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Abstract: Catalytic conversion of cellulose to liquid fuel and highly valuable platform chemicals
remains a critical and challenging process. Here, bismuth-decorated β zeolite catalysts (Bi/β) were
exploited for highly efficient hydrolysis and selective oxidation of cellulose to biomass-derived
glycolic acid in an O2 atmosphere, which exhibited an exceptionally catalytic activity and high
selectivity as well as excellent reusability. It was interestingly found that as high as 75.6% yield of
glycolic acid over 2.3 wt% Bi/β was achieved from cellulose at 180 ◦C for 16 h, which was superior
to previously reported catalysts. Experimental results combined with characterization revealed
that the synergetic effect between oxidation active sites from Bi species and surface acidity on H-β
together with appropriate total surface acidity significantly facilitated the chemoselectivity towards
the production of glycolic acid in the direct, one-pot conversion of cellulose. This study will shed
light on rationally designing Bi-based heterogeneous catalysts for sustainably generating glycolic
acid from renewable biomass resources in the future.

Keywords: biomass; cellulose; Bi/β; hydrolysis oxidation; glycolic acid

1. Introduction

The limited availability of non-renewable fossil resources together with ever-increasingly
stringent legislation and mandates on global carbon neutrality strategies have motivated
the extensive search for alternative renewable resources to resolve wide-ranging social,
economic, environmental, and political issues that need to be addressed today to ensure
a sustainable future for all [1–3]. Biomass is the only promising alternative carbon re-
source in nature and possesses tremendous potential and economic feasibility for replacing
fossil resources to renewably generate bio-based liquid fuels, high-value chemicals, and
materials [4–6]. Cellulose, the largest component of renewable biomass resources that
are non-edible by humans and inexpensive, thus has aroused considerable attention and
is regarded as one of the most promising and great potential substitutes for producing
liquid fuels and highly valuable chemicals [7–11]. Particularly, glycolic acid (GA) is a very
important biomass-derived high added-value platform with a hydroxyl and a carboxyl
group, and exhibits the properties of both alcohol and organic acid, which has been widely
applied in, but not limited to, metal cleaning, skin-care agent formulation, and industrial
rusted removal together with food processing, especially in polymer degradation materi-
als and pharmaceutical engineering materials [12–16]. GA represents a high and strong
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market demand, which was estimated to 310.4 million USD in 2020 and projected to reach
approximately 531.5 million USD with an annual growth rate of 8.0% by 2027 [17].

In the past few years, great progress on direct hydrolysis and selective oxidation
cleavage of C–C bonds of cellulose to GA has been made, yet the yield of GA was less than
satisfactory, which substantially hindered the practical application of GA in industry. For
instance, Jin et al. applied CuO as catalyst for transforming cellulose into GA under alkaline
conditions at 573 K for 300 s, giving only a GA yield of 14.9% together with acetic acid
(AA) yield of 5.2%, formic acid (FA) yield of 7.1%, and lactic acid (LA) yield of 13.8% [18].
Later, Han et al. reported that Keggin H3PMo12O40 could directly convert cellulose into
GA in aqueous solution, which achieved a GA yield of 49.3% at 180 ◦C for 1 h and in
0.6 MPa O2 atmosphere [13]. Afterwards, similar catalysts of Dawson H4SiMo and H3PMo
were reported, which afforded a maximum GA yield of 47.5% at 170 ◦C; this was mainly
because heteropolyacids not only have high Brønsted acidity, but also have pre-eminent
oxidation potency during the reaction [19]. However, these catalysts encountered some
bottlenecks, including complicated recyclability, energy-consuming in separation, and
industrial application limitations. Therefore, developing highly efficient heterogeneous
catalysts that coordinate acidity and oxidation performance for realizing highly selective
converting economically feasible cellulose resource to GA in an O2 atmosphere will be
highly desirable but enormously challenging.

It is well known that zeolite H-β as a solid acid catalyst or metal support is potentially
attractive due to its inherent properties, three-dimensional interconnected channel structure
of rings containing 12 oxygen atoms, good thermal stability, and strong surface acidity,
and has been widely applied in catalytic conversion of biomass resources into biofuels
and highly valuable chemicals, especially for controlling hydrolysis of cellulose to glucose
because of its well-defined crystal structure, unique shape selectivity, and high thermal
stability [20–22]. Therefore, H-β zeolite has great potential and is promising for hydrolysis
of cellulose and many kinds of catalytic reactions.

