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Abstract: Background: Despite known association of internet addiction with a reduced brain volume
and abnormal connectivity, the impact of excessive smartphone use remains unclear. Methods:
PubMed, Embase, ClinicalTrial.gov, and Web of Science databases were systematically searched from
inception to July 2022 using appropriate keywords for observational studies comparing differences in
brain volumes and activations between excessive smartphone users and individuals with regular
use by magnetic resonance imaging. Results: Of the 11 eligible studies retrieved from 6993 articles
initially screened, seven and six evaluated brain volumes and activations, respectively. The former
enrolled 421 participants (165 excessive smartphone users vs. 256 controls), while the latter recruited
276 subjects with 139 excessive smartphone users. The results demonstrated a smaller brain volume
in excessive smartphone users compared to the controls (g = −0.55, p < 0.001), especially in subcortical
regions (p < 0.001). Besides, the impact was more pronounced in adolescents than in adults (p < 0.001).
Regression analysis revealed a significant positive association between impulsivity and volume
reduction. Regarding altered activations, the convergences of foci in the declive of the posterior lobe
of cerebellum, the lingual gyrus, and the middle frontal gyrus were noted. Conclusions: Our findings
demonstrated a potential association of excessive smartphone use with a reduced brain volume and
altered activations.

Keywords: smartphone addiction; excessive smartphone use; problematic smartphone use; brain
volume; functional connectivity; magnetic resonance imaging

1. Introduction

With the prevalence of smartphones worldwide, their excessive use has already be-
come a social issue. In contrast to other forms of addiction such as gaming or gambling
addiction that has been categorized as a distinct disease entity according to the Interna-
tional Classification of Disease (ICD) [1,2], excessive smartphone use is a more general
behavioral addiction that has not been officially classified as a disorder [3]. Compared with
drug dependence that affects structural and functional neural correlates through chemical
pathways, changes associated with behavioral addiction are more likely through operant
learning that involves rewards and punishments for behavioral impacts [4–6]. Excessive
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smartphone use has gradually replaced internet addiction as the most common behav-
ioral addiction because of the need for communication and the convenience of its use [7].
Previous studies mainly addressed issues surrounding internet addiction [8] without fo-
cusing on the use of smartphones, which have become an indispensable communicating
device in over 83% of the global population [8]. Although a previous meta-analysis has
reported a reduction in gray matter volume (GMV) as well as significant activations in the
medial/superior frontal gyri, the left anterior cingulate cortex/cingulate gyrus, and the
left middle frontal/precentral gyri in individuals with internet addiction [9], the structural
and functional impacts of excessive smartphone use on the central nervous system remains
unclear. Therefore, the current meta-analysis aimed at investigating the difference in struc-
tural volume and functional connectivity between individuals with excessive smartphone
use and their comparators with regular use.

Magnetic resonance imaging (MRI) is the most popular assessment tool for macro-
scopic neuroanatomical assessment of the brain (e.g., brain volume measurement) because
of its excellent image resolution and quality of between-tissue contrast [10]. Consistently,
MRI has been used to examine anatomic differences (e.g., gray matter volume) among
individuals with behavioral addiction [9,11]. MRI systems of different magnetic strengths
have their distinct merits in MRI acquisition. While 3-Tesla systems per se offer an im-
proved resolution of between-tissue contrast, MRI scan using 1.5-Tesla systems has the
advantage of providing sufficient data on quantifying relatively small brain structures [10].
Besides, several types of MR sequences are available for structural neuroimaging, such
as T1-weighted and T2-weighted imaging. In contrast to T2-weighted imaging, the T1-
weighted approach that provides the greatest clarity in distinguishing among gray matter,
white matter, and cerebrospinal fluid (CSF) is frequently used for quantitative MRI studies
of brain morphology (i.e., individual brain structures) [10]. Regarding the computation
of structural volume, voxel-wise statistical analysis (e.g., voxel-based morphometry) [12]
is commonly used. It is a fully automated MR image analysis technique that permits
voxel-wise statistical comparison of the local concentration of GMV between two groups
of subjects (e.g., patients vs. healthy controls). Hence, the current study focused on the
use of voxel-based structural brain imaging for volumetric measurement (mm3) in assess-
ing the difference in brain volume between individuals with excessive smartphone use
and healthy controls. Furthermore, the associations of moderators (i.e., stages of life and
brain areas) and mediators (i.e., demographic variables) with brain volume were examined
and analyzed.

