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Abstract: Advanced manufacturing is the pillar for building a modern economic system. We mea-
sured the level of high-quality development of manufacturing (HQDM) in China, and found that it
has gone through the three stages of expansion, cultivation, and promotion. Spatially, it is charac-
terized as “high in the east, low in the west” and “fast in the west, slow in the east”, and presents
non-equilibrium characteristics. To overcome the subjective bias introduced by artificially set clubs,
we utilize a data-driven nonlinear time-varying factor model for clustering into four convergent clubs,
where provinces with higher intensity of environmental regulation and environmental preference
tend to move closer to the clubs with a higher level of HQDM. We reveal the convergence patterns
and regional differences in HQDM, which provides a new perspective for determining the trends
of high-quality manufacturing development, thus allowing for policy recommendations targeted at
narrowing the manufacturing development gap.

Keywords: high-quality development of manufacturing; club convergence; nonlinear time-varying
factor model; ordered logit model

1. Introduction

The new era of technological revolution and industrial change is still emerging, and
the main contradiction of Chinese society now is the contradiction between the people’s
growing need for a better life and the unbalanced and insufficient mode of development.
In order to cope with the new changes in technology and meet the new needs of the people,
the Chinese economy must follow the path of high-quality development. Manufacturing is
the lifeblood of the Chinese economy and is crucial for enhancing the country’s strategic
competitiveness, and the high-quality development of manufacturing (HQDM) is an im-
portant strategic task for Chinese economic development in the new development stage.
China has the world’s largest and most mature manufacturing system [1]. According to
the World Bank, Chinese manufacturing value added has continued to grow (Figure 1),
and has remained in first place in the world for 12 consecutive years since 2010, with
its position as a major manufacturing country becoming increasingly secure. However,
there are still quality problems, such as over-capacity and environmental pollution [2], and
regional disparities have caused widespread concern. Figure 1 shows that, for more than a
decade, the growth rate of manufacturing value added has been slower than that of GDP,
and the proportion of GDP (p) has presented a decreasing trend. As the development of
industrialization has entered a higher stage of development, it is necessary to continuously
promote the transformation and upgrading of manufacturing and to improve its quality
and efficiency. Therefore, in order to complete the leap “from big to strong” and ensure the
strong manufacturing nature of the country, we must unswervingly promote the HQDM.
Due to the significant differences among Chinese provinces, in terms of geographic location,
level of economic development, and policy orientation, there exists a significant regional
imbalance in the HQDM, which affects the overall national development level. Therefore,
it is of great theoretical and practical significance to systematically study the convergence
characteristics of Chinese provincial HQDM levels and relevant influencing factors.
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and relevant influencing factors. 

 
Figure 1. Trends of manufacturing value added and GDP in China. Notes: Data source for Figure 1 
is the World Bank; unit: trillions of dollars (current dollar); p, the share of manufacturing value 
added in GDP. 
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such as economic growth [3] and Internet finance [4], but also widely promoted in green 
innovation [5], human capital [6], carbon emissions [7], green total factor productivity [8], 
energy productivity [9], and so on. Convergence theory originated from neoclassical eco-
nomic growth theory, and its classical meaning refers to the process of catching up and 
convergence of economic development levels of less-developed economies to developed 
economies in the long run, including σ  convergence, β  convergence, and club conver-
gence. In particular, σ  convergence is the gradual reduction of dispersion in different 
economies over time, while β  convergence is divided into conditional convergence and 
absolute convergence. The former argues that different economies have different initial 
conditions and structural characteristics, and that convergence can only occur between 
economies with similar structural characteristics. The latter indicates that different econ-
omies converge to the same steady-state in the long run, regardless of the differences in 
initial conditions and structural characteristics between economies. The concept of “con-
vergence club” was first introduced by Baumol (1986), who argued that countries (or re-
gions) with similar initial endowments, geographic locations, and cultural systems have 
similar degrees of economic convergence, and that different countries (or regions) have 
different clubs in development, based on their initial conditions. The convergence hypoth-
esis has been studied empirically in a large number of countries and regions; however, 
due to the complexity and diversity of the real world, the hypothesis has not yet been 
universally confirmed, which has attracted more and more economists to conduct more 
in-depth research. 