Previously, numerous heterogeneous catalysts with oxidation function have been
recognized by inserting transition metal, such as Mo, V, Fe, Co, and Mn, into the framework
of molecular sieves in highly dispersed forms [23–27]. However, these metal elements have
the disadvantages of high cost and toxicity, so it is difficult to apply them on a large scale
in industry. Non-noble metal Bi element, which is abundant on the Earth, and is not only
less toxic, but more importantly, it can also shuttle between oxidation states, is emerging
as an active and cost-effective catalyst with prospects for industrialization [28–30]. For
example, Sun et al. reported that Bi/Bi2O3 showed high photocatalytic activity for the
reforming of biomass-derived feedstocks [31]. In addition, Bi2O3 can be used as an efficient
cocatalyst for selective photoelectrocatalytic (PEC) glycerol oxidation to DHA, achieving
the PEC oxidation of glycerol to DHA with a high selectivity of 75.4% [32]. Inspired by
this knowledge, we hypothesized that a rationally designed carrier would be crucial to
incorporate Bi species as oxidation active sites into H-β to construct a multifunctional
catalyst for hydrolysis and oxidation of cellulose to GA. To our knowledge, there are sparse
reports on the catalytic performance of Bi-decorated β zeolite catalysts in the conversion
of biomass resources into liquid biofuels and highly valuable chemicals. Therefore, it is
highly desirable to develop more efficient and stable Bi-based heterogeneous catalysts for
the production of GA starting from cellulose in aqueous solution and O2 atmosphere.

In this work, we reported a cost-effective and facile strategy for constructing Bi-
decorated β zeolite catalysts that can selectively produce GA from cellulose by one-pot
method. The resultant catalysts were thoroughly characterized with respect to their struc-
ture and performance. Importantly, the as-prepared catalysts not only could facilitate
hydrolysis of cellulose to intermediate glucose in the presence of acidic condition in the
first step, but also provided remarkable oxidation property that promoted the retro-aldol of
intermediates by selective cleavage of C–C bonds and further oxidation into GA, exhibiting
much higher catalytic activity than the ever previously reported catalysts. This study pro-
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vides a promising potential and lays a good foundation for future research on promoting
the transformation of renewable biomass resources into GA in industry.

2. Materials and Method
2.1. Chemicals

Microcrystalline cellulose (average particle size of 20 µm, polymerization degree
of 250) was purchased from Sigma-Aldrich Co., LLC (St. Louis, MO, USA). Formic acid
(FA, 99%), 1,3-dihydroxyacetone (DHA) (98%), glyceraldehyde (Gly, 99%), and acetic acid
(AA, 98%) were commercially obtained from the Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). Zeolite H-β (Si/Al = 40) was purchased from the Nankai University
Catalyst Plant (Tianjin, China). 5-hydroxymethylfurfural (HMF, 98%), erythrose (98%),
glucose (99%), fructose (98%), and Bi(NO3)3·5H2O (99%) were purchased from Shanghai
Macklin Biochemical Co., Ltd (Shanghai, China). Glycolic acid (GA) (98%), lactic acid
(LA) (98%), levulinic acid (LeA) (98%), and glyceric acid (GlyA) (98%) were bought from
Shanghai Aladdin Bio-Chem Technology Co., Ltd (Shanghai, China). Other reagents were
all in analytical grade and used without further purification.

2.2. Catalyst Preparation

The Bi-decorated β catalysts were prepared by grafting Bi species onto H-β zeolites
using bismuth nitrate as precursor. A known amount of Bi(NO3)3·5H2O (0.0474 g, 0.0718 g,
0.0967 g, 0.1222 g) was dissolved in 20 mL ethylene glycol under ultrasonication for 30 min,
then 1.0 g H-β zeolite powder was slowly added and magnetically stirred at 80 ◦C for
8 h. The resulting mixture was filtered and washed repeatedly with deionized water
until neutral filtration. Thereafter, the as-prepared Bi/β catalyst was evaporated under
vacuum at 60 ◦C overnight and finally calcined in a muffle furnace at 550 ◦C for 6 h. The
Bi/β catalysts with different Bi loading (1.26 wt %, 2.30 wt %, 3.40 wt %, 3.78 wt %) were
identified as Bi/β-1, Bi/β-2, Bi/β-3, and Bi/β-4, respectively. The actual content of Bi was
determined by inductively coupled plasma emission spectrometry (ICP-MS). The synthetic
method of other metals (Mn, Cu, Co) decorated H-β and metal loading were the same as
that of Bi/β-2 mentioned above.