In addition to computing the structural neural correlate, we also combined coordinate-
based meta-analysis to identify regions of consistent activation across functional MRI
(fMRI) studies, followed by the determination of the convergence of foci reported from
different studies (or experiments) using activation likelihood estimation (ALE) [13]. The
current meta-analysis attempted to integrate brain structures with functional connectivity
to provide neurobiological information about the differences between individuals with
excessive smartphone use and healthy comparators.

2. Methods
2.1. Study Eligibility

The excellent resolution of MRI in differentiation among different structures makes
it an ideal tool for discerning subtle anatomical differences in cortical and subcortical
structures [10]. Regarding the evaluation of functional connectivity, fMRI is often used be-
cause of its ability to measure metabolic activity within anatomic structures. The eligibility
criteria for study inclusion were: (i) Original, cross-sectional comparative studies that used
MRI in individuals with excessive smartphone use versus their counterparts with regular
use; (ii) Recruitment of individuals with excessive smartphone use confirmed through a
psychiatric interview or a validated questionnaire; (iii) Studies that used a whole-brain or
region of interest analysis; (v) those that reported the differences in structural volumes or
peak coordinates between participants with excessive smartphone use and control groups.
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On the other hand, we excluded studies that focused on “non-smart” mobile phones as well
as those involved participants with brain injury (e.g., traumatic or stroke), severe mental
disorders, neurological or physical diseases, and those examining the treatment effects of
drugs or non-drugs.

2.2. Electronic Searches

Following the PRISMA guidelines [14] (Table S1) and the MOOSE statement [15], we
systematically searched for articles through the PubMed, Embase, ClinicalTrials.gov and
Web of Science databases from inception to July 2022. For completeness of our literature
search, we used different string terms, namely mobile phone addiction (or internet addiction
or smartphone addiction or problematic phone use or overuse phone or nomophobia
or excess phone use or phone addictive behaviors or pathological phone use or phone
abuse) AND imaging (or magnetic resonance imaging or MRI or VBM or voxel-based
morphometry) (Table S2). No restriction was placed on language, date of publication,
and country of origin. The systematic review protocol was registered on the International
Prospective Register of Systematic Reviews (PROSPERO) website (ID 359367).

2.3. Data Extraction

Five independent authors (Chen B.-S., Li L., Lee C.-Y., Sue Y.-R. and Sung T.-M.)
completed title and abstract screening. Two other authors (Yeh P.-Y. and Liu S.-T.) indepen-
dently screened the full text of the retrieved literature with disagreements resolved through
discussion until consensus was reached. On encountering articles in which the necessary
data were unavailable, we attempted to retrieve the information through electronically con-
tacting the corresponding authors. For different studies using the same data, the article with
more recent information or a larger sample size was selected for the current investigation.

2.4. Effect Size Analysis

For structural neuroimaging data synthesis, effect size (ES) was used as the measure
for the primary outcome (i.e., brain volume) across the included studies. The current meta-
analysis used Hedges’ g as the ES which was the difference in mean structural volumes
between individuals with excessive smartphone use and their comparators with regular
use divided by the pooled standard deviations of the two groups. To compute the ESs, we
used the software “Comprehensive Meta-Analysis version for Windows (CMA, version
3.0)”. A negative ES represented a smaller brain volume in individuals with excessive
smartphone use compared to their counterparts with regular use. If more than one dataset
(e.g., different brain regions) were available in the eligible studies, a single ES denoting
the mean volume was acquired through standardization and averaging of the results. In
respect of the significance of findings, ESs of 0.8, 0.5, and 0.2 were deemed large, moderate,
and small, respectively [16].