Figure 1. Trends of manufacturing value added and GDP in China. Notes: Data source for Figure 1 is
the World Bank; unit: trillions of dollars (current dollar); p, the share of manufacturing value added
in GDP.

Convergence studies provide an important way to analyze regional disparities and
convergence characteristics. They have not only been deeply applied in economics fields,
such as economic growth [3] and Internet finance [4], but also widely promoted in green
innovation [5], human capital [6], carbon emissions [7], green total factor productivity [8],
energy productivity [9], and so on. Convergence theory originated from neoclassical
economic growth theory, and its classical meaning refers to the process of catching up and
convergence of economic development levels of less-developed economies to developed
economies in the long run, including σ convergence, β convergence, and club convergence.
In particular, σ convergence is the gradual reduction of dispersion in different economies
over time, while β convergence is divided into conditional convergence and absolute
convergence. The former argues that different economies have different initial conditions
and structural characteristics, and that convergence can only occur between economies with
similar structural characteristics. The latter indicates that different economies converge to
the same steady-state in the long run, regardless of the differences in initial conditions and
structural characteristics between economies. The concept of “convergence club” was first
introduced by Baumol (1986), who argued that countries (or regions) with similar initial
endowments, geographic locations, and cultural systems have similar degrees of economic
convergence, and that different countries (or regions) have different clubs in development,
based on their initial conditions. The convergence hypothesis has been studied empirically
in a large number of countries and regions; however, due to the complexity and diversity of
the real world, the hypothesis has not yet been universally confirmed, which has attracted
more and more economists to conduct more in-depth research.

The topic of manufacturing convergence and its influencing factors has been discussed
from the following two aspects. First, in terms of research on manufacturing convergence,
academics have looked at output [10], technology [11], labor productivity [12], energy
productivity [13], CO2 emissions [14], and eco-efficiency [15] for quantitative analysis
of manufacturing convergence, and the results of most studies support the existence of
convergence characteristics in different aspects of manufacturing. Specifically regarding
the convergence of the Chinese manufacturing industry, the identification methods have
mostly considered σ or β convergence. The σ convergence is analyzed mainly by the
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coefficient of variation method, while the β convergence test mainly draws on the conver-
gence theory proposed by Barro and Sala-i-Martin, in order to construct a convergence
model for analysis, on the basis of which a spatial convergence model is constructed
considering spatial effects. For example, Liu D. (2022) studied the convergence of manufac-
turing energy carbon efficiency using coefficient of variation and convergence models, and
found that manufacturing energy carbon efficiency is not σ convergent, but has β conver-
gence [16]. Yang C. et al. (2021) observed strong conditional β convergence characteristics
of low-carbon innovation in the Chinese manufacturing industry through a conditional
convergence model, and examined the effect of economic openness on β convergence by
incorporating spatial spillover effects into the convergence function [17]. Erban A. C. et al.
(2022) examined the β convergence in high-technology manufacturing sectors in the EU28
countries, they found that the new EU member states displayed a higher β convergence
rate than the EU15 countries did [18]. However, both σ and β convergence testing methods
are somewhat biased [19]. For this reason, some studies have used the club convergence
method. For example, Huang et al. (2018) considered three groups of clubs when testing
the club convergence of energy efficiency—namely, eastern versus mid-western cities,
resource-based versus non-resource-based cities, and environmentally focused versus non-
environmentally focused cities—which were grouped based on similarities in economic
indicators or regimes [20]. This artificial division lacks objective and reasonable criteria [21],
and may hide potential club convergence [22]. Second, research has been conducted on the
factors influencing convergence. Studies have been conducted to examine the influencing
factors or convergence mechanisms of club convergence using ordered logit models or
probit models regarding issues such as per capita income [23], renewable energy tech-
nology innovation [24], R&D expenditure [25], and energy intensity [22]; however, most
studies on the convergence of the Chinese manufacturing industry have only sought to
determine whether it exists or not [5,16], and few have explored the factors influencing the
convergence of HQDM, lacking an examination of the convergence mechanisms.