2.3. Catalyst Characterization

X-ray diffraction (XRD) were determined using an X-ray diffractometer (Smartlab-3 KW,
Rigaku, Japan) using Cu Kα as the source of radiation. The morphology was analyzed
by field emission scanning electron microscope (SEM, S4800 instrument, HITACHI). The
textural properties of catalysts were measured by N2 adsorption at −196 ◦C using a
Micromeritics ASAP 2460 M nitrogen adsorption analyzer (BET). Before the nitrogen
adsorption, samples were outgassed at 300 ◦C for 4 h. Raman analysis was carried out
using a HORIBA Raman spectrometer and the spectra were obtained with the green line of
an argon-ion laser (785 nm) in a micro-Raman configuration (Raman). X-ray photo electron
spectroscopy (XPS) was performed on an AXIS Ultra DLD spectrometer (Shimazu, Japan)
with Mg Kα radiation as the excitation source. Diffuse reflectance UV-Vis spectra of samples
were recorded at wavelengths ranged from 200 to 800 nm on a UV-3600 spectrophotometer
(UV-Vis, Shimazu, Japan). The surface acidity of catalysts was characterized by using
NH3 temperature-programmed desorption (NH3-TPD) conducted on an AutoChem II 2920
chemisorption apparatus. The Bi/β catalysts were pretreated at 300 ◦C with a heating
rate of 10 ◦C/min in flowing helium for 1 h until saturation. After cooling to 110 ◦C,
catalysts were saturated in 10% ammonia diluted with helium for 2 h, then the samples
were purged with helium flow (25 cm3/min) for 2 h. Finally, the samples were heated at a
constant rate of 10 ◦C/min to 650 ◦C with helium flow. The acidity type and strength of
catalysts were recorded by pyridine adsorption infrared spectroscopy (PyIR) on a Perki-
nElmer-FT-IR Spectrometer. The Bi/β catalysts were first degassed at 300 ◦C and a vacuum
of 6.0 × 10−3 Pa for 1 h. Then, the catalysts were exposed to pyridine vapor for 30 min.
Subsequently, the catalysts were heated to 150 ◦C under a vacuum of 6.0 × 10−3 Pa.
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2.4. Catalyst Experiments

In a typical reaction procedure, catalytic conversion experiments were performed
in a 25 mL stainless steel autoclave equipped with a magnetic stirrer. A total of 0.1 g
microcrystalline cellulose and 80 mg catalyst along with 12 mL deionized water was added
into the autoclave, which was tightly sealed and then flushed with N2 three times to
remove the ambient air, and then was pressurized to 2 MPa with O2 at room temperature.
Subsequently, the reactor was heated to the desired reaction temperature and kept for
desired reaction time with a stirring rate of 600 rpm. After completion of the reaction, the
reactor was quickly cooled to room temperature with an ice-water bath. All the experiments
were replicated three times, and the mean values were reported.

2.5. Product Analysis

The products were quantitatively determined by high-performance liquid chromatog-
raphy (HPLC, Shimadzu LC-16) equipped with RID and a Bio-Rad Aminex HPX-87H Ion
Exclusion Column; moreover, 5 mM H2SO4 was used as the mobile phase (0.5 mL min−1

of flow rate). The column temperature was set at 50 ◦C. The conversion of cellulose and the
yields of products were calculated using external calibration curves derived from standard
solutions as follows:

Cellulose conversion (%):

X =

(
1 − mass of unreacted cellulose

mass of initial cellulose

)
× 100 (1)

Yield of product i (C%):

Xi =

(
moles of carbon in product i

moles of carbon in initial cellulose

)
× 100 (2)

3. Results and Discussion
3.1. Characterization of Catalysts

The structure and morphology of H-β and Bi/β with different loading are shown
in Figure 1. It was found that all catalysts had typical topological characteristics of BEA
type structures with two diffraction peaks at 2θ = 7.5 and 22.5◦, confirming that the
structure of H-β zeolite was not seriously destroyed after incorporation of Bi [33–35].
Nevertheless, as the loading of Bi was increased, a significant decrease in the intensity of
characteristic diffraction peaks was observed, indicating a partial loss of crystallinity. It
was worth mentioning that no apparent diffraction peaks of Bi2O3 clusters were observed
on Bi/β, indicating that Bi species were highly dispersed on the surface of pristine H-β or
incorporated in the zeolite framework, thereby potentially improving the intimate contact
between Bi species and H-β [29,33]. The SEM images revealed that all catalysts showed
similar morphologies to that of pristine H-β without bulk bismuth oxide species on the
surface of Bi/β catalysts, which further demonstrated that the structure of H-β zeolite
remained intact (Figure 2).

The N2 adsorption–desorption isotherms and the pore size distribution of H-β and
Bi/β catalysts are shown in Figure 3, and the structural properties and loading of Bi
detected by ICP-MS are displayed in Table 1. As described in Figure 3a, it was noted that
all catalysts showed the mixed isotherms of I and IV with H4-shaped hysteresis loops,
indicating that both micropores and mesopores existed in the catalysts, which were further
confirmed by the pore size distribution curves displayed in Figure 3b [36]. In addition,
it could be clearly observed that the hysteresis loop decreased with the increase of Bi
loading, indicating that the number of internal holes of catalysts decreased. Moreover, it
can be found that the BET surface areas slightly decreased from 556.62 to 509.59 m2/g, and
pore volume decreased obviously from 0.575 to 0.394 cm3/g with increasing Bi loading,
which may be ascribed to the Bi species that entered into the inter-crystal channels of H-β,
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resulting in channel blockage or the occupation of exchange sites, as well as pore openings
in the β zeolite matrix; it was well consistent with the XRD result [20].
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Table 1. Textural properties and contents of Bi of various β zeolites.