We used subgroup analyses to evaluate the effects of moderators on brain volume.
Because the relatively small sample sizes commonly encountered in neuroimaging studies
would decrease statistical power, subgroup analysis in the current meta-analysis was
based on a random-effects model [17] on the assumption of an average distribution of ESs
across the included studies [18] to minimize sample size bias. In contrast to the weights
assessed with the fixed-effects model, those in the random-effects model are more similar
to each other [19]. We also used Q statistics and the corresponding p values to detect the
heterogeneity of ESs. As for the examination of the association between the mediators (e.g.,
age and prevalence of females) and brain volume, meta-regression with a mixed-effects
model was performed.

We used different methods to evaluate publication bias according to the number of
eligible studies. For outcomes reported in fewer than ten datasets, the corresponding funnel
plots were inspected [20]. Egger’s regression test was used for outcomes described in ten
or more datasets [21]. Using the Duval and Tweedie’s trim and fill method, potentially
missing studies were imputed for evidence of funnel plot asymmetry [22]. The influence
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of individual studies on the overall outcome was assessed with leave-one-out sensitivity
analysis [23].

2.5. ALE Analysis

ALE analysis was conducted with GingerALE v3.0.2 in the BrainMap environment [13,24,25].
There are two major statistical approaches to image analysis acquired with MRI, namely,
cluster-based approach (CBA) and voxel-based approach (VBA). While CBA can detect a
larger proportion of truly active brain areas (i.e., higher sensitivity to activation detection
with large spatial extent) especially studies with moderate effect sizes and smaller sample
sizes [26,27], VBA is suggested to avoid pitfalls [27] despite being too conservative to
decrease power [28]. Therefore, CBA is recommended for ALE studies [28]. In addition,
we used CBA to identify relative dominance because of the small number of eligible
studies and their small sample sizes. Coordinate data were entered into Talairach space.
Coordinates reported in MNI space were converted to Talairach space based on the icbm2tal
transform [29], followed by GingerALE calculations. Modeled Activation (MA) maps were
created for each foci group by modeling with Gaussians distribution. ALE map was
constructed by combining a union of all of the MA maps with a table of p-value for ALE
score. The ALE image and p-value table were used to create a 3D p-value image. Using the
GingerALE software, the threshold of p-value image was then set utilizing the family-wise
error (FWE) method with p < 0.05 being defined as statistically significant. We performed
two separate ALE analyses in this study for two different conditions, namely, increased
and decreased activations among individuals with excessive smartphone use compared
to controls. Significant clusters were overlaid onto an anatomical Talairach template,
colin_tlrc_2x2x2.nii (http://www.brainmap.org/ale, accessed on 16 May 2022), using the
Mango software (version 4.1, Research Imaging Institute, University of Texas Health Science
Center, Houston, TX, USA; http://www.ric.uthscsa.edu/mango, accessed on 16 May 2022).

3. Results
3.1. Study Characteristics and Participants

Figure 1 depicts the process of identification of eligible studies in the current meta-
analysis. Of the 6993 full-text articles deemed eligible according to their abstracts and
titles, 6982 were excluded because of failure to meet the inclusion criteria. Further, two
studies were not qualified for this study [30,31] since they shared the same participants
with the study by Horvath et al. [32]. Finally, 11 articles were included in this meta-
analysis (Table 1). The definitions of excessive (problematic) smartphone users across the
included studies are summarized in Table S3. Of the 11 articles, nine used questionnaires
for excessive smartphone use including the smartphone addiction proneness scale (SAPS)
(n = 5), smartphone addiction scale (SAS) (n = 3), and Mobile phone addiction index
(MPAI) (n = 1) for evaluating the severity of excessive smartphone use as well as grouping
participants into individuals with excessive smartphone use and comparators with regular
use (Table 1). However, of the other two articles, one used the Facebook version of the
compulsive internet use scale (CIUS) and the other adopted the Young’s internet addiction
test (Table 1).

http://www.brainmap.org/ale
http://www.ric.uthscsa.edu/mango
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Table 1. Comparison of structural and functional neural correlates between individuals with excessive smartphone use and their counterparts with regular use.