Based on the above, in this paper, we attempt to expand and enrich the existing
research in the following ways: First, methods based on artificially predetermined clubs
can hardly meet the prerequisite of “similar initial level and structural characteristics,”
as proposed in the concept of club convergence, which will reduce the scientificity of
club identification, to a certain extent. To address this issue, we use a nonlinear, time-
varying factor model, a data-driven clustering approach, and convergence analysis to
construct the study object. This endogenous identification method takes into account the
time-varying heterogeneity among individuals, can compensate for the shortcomings of
existing studies, and can avoid the bias caused by manual classification [24]. Meanwhile, it
has been demonstrated in the literature that such a model is applicable for analysis of the
Chinese case [26]. Therefore, we introduce this method to study the convergence of Chinese
HQDM, in order to automatically screen and identify convergence clubs of Chinese HQDM.
Second, as mentioned previously, there is a lack of research on the influencing factors of
manufacturing club convergence taking Chinese provinces as samples. In this paper, we
use an ordered logit model to explore the causes of club convergence of Chinese HQDM,
then test the convergence mechanism of regional HQDM (see Figure 2).
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Figure 2. Mechanistic transmission diagram of the statistical measures and club effects of HQDM.

2. Materials and Methods
2.1. Two-Stage Entropy Method

In this paper, the two-stage entropy method is used to measure the level of HQDM
in each province of China, using the algorithm for layer-by-layer empowerment and
multidimensional weighting. The entropy method is generally based on macroscopic
data and, compared with subjective evaluation methods, it is not influenced by subjective
judgment and has a certain degree of scientific objectivity [27]. The principle of the entropy
method is to measure index weights based on the information entropy of the original data:
the smaller the entropy value, the greater the weight given, indicating that the index is more
important. To date, the entropy method has been widely used in manufacturing [2,28],
economics [17], innovation capability [5], and environmental pollution [1] fields, among
others. The calculation formula is detailed in the following.

First, in order to achieve comparable indicators and accurate index measurement, the
raw data were standardized.

Positive indicators:

zijk =
xijk −min

{
x1jk, · · · , xmjk

}
max

{
x1jk, · · · , xmjk

}
−min

{
x1jk, · · · , xmjk

} (1)

Negative indicators:

zijk
′ =

max
{

x1jk, · · · , xmjk

}
− xijk

max
{

x1jk, · · · , xmjk

}
−min

{
x1jk, · · · , xmjk

} (2)

where i indexes the provinces (i = 1, 2, · · · , m), j denotes the measurement indicators
of HQDM (j = 1, 2, · · · , n), k denotes the measurement dimension (k = 1, 2, · · · , h), xijk

denotes the raw data for indicator j of province i within dimension k, max
{

x1jk, · · · , xmjk

}
is the maximum value of the indicator in all years, min

{
x1jk, · · · , xmjk

}
is the smallest

value of the indicator in all years, and zijk and zijk
′ are the standardization results.

We calculated the weight of indicator j of province i in dimension k as follows:

wijk =
zijk

∑m
i=1 zijk

(3)
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and calculated the entropy value of indicator j of dimension k as

ejk = −
1

ln m ∑m
i=1 wijk ln wijk (4)

We calculated the weights of the indicators of dimension k of province i as

gik =
∑n

j=1
1−ejk

∑n
j=1 ejk

wijk

∑m
i=1 ∑n

j=1
1−ejk

∑n
j=1 ejk

wijk

(5)

the weighted entropy value of dimension k as

ek = −
1

ln m ∑m
i=1 gik ln gik (6)

and the HQDM index for province i as

I = ∑h
k=1

1− ek

∑h
k=1(1− ek)

gik (7)

The larger the HQDM index I, the higher the level of manufacturing development in
the province.

2.2. Club Convergence Test Method

We took the level of HQDM in 30 Chinese provinces from 2008 to 2019 as an empirical
basis, and endogenously identified the club convergence of HQDM in Chinese regions
based on the nonlinear, time-varying factor model proposed by Phillips and Sul (2007)
and their clustering algorithm [29]. Unlike the traditional artificial grouping, this method
can avoid a priori sample separation and imposes no special requirements regarding the
smoothness characteristics of the data [30]. Specifically, the identification method for club
convergence consists of three components: convergence testing of nonlinear, time-varying
factor models, club clustering, and club integration.