Catalyst SBET (m2/g) SMicro (m2/g) Vp (cm3/g) VMicro (cm3/g) D (nm) Bi a (wt. %)

H-β 556.62 449.51 0.575 0.181 4.13
Bi/β-1 533.89 424.40 0.553 0.171 4.09 1.26
Bi/β-2 531.24 407.61 0.545 0.163 4.15 2.30
Bi/β-3 510.60 403.99 0.544 0.162 4.40 3.40
Bi/β-4 509.59 395.99 0.394 0.161 4.28 3.78
Cu/β 371.95 263.93 0.519 0.161 5.58
Co/β 382.26 258.99 0.549 0.158 5.75
Mn/β 379.84 263.07 0.552 0.161 5.82

a Measured by ICP-MS.
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In order to evaluate the Bi/β catalysts more comprehensively and subtly, the state of
Bi species in the catalysts were investigated by UV-Vis DRS (Figure 4). Due to the transition
of electrons from the oxygen valence band, the bulk Bi2O3 has a large absorption band at
about 400 nm, whereas H-β showed a small absorption band and a large absorption band at
around 215 and 274 nm, respectively [29]. Nevertheless, for Bi/β catalysts, the absorption
band was blue shifted by about 50 nm, which may be ascribed to the interaction of isolated
bismuth species with H-β support [30]. The increased band gap and blue shift tendency
decreased with increasing Bi loading. The absence of peak at 400 nm in Bi/β catalysts
indicated that there was no Bi2O3 species on the surface of Bi/β, indicating bismuth species
entered the framework of Bi/β [32]. Similarly, the Raman spectra also showed that there
were no peaks corresponding to Bi2O3 appearing in the Bi/β catalysts, revealing Bi2O3 was
highly dispersed within the matrix of H-β. These observations were consistent with the
results from XRD, SEM, and UV-Vis DRS (Figure 5).

The surface acidity and strength of catalysts were measured by NH3-TPD technique.
As illustrated in Figure 6, it could be observed that H-β showed an intense desorption
peak at around 210 ◦C and a broad desorption peak at 300~600 ◦C, which was attributed
to weak and strong acid sites, respectively. This result indicated that weak acid sites were
predominant while along with fewer strong acid sites on the H-β [37]. After introduction
of Bi, a redistribution of acid sites on the Bi/β were distinctly observed. Specifically, the
intensity of desorption peak centered at around 210 ◦C conspicuously decreased, whereas
the desorption peak at 300~600 ◦C slightly shifted toward a lower desorption temperature,
and the desorption peak areas evidently decreased compared to the H-β. This phenomenon
could be reasonably explained by the incorporation of Bi species that caused the emergence
of a new bump peak at around 250~450 ◦C, demonstrating the existence of medium acid
sites on the surface of Bi/β. Moreover, increased Bi loading from 1.26 to 3.78 wt %,
and the desorption peak areas slightly increased, indicated that the total acidity of Bi/β
catalysts increased gradually due to formation of more weak and medium acid sites derived
from more Bi species. These results indicated that the incorporation of Bi could not only
transform the strong acid sites into medium acid sites, but also adjust the acid amount and
strength of catalysts.
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To further identify the Brønsted acid sites (BA) and Lewis acid sites (LA) on the
catalysts, the catalysts were recorded by PyIR (Figure 7). The two bands at 1544 cm−1

and 1450 cm−1 were presented on all catalysts, which were attributed to the Brønsted
and Lewis acid sites, respectively. In addition, it could be discerned that another band
at 1490 cm−1 was ascribed to the combination of Brønsted and Lewis acid sites [38–40].
Moreover, as shown in Table 2, the amount of Lewis and Brønsted acid sites gradually
increased with increasing Bi loading from 1.26 to 2.3 wt %, which was largely attributed
to the presence of medium acid sites derived from the increase of Bi species. However,
further increasing loading of Bi caused the amount of Lewis and Brønsted acid sites as
well as the total acidity to decrease slightly, which was probably due to the coverage of
Bi oxides active sites, whereas the amount of Brønsted acid sites decreased pronouncedly
compared to the Lewis acid sites. It was mainly because the Bi3+ cations partially replaced
the protons of the framework, which resulted in a decrease in the intensity of the Brønsted
acid sites and the original acidity in the structure [22]. However, the relative ratio of the
Brønsted to Lewis acid sites in the Bi/β catalysts was initially increased from 0.82 to 0.96
and then decreased to 0.88, demonstrating that the acidity and strength of Bi/β catalysts
can be achieved by adjusting loading of Bi, and the Bi/β catalyst has also been proven to
be capable as a potential bifunctional catalyst with Lewis and Brønsted acid sites.
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Table 2. Acidity of H-β and Bi/β zeolite catalysts.