Studies
EXP CON EVAL of

EXP MPA Definition
Brain Volume Functional Connectivity

Country
N % F Avg. Age (SD) N % F Avg. Age (SD) ANAT Meas. EXP < CON EXP > CON CM EXP < CON EXP > CON

Cho et al. [33] 20 60.00 16.20 (1.11) 67 28.36 15.27(1.69) SAPS ≥42 on SAPS as EXP GMV and WMV SCP N/A N/A Korea

Choi et al. [34] 33 54.55 25.21 (5.54) 33 54.55 24.85(4.49) SAPS EXP score > CON score N/A BOLD signal Left MOOC

• Right: AG, FFG,
SMG, MFG

• Left: SMA, supPL, PreCG,
IFG, MCG, Precuneus

• Bilateral: ParaCG, IPL

Korea

Rashid et al. [35] 20 N/A 18–25 20 N/A 18–25 SAS-M
Subjects with scores of
>98 were considered

as EXP
GMD and GMV Left IPL Right insula

and right PreCG BOLD signal N/A

• Right: Calcarine gyrus,
SFG, supMA, precuneus

• Left: FFG, supPL, PCC
• Bilateral: Cerebellum

Malaysia

Yoo et al. [36] 20 60.00 16.20 (1.11) 68 27.94 15.26 (1.68) SAPS A SAPS score of 42 and
higher as EXP GMV and WMV Bilateral CN N/A N/A Korea

Horvath et al. [32] 22 68.18 22.5 (3.0) 26 69.23 23.0 (3.2) SAS-SV scoring > 31 (M) and
>33 (F) on SAS-SV

GMV Left anterior insula, IT,
and PHC Left SMG BOLD signal Right ACC N/A Germany

Nasser et al. [37] 15 33.00 22.2
(0.86) 15 53.00 21.67 (1.18) SAS-M

and IGAT
A cut-off score of

≥98 as EXP N/A BOLD signal
• Right: MOOC, infOG
• Left: Cuneus, supOG
• Bilateral: Calcarine, FFG, LG

• Right: LG, supPL, IFG, IT,
MOOC, MFG, postCG,
SMG, SFG, MCG

• Left: FFG, MFG, MOOC,
supPL, IPL, infOG,
precuneus, insula, supOG,
putamen, ACC, postCG

Malaysia

Lee et al. [38] 39 25.64 22.9 (2.2) 49 34.69 22.4
(2.7) SAPS

Total SAPS score > 40, or
subscale score > 14 for

disturbance of adaptive
function as EXP

GMV Right OPFC N/A N/A Korea

Lou et al. [39] 24 54.17 23.25 (1.33) 16 75.0 23.88 (0.86) YIAT Over 5 “yes” to the
8 questions as EXP N/A BOLD signal N/A • Right: MTG, IT

• Bilateral: ACC, MFG, IFG China

Chun et al. [40] 25 48.00 27.76 (5.97) 27 33.30 28.93 (6.93) SAPS

Total > 44, or
subscale > 15 (disturbance

of adaptive function),
>13(withdrawal),
>13 (tolerance)

N/A BOLD signal

• Right: IT, supPL, dorsal ACC,
SMA, cuneus, Thal

• Left: MFG, LG, MOOC,
DLPFC, cerebellum, supOG

• Bilateral: preCG, MTG

N/A Korea

He et al. [41] 25 32.0 24.12 (6.15) 25 32.0 29.80 (10.9) FACIUI EXP > CON GMV Right VS,
bilateral amygdala N/A N/A China

Wang et al. [42] 34 61.76 21.60 (2.10) 34 61.76 21.73
(1.94) MPAI Over 51 as EXP GMV&

DTI

• Right: SFG,
IFG, MOOC

• Left: ACC
• Bilateral: MFG,

Thal, CgH(DTI)