2.2.1. Convergence Tests of Nonlinear, Time-Varying Factor Models

We decomposed the level of HQDM Iit in year t for province i as:

Iit = δiµt + εit (8)

where µt is the public factor, εit is a random perturbation term, and δi reflects the hetero-
geneous distance between µt and Iit. Although δi reflects individual heterogeneity, this
heterogeneity does not change over time and, so, the random perturbation term εit needs
to be incorporated into the coefficients to obtain the nonlinear, time-varying factor model.

Iit =

(
δiµt + εit

µt

)
µt = δitµt (9)

where δi represents the change in individual heterogeneity over time, including the random
perturbation term εit. Thus, Equation (9) contains the time-varying characteristics of
individual heterogeneity.

In order to model the time-varying parameters, a relative transfer coefficient was
defined:

hit =
Iit

1
N ∑N

i=1 Iit
=

δit
1
N ∑N

i=1 δit
(10)

Ht =
1
N ∑N

i=1(hit − 1)2 (11)
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where hit reflects the degree of dispersion of the level of HQDM in province i from the
average level of each province and its trend over time, and Ht is the cross-sectional variance
of hit in year t. As the common growth path (i.e., the common factor) is partially eliminated,
when there is convergence, hit → 1 and Ht → 0 are set.

Further, in order to test the original hypothesis of convergence, it was necessary to
construct a semiparametric model:

δit = δi +
σiξit

L(t)tα
(12)

where δi is a constant term related only to the qualities of the level of HQDM in province
i and does not change over time; σi is a scale parameter for heterogeneity; ξit∼ iid(0, 1),
which is weakly correlated with t; L(t) is a slowly varying function, and when t→ ∞ ,
L(t)→ ∞ ; α is the decay rate, where a larger α yields faster convergence. This semipara-
metric model indicates that convergence holds as long as α ≥ 0, then δit → δi .

Based on the above derivation process, the original and alternative hypotheses of the
convergence test can be written as:

H0 : δi = δ & α ≥ 0
H1 : δi 6= δ or α < 0

To test the original hypothesis of convergence, regression was performed using the
following equation:

log
(

H1

Ht

)
− 2 log L(t) = â + b̂ log t + ût (13)

where L(t) = log t, t = [γT], [γT] + 1 · · · T, γ > 0, and γ is a parameter that determines the
starting time t. Since T = 12 < 50 in this paper, γ = 0.3. Furthermore, â is the estimated
value of α, and b̂ is fitting coefficient of log t, where â = 0.5b̂. The HAC one-sided t-test
was used to test the original hypothesis of α ≥ 0. If t < −1.65, it means that the original
hypothesis of convergence can be rejected at the 5% level of significance. The above test is
called the log t test.

2.2.2. Club Clustering

The log t test is the basic test premise to determine convergence. To obtain convergence
clubs, Phillips and Sul developed a data-driven clustering algorithm, using the following
steps [29].

1. Sorting

The mean values of HQDM level for each province in the final period are ranked in
order from highest to lowest, and the value of the time span parameter f is taken as 1/3.
The sorting is based on: (

T − [Ta]−1
)

∑T
t=[Ta]+1 Iit, a = 1− f (14)

2. Select core group

Among the sorted panel data, the k provinces with the highest means of Iit are
used as the basis, while other provinces are added in turn as alternative groups of clubs
Gk(2 ≤ k ≤ N). A log t test is subsequently performed for each alternative group, and the
statistics tk = t(Gk) are calculated. The core group Gk∗ containing k∗ provinces is filtered
according to the following criteria:

k∗ = argmaxk{tk}, s.t.min{tk} > −1.65 (15)

One province is added to the alternative core group at a time, and values of tk within
the group are calculated until the end, when tk < −1.65 (i.e., tk is initially less than the
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critical value at the 5% significance level). The first k members form a total of k− 1 core
alternative groups, and the largest value of tk among them is selected. The corresponding
alternative group becomes the core club Gk∗ . If tk < −1.65 for the first two provinces, the
first province is removed and the above steps are repeated for the remaining provinces
until tk > −1.65 is satisfied. If tk > −1.65 does not occur, it is judged that the provinces
and cities are divergent, and no convergence club Gk∗ is formed.