Catalyst Lewis Acid Sites
(mmol/g)

Brønsted Acid Sites
(mmol/g)

Total Acidity
(mmol/g) Ratio of B to L

H-β 38.16 33.40 71.55 0.87
Bi/β-1 40.72 33.33 74.06 0.82
Bi/β-2 52.26 50.36 102.62 0.96
Bi/β-3 45.30 40.93 86.23 0.90
Bi/β-4 34.63 30.46 65.19 0.88

The chemical environment of Bi element that was in interaction with support H-β
was subjected to XPS measurement (Figure 8). It was apparent that the two binding
energies were at 158.05 and 163.35 eV of pure Bi2O3, corresponding to Bi 4f7/2 and Bi 4f5/2,
respectively. However, in the case of Bi/β catalysts, the binding energies of Bi 4f7/2 and
Bi 4f5/2 were slightly higher than the corresponding values of Bi in bulk Bi2O3 [29]. This
shift towards higher binding energies may be due to the decrease in electron density
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around Bi which resulted from the strong interaction between Bi species and H-β support
(Figure 8a) [32]. The O 1s XPS spectra of Bi/β can be divided into two peaks at 531.2 and
532.9 eV, which can be assigned to lattice oxygen (OLatt) and surface adsorbed oxygen (Oads),
respectively [23]. It is noted that the relative peak intensity of chemical adsorbed oxygen
was clearly higher than that of lattice oxygen because of their higher mobility (Figure 8b).
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3.2. Catalytic Conversion of Cellulose to GA over Various Catalysts

Table 3 displays the experimental results for hydrolysis and oxidation of cellulose
over various catalysts at 180 ◦C for 10 h in a 2 MPa O2 atmosphere. It was found that
the control experiment without any catalyst gave a GA yield of 7.7%, AA yield of 7.6%,
negligible LA yield of 1.5%, and glucose yield of 1.0%, accompanied by minor amount of
DHA (2.6%), FA (2.0%), traces of GlyA (0.3%), and 5-hydroxymethyl-2-furancarboxylic
acid (HMFCA) (0.2%); this phenomenon was probably due to the H+ produced from auto-
catalysis reaction of water at high temperature conditions, indicating that it was difficult
to convert cellulose into GA under purely hydrothermal conditions (Table 3, entry 1) [7].
Furthermore, sole H-β afforded a 14.9% GA yield with a quite limited cellulose conversion
of 40.8%, whereas it was obviously higher than that of no catalyst, and concomitantly,
many kinds of by-products, including glucose (11.0%), LA (3.7%), FA (0.6%), AA (2.5%),
GlyA (1.3%), and HMFCA (6.0%), were detected, indicating that H-β was favorable for
hydrolysis of cellulose to glucose and further formation of GA due to its inherent Lewis
and Brønsted acid sites (Table 3, entry 2). Remarkably, incorporation of 2.3 wt% Bi loading
into H-β conspicuously improved the catalytic activity with cellulose conversion of 80.3%
and GA yield of 51.9%, almost 4-fold greater than that of pure H-β. Additionally, only 6.7%
LA yield was produced accompanying some other kinds of by-products such as AA (6.3%),
FA (1.2%), glucose (6.9%), GlyA (0.6%), and DHA (1.2%), which was mainly because the
Bi/β have the respective advantage of single component in catalysts; this result proved
the significant synergetic effect between H-β and Bi species could control the conversion
of cellulose toward formation of GA, and simultaneously suppress the formation of by-
products LA, GlyA, and HMFCA (Table 3, entry 4). Additionally, it was worth noting that
the reaction solution was colorless, revealing that Bi/β efficiently promoted the [2 + 4]
retro-aldol of glucose from hydrolysis of cellulose as well as its further oxidation to GA
rather than [3 + 3] retro-aldol of fructose to LA or dehydration of fructose to HMF [19]. To
further clarify the effect of Bi active sites on the catalytic activity for the reaction, the control
experiment using pure Bi2O3 as catalyst gave a GA yield of 21.8% that was a higher value
than the blank reaction, further suggesting the indispensable role of Bi2O3 for conversion
of cellulose to GA (Table 3, entry 10). Intentionally, physically mixing H-β (equimolar β
to Bi/β-2) with Bi2O3 (equimolar Bi to Bi/β-2) resulted in a remarkable increase in GA
yield of 42.6%, which showed a much higher yield toward GA relative to that of either
constitute, reflecting that there was an obvious synergistic effect between H-β and Bi2O3
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during the reaction process (Table 3, entry 11). However, the catalytic activity of physically
mixed catalyst fell far below that of Bi/β-2 catalyst, probably ascribed to the strengthened
interaction between Bi species and H-β. Moreover, Bi/β-2 possessed mostly weak acid
sites together with few amounts of medium acid sites as well as higher ratio of Brønsted to
Lewis acid sites. Based on these results, it was speculated that the synergetic interaction
between H-β and Bi2O3 was considered to be the most important factors affecting the
catalytic activity of Bi/β-2 catalyst in conversion of cellulose to GA.

Table 3. The conversion yields of cellulose into organic acids over various catalysts.