N/A N/A China

ACC = anterior cingulate cortex; AG = Angular gyrus; ANAT = Anatomy; BOLD = Blood-oxygen-level-dependent; CM = Connectivity measure; CN = Caudate nucleus; CON = Control
group; DLPFC = Dorsolateral prefrontal cortex; EVAL = Evaluation; EXP = Experimental group; F = Female; FACIUI = Facebook-specific adaptation of the Compulsive Internet Use
instrument; FFG = Fusiform gyrus; GMD = Gray matter density; GMV = Gray matter volume; IFG = Inferior frontal gyrus; IGAT = Instagram addiction test; IPL = inferior parietal lobule;
IT = Inferior temporal cortex; LG = lingual gyrus; M = Male; MA = mobile phone addiction; MCG = Middle cingulate gyrus; MFG = Middle frontal gyrus; MOOC = Middle occipital
cortex; MPAI = Mobile phone addiction index; MTG = Middle temporal gyrus; N/A = not available; InfOG = Inferior occipital gyrus; OPFC = Orbitofrontal cortex; PCC = Posterior
cingulate cortex; PHC = Parahippocampal cortex; PreCG = Precentral gyrus; postCG = Postcentral gyrus; SAPS = Smartphone addiction proneness scale; SAS-M = Smartphone addiction
scale-Malay version questionnaire; SAS-SV = Short version of smartphone addiction scale; SCP = Superior cerebellar peduncle; SFG = Superior frontal gyrus; SMA = Supplementary
motor area; SMG = Supramarginal gyrus; SPAI = Smartphone addiction inventory; supMA = Superior motor area; supOG = superior occipital gyrus; supPL = Superior parietal lobule;
Thal = Thalamus; VS = Ventral striatum; WMV = White matter volume; YIAT = Young’s internet addiction test.
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Of the 11 included articles, seven compared the brain volumes between individ-
uals with excessive smartphone use (n = 165) and their comparators with regular use
(n = 256) (Table 1). The mean age of the participants was 19.61 years (range, 15.26 to
29.80 years) with a female prevalence of 52.53% (range, 25.56.7 to 68.18%) (Table 1). With
reference to brain activations, six studies investigated the functional connectivity of in-
dividuals with excessive smartphone use (n = 139, mean age = 24.18 years) and their
counterparts with regular use (n = 137, mean age = 24.47 years) based on ALE analy-
ses of their fMRI findings (Table 1). Because excessive smartphone use was found to
be associated with activations of certain brain regions but decreased activities in others,
data were collected from four studies that provided information about the regions with
enhanced activities among excessive users compared to regular users (176 participants,
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96 activation foci) [34,35,37,39] and four studies reporting the regions with suppressed
activities (196 participants, 25 activation foci) [32,34,37,40].

Some studies used self-reported evaluation tools to investigate the severity of im-
pulsivity (n = 8), depression (n = 6), and anxiety (n = 5). Focusing on the assessment of
impulsivity, four studies [32,35,38,42] used the Barratt impulsiveness scale (BIS) [43] with
30 items, each of which was given a Likert score of 0 to 3 to indicate a progressive increase
in severity. Regarding the evaluation of depression, three studies [32,33,38] adopted the
Beck depression inventory (BDI) [44], which assesses the severity of depression based on
the participant’s responses to 21 items, each of which is scored on a four-point Likert scale
of 0, 1, 2, and 3 representing no, mild, moderate, and severe depression, respectively. In
contrast, the five studies with self-reported information about anxiety used different scales
for assessment that precluded the subsequent conduction of regression analysis.

The 11 eligible clinical trials were conducted mostly in Asian countries including
Korea (n = 5), China (n = 3), and Malaysia (n = 2), while one study was performed in
Germany. The sample size of the included studies ranged from 30 to 88.

3.2. Quantitative Brain Volume Data Synthesis

The results from seven studies demonstrated a significant anatomical difference be-
tween individuals with excessive smartphone use and their comparators with regular use
(Hedges’ g = −0.55, 95% CI = −0.80 to −0.31, p < 0.001) (Figure 2), indicating a decreased
brain volume in individuals with excessive smartphone use. The ES was unchanged on
leave-one-out sensitivity analysis (p < 0.001), suggesting a non-significant impact of the
results of any single study on the main outcome. The risks of publication bias reflected by
funnel plot asymmetry for brain volume is shown in Figure 3. Because the ‘trim and fill’
method revealed zero potentially missing studies on the left side of the plot, the adjusted
ES of −0.55 (−0.80 to −0.31) remained unchanged with the random-effects model.
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Figure 2. Forest plot comparing the effect sizes for brain volumes between individuals with excessive
smartphone use and their comparators with regular use [32,33,35,36,38,41,42].