3. Add provinces.

Adding provinces to the core group in turn and performing log t tests, the t-statistic
obtained from this regression is expressed as t̂. If t̂ > c (c is the set threshold, c = 0), the
province is retained in the core club Gk∗ . Similarly, the remaining provinces are added
to the test following the above steps, and the core group Gk∗ , together with the newly
added provinces, form the first convergence club. Then, a log t test is performed on the first
converging club, in order to ensure that the entire group satisfies tb̂ > −1.65. If tb̂ ≤ −1.65,
the critical value c is raised to improve the judgment of the log t test, and this step is
repeated until tb̂ > −1.65 for the first converging club.

4. Stop algorithm

Continue the log t test for all provinces that did not enter the first convergence club. If
tb̂ > −1.65, the remaining provinces mentioned above form the second club. If tb̂ ≤ −1.65,
steps 1–3 are repeated for the remaining provinces above, in order to determine whether a
smaller convergence club exists.

2.2.3. Club Integration

As the convergence clubs formed by clustering after the above steps were obtained by
increasing the critical value c, different clubs still have the possibility of convergence at the
5% significance level, and it is necessary to merge the clubs satisfying tb̂ > −1.65. Drawing
on the study of Schnurbus et al., the clubs were tested for merging through the following
steps: assume that there are a total of M converging clubs, Club1, Club2, · · ·ClubM, and
that a log t test is conducted for each two adjacent clubs in turn, yielding a total of (M− 1)tm
values. If tm > −1.65 and tm > tm+1, the two clubs can be merged into one club; otherwise,
the two clubs are retained. If tm > −1.65 for the last two groups, they are combined into
one club.

2.3. Data Source and Processing

The sample data were mainly obtained from China Statistical Yearbook, China Science
and Technology Statistical Yearbook, China Industrial Statistical Yearbook, China Environ-
mental Statistical Yearbook, China Energy Statistical Yearbook, China High Technology
Industry Statistical Yearbook, China Labor Statistical Yearbook, provincial and municipal
statistical yearbooks, CSMAR, EPS, China Economic Network and World Brand Lab, and
so on. A total of 30 provincial-level administrative regions were studied in this paper, while
Tibet was excluded due to serious missing data. Brand value data were calculated by sum-
ming the brand values of each brand, according to provinces, given in the analysis report
of China’s 500 Most Valuable Brands from 2008–2019. In addition, in order to maintain the
integrity of the sample, individual missing data were filled in by interpolation and analogy.

3. Results
3.1. Measurement of HQDM in China
3.1.1. Constructing the Index System

We combined the connotation of HQDM and constructed a HQDM evaluation in-
dex system containing five primary indicators and 26 secondary indicators, including
innovation-driven, quality-first, green development, structural optimization, and talent-
based indicators (Table 1).
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Table 1. HQDM comprehensive evaluation index system and index weights.

Tier 1 Indicators Secondary Indicators Indicator Description Properties Variable
Name

Innovation-driven

R&D input R&D expenditure + X1
New product

development input Expenses for new product development + X2

Number of R&D
institutions Number of R&D institutions opened + X3

R&D institutional input Expenses for setting up R&D institutions + X4
R&D output Number of R&D projects + X5

New product project
output

Number of new product development
projects + X6

Benefits of new products Revenue from sales of new products + X7
Patent output Number of valid invention patents + X8

Technical Contribution Contract turnover of technology market + X9

Quality-first

Total labor productivity Industrial value added/Average number of
all employees + X10

Technology introduction Expenditure on digestion and absorption of
introduced technologies + X11

Equipment
transformation Expenditures for technological transformation + X12

Brand value level Brand value/Industrial value added + X13
Product quality level Superiority rate + X14

Product Sales Product sales rate + X15

Green development

Comprehensive
utilization rate of

industrial solid waste

Comprehensive utilization of solid
waste/Generation of solid waste + X16

Investment intensity of
pollution control

The amount of investment completed in
industrial pollution control/Industrial value

added
+ X17

Wastewater treatment Industrial wastewater treatment facilities
treatment capacity + X18