Entry Catalyst Con
(%)

Yield (%)

GA LA AA FA Fru Glu HMFCAGlyA DHA AcA LeA HMF

1 Blank 25.8 7.7 ± 0.6 1.5 7.6 2.0 0.1 1.0 0.2 0.3 2.6 0.2 1.2 0.1
2 H-β 40.8 14.9 ± 0.3 3.7 2.5 0.6 0.1 11.0 6.0 1.3 0.5 0.1
3 Bi/β-1 53.2 25.1 ± 0.4 3.2 3.5 0.9 0.2 8.2 4.2 0.3 1.4 0.1 0.2 0.1
4 Bi/β-2 80.3 51.9 ± 0.2 6.7 6.3 1.2 0.3 6.9 2.1 0.6 1.2 0.3 0.5 0.1
5 Bi/β-3 67.6 43.7 ± 0.3 4.4 6.1 0.5 0.2 6.6 2.7 0.4 1.1 0.1 0.2 0.1
6 Bi/β-4 53.8 34.1 ± 0.2 3.5 5.0 0.6 0.2 5.7 4.1 0.4 0.8 0.1 0.3 0.1
7 Mn/β 40.0 8.7 ± 0.4 6.1 2.8 0.7 0.3 13.1 7.5 0.7 0.5 3.1 0.4
8 Co/β 37.3 7.3 ± 0.5 1.7 6.4 1.2 0.2 13.4 7.1 0.7 0.1 0.4 0.3
9 Cu/β 54.3 17.0 ± 0.1 8.0 7.8 1.5 0.5 12.6 6.9 1.3 0.6 4.3 0.1
10 Bi2O3 30.1 21.8 ± 0.3 1.4 1.0 1.4 0.1 0.5 0.1 1.7 0.1 0.2 0.1
11 Bi2O3 + H-β 62.3 42.6 ± 0.3 3.5 2.7 1.1 0.2 7.3 1.6 3.9 0.3 0.3 0.1

Reaction conditions: cellulose 0.1 g; catalyst 0.08 g; water 12 mL; 180 ◦C; 10 h; 2 MPa O2. GA—glycolic acid;
LA—lactic acid; AA—acetic acid; FA—formic acid; Fru—fructose; Glu—glucose; HMFCA—5-hydroxymethyl-2-
furancarboxylicacid; GlyA—glyceric acid; DHA—1,3-dihydroxyacetone; AcA—acrylic acid; LeA—levulinic acid,
HMF—5-hydroxymethylfurfural.

To further elucidate the catalytic activities of different metal elements, Co/β, Cu/β, and
Mn/β with the same loading equivalent to the Bi/β-2 were further studied under identical
conditions. It was surprising to note that Bi/β exhibited an extraordinarily high catalytic
activity and selectivity towards GA, accompanied with similar by-products distributions.
Their catalytic activities were as follows in the order of Bi-β > Cu-β > Co-β > Mn-β, revealing
that different metal elements had a perceptible effect on the catalyst activity for the reaction,
presumably from the differences between their oxidation ability and pore structures (Table 3,
entry 7–9). Moreover, the role of Bi active sites on the catalytic performance was further
investigated. It was clearly observed that the strength of Lewis and Brønsted acid sites,
total acidity, as well as the ratio of B/L increased gradually with increase of Bi loading
from 1.26 to 2.3 wt %, in a good accordance with the yield of GA, suggesting that Bi
played a crucial role in the cleavage of C–O bonds and C2–C3 bonds in catalytic conversion
of cellulose. Nevertheless, further increase of Bi loading to 3.78 wt % resulted in subtle
reduction in total acidity and the yield of GA from 51.9 to 34.1% (Table 3, entry 3–6). In
contrast, the yields of undesirable by-products were increased, which was mainly because
introduction of excessive Bi species blocked the internal holes inside Bi-β catalysts, resulting
in the coverage of available active sites, and a decrease in BET surface areas together with
strength of Lewis and Brønsted acid sites [37]. Therefore, it was rational to infer that the
significantly improved catalytic activity was mainly due to simultaneously containing both
Brønsted acid sites from surface hydroxy groups and oxidation active sites from Bi species
partially isolated within Bi/β catalysts, which generated a synergistic effect for hydrolysis
and selective oxidation reaction of cellulose. Moreover, it was inferred that hydrolysis of
cellulose to glucose occurred in the first step during the whole reaction; Bi species were
responsible for [2 + 4] retro-aldol and the formation of GA, and a moderate oxidative
activity was indispensable for the selective oxidation of the resultant intermediates into GA.
The catalytic activity is dependent not only on the total surface acidity and acid strength
but also on the oxidation active sites on the Bi/β, as testified by the results of NH3-TPD
and PyIR [30].
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The reaction temperature is one of the most important factors on the catalytic activity
for conversion of cellulose. As depicted in Figure 9, the yields of all the products were
negligible for the optimum Bi/β-2 catalyst at 120 ◦C, indicating that the catalytic reaction
proceeded to a very low degree owing to the inter- and intra-molecular hydrogen bonds of
cellulose molecules. As the reaction temperature was then increased from 120 to 180 ◦C, the
conversion of cellulose was raised rapidly from 30.4 to 80.3%, and the yield of GA increased
remarkably from 0.2 to 51.9%, respectively. Meanwhile, the yields of other by-products and
reaction intermediates, such as LA, AA, FA, DHA, AcA, fructose, glucose, and LeA, were
also gradually increased, which was mainly ascribed to the fact that the reaction rate was
accelerated at an elevated temperature that speeded mass transfer. Nevertheless, further
increasing reaction temperature up to 200 ◦C would result in an almost completed cellulose
conversion with GA yield of 37.5%. Meanwhile, the yield of LA evidently increased,
whereas no humins was observed, but the yields of both AA and FA increased continuously.
Moreover, the yields of DHA, GlyA, LeA, and AcA disappeared slowly at 200 ◦C, which was
probably because higher temperature provided high energy and meanwhile accelerated the
side reactions, such as decomposition of GA into AA and FA [18,41,42]. This phenomenon
indicates that the complete transformation of highly stable and water-insoluble cellulose
requires a higher reaction temperature that can facilitate the hydrolysis and fragmentation
of cellulose.
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conditions: cellulose 0.1 g, Bi/β-2 0.08 g, H2O 12 mL, 10 h, 2 MPa O2.