Subgroup analysis focusing on age groups among individuals with excessive smart-
phone use (seven studies, 421 participants) revealed a significantly decreased brain volume
in adolescents compared to the adults (p < 0.001), suggesting a more pronounced structural
impact of excessive smartphone use among adolescents (Table 2). Subgroup analysis for
cortical and subcortical regions in individuals with excessive smartphone use showed a
significant reduction in size of the subcortical structures compared to that of the cerebral
cortex (p < 0.001) (Table 2), implicating an association between excessive smartphone use
and a reduced volume of subcortical structures. The results of meta-regression analysis
demonstrated no correlation between most of the investigated mediators and brain volume.
However, a significant correlation was noted between the BIS score and brain volume in
individuals with excessive smartphone use (p = 0.03; Table 3), suggesting a reduced volume
in those with a higher impulsivity.
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Table 2. Comparison of brain volumes between individuals with excessive smartphone use and their
counterparts with regular use: Hedges’ g.

Subgroup Analysis NComp g a 95% CI Z Q b p c

Age group
Adolescents 2 −0.66 −1.01 to −0.30 −3.61 ** 0.41 0.00

Adults 5 −0.49 −0.85 to −0.14 −2.74 **
Location

Cerebral cortex d 4 −0.14 −0.92 to 0.64 −0.34 2.35 0.00
Subcortical structure e 5 −0.77 −1.01 to −0.54 −6.42 **

Comp Comparison; a According to the random effects model; b Cochran’s Q to measure the heterogeneity in
accordance with random effects analysis; c The P levels in this column indicate whether the difference between
the effect sizes in the subgroups is significant; d Encompassing Rashid et al. [35], Horvath et al. [32], Lee et al. [38],
Wang et al. [42]; e Consisting of Cho et al. [33], Yoo et al. [36], Horvath et al. [32], He et al. [41], Wang et al. [42].
** p < 0.01.

Table 3. Regression analysis of correlations between different mediators and changes in brain volume
among individuals with excessive smartphone use.

Variable (Continuous) Coefficient (95% CI) p

Prevalence of female 0.01 (−0.002 to 0.03) (n = 6) 0.09
Age −0.006 (−0.07 to 0.06) (n = 6) 0.86

Intelligence quotient −0.006 (−0.07 to 0.06) (n = 3) 0.85
Mean Beck depression inventory score −0.08 (−0.36 to 0.19) (n = 3) 0.55
Mean Barratt impulsiveness scale score 0.03 (0.004 to 0.06) (n = 4) 0.03

3.3. The Difference in Brain Activations between Individuals with Excessive Smartphone Use and
Their Counterparts with Regular Use

ALE analysis of the four studies [34,35,37,39] with available information about the
anatomical locations with an enhancement of brain activities among individuals with
excessive smartphone use showed consistent areas of activations, namely the declive of
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posterior lobe of the cerebellum, the lingual gyrus (BA 18), and the middle frontal gyrus
(BA 46) (Table 4 and Figure 4). On the other hand, analysis of the four studies [32,34,37,40]
providing data on the anatomical regions with suppressed activities in excessive cellphone
users failed to pinpoint commonly affected areas.

Table 4. Brain areas with increased activities in participants with excessive smartphone use compared
with those with regular use.