Energy consumption per
unit of industrial value

added

Total energy consumption/Industrial value
added - X19

Structural
optimization

Intelligent
manufacturing Number of broadband Internet access ports + X20

Level of informatization Mobile phone subscribers + X21

Development of new
products in high-end

industries

Number of new product development
projects in high-tech industry/Number of

industrial new product development
projects%

+ X22

Intensity of technological
transformation of

high-end industries

Expenditure for technological transformation
of high-tech industries/Expenditure for

technical transformation%
+ X23

Talent-based

Talent input intensity Full-time equivalent R&D
personnel/Number of Employees + X24

Treatment of talent Average wage of manufacturing workers + X25

Talent intelligence level Number of doctorates and masters in R&D
institutions run by enterprises + X26

Notes: A ”+” indicates that the indicator is a positive indicator; a ”-” indicates that the indicator is a negative
indicator.

1. Innovation-driven.

Innovation is the core driver of social development and the key motivating force
to achieve high-quality development. Only an innovation-driven economy can achieve
sustainable high-quality development, and we should adhere to the innovation-driven
development path and drive innovation output through innovation input. Innovation
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input is measured by secondary indices X1 − X4, and innovation output is measured by
secondary indices X5 − X9.

2. Quality-first.

Quality is the lifeline of building a strong manufacturing country. We must pay
attention to product quality, improve production efficiency, and take the road of winning
by quality. The production efficiency of manufacturing industry was mainly reflected in
terms of labor productivity (X10), and the ultimate purpose of technological introduction
(X11) and equipment transformation (X12) is also to improve product quality and optimize
production, indirectly reflecting the quality level. The brand value level (X13) can reflect the
quality brand building from the side; in addition, the “quality first” policy of manufacturing
can also be reflected by X14 − X15.

3. Green development.

Green sustainability is an important focus for building a strong manufacturing country,
being a key element of high-quality development. One of the main lines of China’s economic
policy since the 18th Party Congress is to adhere to green development, reduce pollutant
emissions, and promote the implementation of the goals of carbon peaking and carbon
neutrality. The environmental secondary indicators, composed of X16 − X19, reflect the
main inputs and results of cities in managing the environment.

4. Structural optimization.

Structural adjustment is a key part of building a strong manufacturing country. In
addition to strengthening the transformation and upgrading of traditional manufacturing
industries and promoting industrial integration, we must also cultivate high-end industries,
optimize the industrial structure, and take the development path of improving quality
and increasing efficiency. Structural optimization includes both structural integration
and structural upgrading. Structural integration is reflected by the secondary indicators
X20 − X21, while structural upgrading is measured by X22 − X23.

5. Talent-based.

Talent is fundamental in constructing a manufacturing powerhouse. The accumulation
of human capital is the root cause of sustained economic growth [31]. Only by taking talents
as the basis and following the development path led by talents can we better promote the
HQDM. To be talent-based, it is not only necessary to grow the talent team, but also to
improve the treatment of talents, attract high-end talents, and establish a sound scientific
and reasonable employment mechanism. Therefore, this dimension can be measured by
indicators such as X24 − X26.

3.1.2. Measurement Results

Using the two-stage entropy method introduced earlier for step-by-step calculation,
the HQDM indices of 30 Chinese provinces from 2008–2019 were obtained (Table 2), and the
HQDM levels of each province were analyzed according to the calculation results. Table 3
shows the measurement results for the HQDM level of each province from 2008 to 2019,
and Figure 1 reflects the changes in the national and regional HQDM indices from 2008 to
2019.
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Table 2. Annual measurement results of HQDM total index by province.

Province 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Average
Annual

Growth Rate
(%)

Beijing 0.331 0.326 0.306 0.369 0.398 0.465 0.481 0.477 0.484 0.522 0.488 0.508 3.967
Tianjin 0.341 0.330 0.360 0.393 0.425 0.423 0.441 0.436 0.442 0.492 0.428 0.445 2.456
Hebei 0.260 0.267 0.269 0.257 0.259 0.342 0.353 0.373 0.363 0.398 0.421 0.402 4.048
Shanxi 0.198 0.193 0.179 0.190 0.249 0.262 0.233 0.194 0.199 0.236 0.227 0.243 1.898

