon
monoxide sensor to monitor the environment.
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