Cluster Side Brain Area BA Volume (mm3) ALE x y z

1 R Declive of posterior lobe
568

0.014351934 28 −76 −14
1 R Lingual gyrus 18 0.014068902 28 −76 −8
2 L Middle frontal gyrus 46 472 0.016162576 −38 30 20

Note: All areas reported in Talairach space; Broadmann areas are defined by Brain Map Talairach atlas;
ALE = activation likelihood estimation; BA = Broadmann area; L = Left; R = Right.
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4. Discussion

To our knowledge, the current study is the first meta-analysis to investigate the
effect of excessive smartphone use on the structural and functional neural correlates. Our
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investigation revealed several findings that would be of clinical interest. First, individuals
with excessive smartphone use showed a reduced brain volume, especially among the
subcortical structures. Second, the impact on brain volume was more pronounced in
adolescents than in adults. Third, our finding of a positive association between impulsivity
and a reduced volume suggested a structural impact of impulsiveness on the brain. Fourth,
our identification of significant spatial convergence in the declive of posterior lobe, the
lingual gyrus (BA 18), and the middle frontal gyrus (BA 46) in individuals with excessive
smartphone use indicated an anterior-posterior distribution of altered connectivity.

Focusing on the effects of excessive smartphone use on structural and functional
neural correlates, the current study yielded several interesting results. Our finding of
a relationship between excessive smartphone use and a decreased brain volume, espe-
cially subcortical structures, was consistent with that of a previous meta-analysis that
demonstrated a correlation between internet addiction and a reduced GMV [9]. One of the
possible mechanisms underlying the observation may be the emotional impacts associated
with excessive smartphone use. Indeed, a body of evidence from systematic reviews has
revealed a significant association between problematic smartphone use and mental health
with anxiety and depression being the most common comorbid mental diseases [7,45]. In
continuation with this finding, previous meta-analyses further showed a reduced GMV
in the bilateral anterior cingulate cortex (ACC) among patients with major depressive
disorder [46] as well as decreased volumes of the right ventral ACC and the left inferior
frontal gyrus in individuals with anxiety disorders [47]. Besides anxiety and depression,
other mental disorders have also been shown to be associated with a reduction in volume
of the dorsal ACC and the bilateral insula [48].

Our ALE results revealed an association between excessive smartphone use and acti-
vation of several brain areas, namely the right posterior lobe of cerebellum, the right lingual
gyrus (BA18), and the left middle frontal gyrus (BA46) (Figure 4 and Table 4). Regarding
the relationship between the cerebellum and behavioral addiction, a previous observational
study has reported a disruption of executive-cerebellar networks but increased occipital-
putamen connectivity in internet addicts, probably resulting from addiction-sensitive
cognitive control processes and bottom-up sensory plasticity [49]. With respect to the
possible role of the lingual gyrus (BA18) in excessive smartphone use, a previous investiga-
tion has demonstrated that not only does the area receive information from the primary
visual cortex but it also affects the cortical endophenotypes for anxiety and depression [50]
which are common emotional comorbidities related to problematic smartphone use [7,45].
Consistent with the function of automatic emotion regulation of the cerebellum [49] as
well as the role of the lingual gyrus (BA18) in modulating both voluntary and automatic
emotions [50], a previous clinical trial has shown that the middle frontal gyrus (BA46) is
also responsible for voluntary and automatic emotion control [51].

Another interesting finding of the present study was the variation in structural impacts
of excessive smartphone use in different age groups on the brain. It has been reported
that adolescents are more prone to excessive smartphone use compared to adults [52,53].
Previous studies on adolescents based on voxel-based morphometry demonstrated a lower
GMV in multiple regions among those with internet addiction (especially male) [54,55],
including in the bilateral dorsolateral prefrontal cortex, the supplementary motor area, the
orbitofrontal cortex, the cerebellum, and the left rostral ACC. In addition to supporting
the previous finding that addictive behavior is associated with a smaller GMV [54,55],
our results further demonstrated a similar impact of excessive smartphone use as well
as a more obvious effect in adolescents than in adults (Table 2). A change in GMV has
been found to have a functional impact. In contrast to a reduction in GMV and cortical
thickness from childhood to young adulthood, gray matter density (GMD) increases during
this period [56] from GMV transformation to increase neuroreceptor and neurotransporter
availability [57]. As there is a positive correlation between GMD and neurocognition [58],
a smaller GMV in adolescents with excessive smartphone use may influence GMD and
thereby weaken neurocognitive performance. Furthermore, our meta-regression analysis
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revealed a significant positive correlation between the BIS score (i.e., impulsivity levels)
and a decreased brain volume (Table 3). Our finding was consistent was that of previous
studies that reported a smaller brain volume in individuals diagnosed with depression,
anxiety, or attention-deficit/hyperactivity disorder (ADHD) [7,45], taking into account the
known positive associations of these disorders with impulsivity and excessive smartphone
use [59]. Taken together, emotion dysregulation may play an important role in neurological
development among adolescent problematic smartphone users.