Inner Mongolia 0.167 0.204 0.210 0.270 0.227 0.292 0.299 0.287 0.260 0.260 0.288 0.255 3.933
Liaoning 0.192 0.208 0.213 0.327 0.247 0.268 0.290 0.277 0.305 0.332 0.339 0.332 5.085

Jilin 0.157 0.181 0.217 0.227 0.267 0.360 0.315 0.294 0.302 0.299 0.234 0.319 6.652
Heilongjiang 0.196 0.208 0.234 0.256 0.296 0.268 0.265 0.300 0.309 0.295 0.265 0.282 3.364

Shanghai 0.323 0.388 0.409 0.424 0.434 0.424 0.486 0.493 0.548 0.560 0.577 0.614 6.034
Jiangsu 0.404 0.437 0.483 0.535 0.582 0.621 0.646 0.667 0.695 0.733 0.749 0.773 6.071

Zhejiang 0.333 0.344 0.364 0.405 0.444 0.477 0.496 0.539 0.545 0.565 0.596 0.643 6.164
Anhui 0.244 0.251 0.274 0.307 0.356 0.359 0.354 0.394 0.411 0.440 0.456 0.481 6.370
Fujian 0.224 0.271 0.298 0.295 0.349 0.356 0.380 0.377 0.406 0.283 0.456 0.468 6.938
Jiangxi 0.190 0.171 0.205 0.245 0.262 0.319 0.305 0.309 0.260 0.289 0.345 0.383 6.587

Shandong 0.349 0.370 0.420 0.425 0.449 0.542 0.529 0.540 0.550 0.557 0.542 0.556 4.336
Henan 0.244 0.271 0.269 0.298 0.310 0.354 0.353 0.354 0.352 0.359 0.388 0.395 4.475
Hubei 0.260 0.277 0.304 0.309 0.307 0.328 0.345 0.358 0.377 0.373 0.431 0.453 5.188
Hunan 0.271 0.266 0.293 0.296 0.332 0.364 0.367 0.383 0.386 0.422 0.423 0.430 4.306

Guangdong 0.400 0.432 0.419 0.496 0.527 0.578 0.571 0.623 0.670 0.740 0.835 0.867 7.278
Guangxi 0.183 0.221 0.213 0.192 0.229 0.225 0.238 0.278 0.256 0.237 0.241 0.312 4.956
Hainan 0.274 0.286 0.277 0.315 0.422 0.318 0.358 0.342 0.330 0.325 0.357 0.328 1.666

Chongqing 0.187 0.200 0.221 0.237 0.272 0.297 0.318 0.338 0.334 0.352 0.375 0.391 6.904
Sichuan 0.275 0.256 0.248 0.263 0.258 0.278 0.329 0.326 0.331 0.358 0.407 0.423 4.004
Guizhou 0.146 0.151 0.223 0.243 0.262 0.269 0.286 0.233 0.274 0.258 0.336 0.362 8.616
Yunnan 0.112 0.115 0.143 0.178 0.193 0.213 0.230 0.261 0.247 0.238 0.292 0.338 10.524
Shaanxi 0.165 0.189 0.215 0.239 0.264 0.293 0.378 0.343 0.351 0.321 0.326 0.375 7.726
Gansu 0.164 0.135 0.145 0.156 0.174 0.186 0.178 0.192 0.194 0.209 0.219 0.228 3.050

Qinghai 0.033 0.085 0.091 0.130 0.128 0.118 0.160 0.174 0.225 0.182 0.184 0.208 18.312
Ningxia 0.169 0.128 0.173 0.143 0.197 0.246 0.345 0.229 0.270 0.188 0.209 0.228 2.724
Xinjiang 0.149 0.176 0.119 0.225 0.179 0.214 0.221 0.218 0.213 0.231 0.254 0.286 6.097

Table 3. Results of convergence tests for the national and regional club areas.