The time-course profile showed that the conversion of cellulose was increased gradu-
ally from 52.3% to almost completely converted over Bi/β-2 catalyst from 4 to 16 h, and the
corresponding yield of GA was continuously increased from 23.6 to 75.6%, suggesting a
longer reaction time was favorable for the cleavage of C–O and C–C bonds in the conversion
of cellulose and formation of GA (Figure 10). The maximum yield of GA with 75.6% was
obtained at 180 ◦C for 16 h, which was noticeably higher than those of ever previously re-
ported heteropolyacid catalysts [13]. A large amount of glucose was detected after a shorter
reaction time, indicating glucose was the reaction intermediate. Moreover, it was observed
that the yield of AA was raised continuously from 1.5 to 7.6% and then decreased slowly.
Meanwhile, the yield of FA showed an increasing tendency from 0.3 to 2.4%, probably due
to the decomposition of GA or LA to low carbon products. Moreover, a little amount of
AcA yield was observed because of dehydration of LA [8,43]. However, further prolonging
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reaction time to 18 h resulted in a sudden reduction in the yield of GA of 25.2% due to
its decomposition to FA and other by-product, such as CO2 [44]. Similarly, it was noted
that the yield of DHA was raised initially from 0.1 to 1.2%, and finally disappeared at 18 h,
indicating too long reaction time will cause a decrease in the yield of GA, mainly owing to
the further decomposition of GA.
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The relationship between catalyst dosage and the yields of products was further
investigated (Figure 11). Evidently, as catalyst dosage was increased from 0.04 to 0.08 g,
more available active sites would be afforded, which were beneficial for conversion of
cellulose and gave a remarkably increasing yield of GA from 24.5 to 51.9%. However,
further increase in the catalyst dosage from 0.08 to 0.12 g would afford excessive active sites
to cellulose and intermediates, and they simultaneously accelerated the parallel reactions,
such as dehydration of fructose to HMF and further rehydration of HMF to FA and LeA in
acidic condition, or aldehyde-alcohol condensation as well as further composition of GA,
thereby reducing the yield of GA [45]. Moreover, the agglomeration of catalyst particles
resulting from high catalyst dosage also caused the decrease in catalytic activity, indicating
an appropriate amount of catalyst could promote the conversion of cellulose to production
of GA.

Subsequently, the effect of the initial cellulose amount on the yields of products was
investigated at 180 ◦C for 10 h. As presented in Figure 12, it could be seen that when
the amount of initial cellulose was increased from 0.05 g to 0.25 g, the yield of GA firstly
increased and then gradually decreased, which may be attributed to the fact that relatively
high initial cellulose amount led to polymerization of cellulose molecules, which resulted in
coverage of the active sites of catalyst, and which resulted in insufficient numbers of active
sites for the substrate. It was found that the yield of glucose continuously decreased from
17.4 to 4.3%, whereas the yield of AA gradually increased from 5.7 to 17.2%. Nevertheless,
the yields of GlyA, DHA, and AcA gradually increased.
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To comprehensively describe the catalytic activity of Bi/β-2, a variety of reactants
were intensively followed, including cellobiose, fructose, and glucose, as well as sucrose as
starting substrates (Figure 13). We found that the yield of GA starting from glucose was
significantly higher than that of starting from fructose. Given the remarkably higher yield
of GA using glucose as reactant than that derived from cellulose, it was speculated that
the breaking of C–C bonds was the crucial step in the process of cellulose conversion to
GA. Moreover, 21.3 and 27.8% of GA yield were obtained using sucrose and cellobiose as
substrates, respectively. Conspicuously, the yield of GA from cellulose was highest among
the substrates tested. It was demonstrated that the Bi/β has a great potential for practical
applications in the production of GA platform compounds from biomass feedstocks.
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3.3. Reaction Mechanism