One of the therapeutic implications of the present investigation is a restoration of brain
volume. Given the low probability of a reduction in smartphone use, other measures may be
taken. Neurofeedback (NF), which is a well-accepted technique for regulating brain activi-
ties, has been found to alter brain microstructures [60]. Nevertheless, a significant limitation
of EEG-based NF is its confinement to the detection and modification of cortical instead of
subcortical activities. In contrast, real-time fMRI-based NF, which can discern whole-brain
activities, has been used to restore the size of hippocampus in patients with post-traumatic
stress disorder through amplifying the NF signals from the left amygdala [61]. In addition,
compared to fMRI-based NF, low-resolution electromagnetic tomography (LORETA) NF is
another more economical approach based on the theory of brain volume conduction [62].
LORETA NF could be regarded as a form of neuropsychotherapy [63] to more accurately
restore the reduced volume and downregulate the activity of neural mediators related to
excessive smartphone use (i.e., BA 18 and BA46; Table 4).

The current meta-analysis had its limitations. First, because our findings of structural
and functional neural correlates were based on data from a limited number of available
studies (i.e., seven and six, respectively), further investigations are needed to support our
findings. Second, heterogeneity in task-evoked stimuli (i.e., social media, entertainment,
game playing) being used across the eligible fMRI studies may introduce bias to the
localization of the brain areas being affected. Nevertheless, we identified consistent brain
regions showing activations despite failure to specify the regions with decreased activities.
Third, the current meta-analysis revealed a publication bias; while there were five studies on
the left side of the funnel plot in support of a reduction in brain volume among individuals
with excessive smartphone use (Figure 3), only two studies [32,35] were on the right
side because of their concomitant findings of both increases and decreases in different
brain regions resulting in a lack of overall change in brain volume in individuals with
excessive smartphone use (Figure 2). One possible explanation may be a difference in
gender distribution. While there was a male predominance in the five studies on the
left side of the funnel plot, one study on the left side did not report its gender ratio [35]
and the female prevalence in the other [32] was up to 69%. Fourth, variations in the
criteria for defining excessive smartphone use across the eligible studies may predispose
to discrepancies in severity-related structural and functional alterations in their findings
which, in turn, may bias our study outcomes. Finally, a previous study has shown an
association of depression, anxiety, attention deficit hyperactivity disorder (ADHD), and
excessive internet use with brain volume [8]. For instance, a decreased volume has been
reported to be related to excessive internet use, which could be associated with depression,
anxiety, and ADHD. Taking into account that excessive smartphone use is a complex
process that may involve interaction of different emotional components, merely attributing
the observed structural alteration to smartphone use would not be inappropriate. Moreover,
whether our finding suggests a decreased brain volume requires further well-designed
longitudinal cohort studies for elucidation.

5. Conclusions

Through systematically reviewing the currently available clinical trials focusing on
structural and functional neural correlates in individuals with excessive smartphone use,
the current meta-analysis not only demonstrated a reduced brain volume (especially subcor-
tical regions) but also identified the brain areas with enhanced activities, namely the right
posterior lobe of cerebellum, the right lingual gyrus (BA18), and the left middle frontal
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gyrus (BA46) in individuals with excessive smartphone use. Moreover, the structural
impact of excessive smartphone use on brain volume was more pronounced in adolescents
than in adults. In addition, there was a positive correlation between size reduction and
impulsivity among individuals with excessive smartphone use. Due to the limited num-
ber of available clinical trials in this study, further investigations are warranted to verify
our findings.
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