As for the catalytic hydrolysis and oxidation of cellulose into GA in an O2 atmosphere,
this usually involves hydrolysis of cellulose into glucose, [2 + 4] retro-aldol condensation of
glucose to glycolaldehyde, [2 + 2] retro-aldol of erythrose to C2 intermediate, followed by
oxidation of glycolaldehyde to GA. Concurrently, partial glucose goes though isomerization
to fructose, and retro-aldol condensation of fructose to DHA and glyceraldehyde, which
can be converted into glycolaldehyde and formaldehyde, and ultimately are oxidized
to GA, FA, and AA. Additionally, dehydration of fructose and rehydration of HMF to
FA and LeA are also easy to occur during the reaction [13,16,19,46–48]. Therefore, it is a
very complex and synchronous reaction process. Combined with experimental results, it
was clearly observed that intermediates glucose and fructose were almost fully converted
over Bi/β-2 catalysts at 180 ◦C for 10 h, and the yield of GA starting from glucose was
significantly higher than that of starting from fructose, testifying that the primary reaction
route was the initial hydrolysis of cellulose into glucose and [2 + 4] retro-aldol reactions
of glucose to GA rather than [3 + 3] retro-aldol and dehydration reaction of fructose to
LA [18,49]. In addition, negligible HMF and LeA were detected, revealing the dehydration
of fructose and rehydration of HMF occurred as a result of Brønsted acid sites. Particularly,
a very small amount of HMFCA was formed, which was mainly ascribed to oxidation of
HMF [50]. It was interesting to note that no erythrose and glycolaldehyde were observed
in the products, which was likely because of their instability at high temperature condition,
which went through the [2 + 2] retro-aldol and was quickly oxidized into GA, which was
well consistent with the previous reports [19,39,49]. Moreover, trace amount of AA was
observed due to quick cracking of glyceraldehyde or DHA. Therefore, the conversion of
cellulose to GA involved the depolymerization or hydrolysis of cellulose into glucose in
the presence of Brønsted acidity, retro-aldol reactions of glucose to produce glycolaldehyde
and erythrose, and then glycolaldehyde further oxidized into GA [41,51,52]. In previous
reports, the heteropolyacid catalyst gave a GA yield of about 49.3% together with an HMF
yield of 15% for the reaction. Nevertheless, in this study, the Bi/β produced primary
product GA and negligible HMF, showing a better catalytic selectivity towards GA because
of reinforcing [2 + 4] retro-aldol condensation and appropriate surface acidity. Based on
the above results and the previous literature, the cascade catalytic conversion of cellulose
contains depolymerization of cellulose, the isomerization of glucose, and oxidation of
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intermediate, which can be synergistically catalyzed by the Lewis and Brønsted acid sites
as well as oxidation active sites on the Bi/β-2 catalyst in one-pot reaction; the proposed
reaction mechanisms are shown in Scheme 1.
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3.4. The Reusability of Catalysts

The stability of catalyst is very important for potential industrial applications. Figure 14
displays the results for the reusability of Bi/β-2 catalyst in the cellulose hydrolysis and
oxidation at 180 ◦C for 10 h. There was a pre-eminent stability without an obvious decrease
in catalytic activity after three successive cycles. The spent catalysts were recovered by
calcination at 550 ◦C for 6 h for the next run. As shown in Figure 14, the yield of GA slightly
decreased from 51.9 to 49% after the first cycle, and decreased to 47.5% after two cycles,
and it was mainly due to the leaching of Bi active sites during the reaction process. Notably,
the ICP-MS analysis from reaction solution after circulation proved that negligible Bi was
lost during the reaction, and the content of leached Bi was lower than 0.14% in all three
cycles. The XRD results of the regenerated Bi/β catalyst confirmed that the structure and
morphology of catalysts were still well maintained without notable changes after three
consecutive cycles, but the intensities of the characteristic diffraction peaks were slightly
weaker, implying a slight decrease in crystallinity (Figure 15). These results suggested the
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good reusability, stability, and potential catalytic capability for future applications in the
catalytic conversion of biomass to GA.
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4. Conclusions

In summary, we developed a series of Bi-decorated zeolite β catalysts and achieved
highly selective conversion of cellulose to GA in an O2 atmosphere. This study provided
a novel approach by adjusting the Bi loading to control the C2–C3 cleavage of cellulose
for the formation of GA. We found that with the 2.3 wt% Bi loaded, it was more favorable
for production of GA from cellulose hydrolysis and oxidation, due to its appropriate total
acidity, high ratio of B/L acid sites, and excellent oxidation activity. It is proved that
it can synergistically catalyze the hydrolysis of cellulose and the selective oxidation of
aldehyde groups to GA, achieving a GA yield of 75.6% at 180 ◦C for 16 h. Importantly, the
as-synthesized catalyst could be used repeatedly for multiple times. The insights given in



Int. J. Environ. Res. Public Health 2022, 19, 16298 17 of 19

this work might provide instructive clues for the development of Bi-based heterogeneous
catalysts for selective transformation of biomass feedstocks to GA and derivatives.
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