Test Subjects Number of
Provinces

^
b Standard Error (sd) t Convergence or

Not

National 30 −1.3514 0.1219 −11.0874 No
East 11 −1.6498 0.1378 −11.9733 No

Central 8 −2.7675 0.2483 −11.1466 No
West 11 −1.1212 0.2361 −4.7495 No

Similar to the results of existing studies [32], we observed an overall growth trend
in the HQDM index from 2008 to 2019, indicating an improvement in the quality of
manufacturing development nationwide. According to the annual growth rate of the
development index, China’s HQDM shows obvious stage characteristics, roughly divided
into three stages: expansion, cultivation, and promotion.

The first stage is the expansion period (2008–2014), where China’s HQDM level rose
rapidly, with the HQDM index increasing from 0.231 to 0.352, with an average annual
growth rate of 7.27%. Since its accession to the WTO in 2001, China’s manufacturing indus-
try has been deeply integrated into the global industrial chain with its unique comparative
advantages, and its status as the “world’s factory” has been increasingly consolidated,
especially since the outbreak of the global financial crisis in 2008, which provided a favor-
able opportunity for China’s manufacturing industry to adjust its layout and optimize its
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structure. Manufacturing value added grew rapidly, from USD 1.48 trillion to USD 3.48
trillion, over the same period, indicating that the significant expansion of manufacturing
scale led to a significant increase in HQDM levels.

The second stage is the cultivation period (2015–2017). As China’s economic de-
velopment enters the new normal, the Chinese government has actively promoted the
transformation of the manufacturing industry from the crude scale and speed type to the
intensive quality and efficiency type, such as the State Council issuing Made in China 2025,
establishing the National Leading Group for the Construction of a Strong Manufacturing
Country, strengthening the HQDM coordination planning, and other measures to strongly
promote the transformation and upgrading of the manufacturing industry. During this
period, China’s HQDM level showed obvious characteristics of speed shift, as the HQDM
index only increased from 0.354 to 0.368, with the average annual growth rate slipping to
1.49%.

The third stage is the promotion period (2018 to present). With the new expression of
high-quality development, proposed for the first time at the 19th Party Congress in 2017,
the Party Central Committee and the State Council have attached more importance to the
implementation of high-quality economic and social development, and HQDM has been
further strengthened. The effects of a series of policies introduced in the previous period
to support the cultivation of new dynamic energy in the manufacturing industry and the
structural reform on the supply side have gradually emerged, and the average annual
growth rate of HQDM index rebounded to 5.68%.

At the regional level (Figure 3), the level of HQDM in China showed a significant
regional imbalance. First of all, the level of HQDM in China presented a “high in the east,
low in the west” trend; that is, the overall development level of the eastern coastal provinces
was significantly higher than that of the central and western regions. On one hand, this
may be due to the superior geographical location, developed transportation facilities, and
more open trade development in the eastern region, where local governments pay high
attention to environmental pollution control, such as taking the lead in formulating envi-
ronmental control policies and investing large amounts of human, material, and financial
resources [32–34]. On the other hand, the higher level of industrial agglomeration in the
eastern region has continued to generate an increase in economic productivity [35], which
has led to an overall increase in the level of HQDM. Secondly, from the viewpoint of the
average annual growth rate, the initial level of the western provinces was relatively low,
and the growth rate of HQDM was faster, with the characteristic of “slow in the east, fast
in the west”. The average annual growth rate of the manufacturing development index
in the west was 6.26%, which was 1.14% and 1.31% higher than that in the east and the
center, respectively, indicating a “catch-up effect” that has not previously been mentioned
in the existing literature [32–34]. On one hand, this may be due to the low base of the
western region; on the other hand, it may also be a “latecomer advantage”, as the Chinese
government has attempted to replicate the successful experience of HQDM in the eastern
region, including institutional policies, advanced technology, and central financial support,
in the central and western regions, thus allowing the level of HQDM in the central and
western regions to improve relatively quickly. Therefore, there may be a convergence
trend of HQDM in China. In the following, this issue is discussed, based on the nonlinear,
time-varying factor model and its clustering algorithm proposed by Phillips and Sul (2007).
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3.2. Club Convergence Analysis of HQDM in China
3.2.1. National and Traditional Club Area Convergence Results

Before performing club convergence identification, we first performed a club conver-
gence test on the level of HQDM in 30 provinces across the country, in order to determine
whether club convergence is present in the country as a whole. The test results (Table 3)
indicated that the national b̂ value corresponded to a t value of −11.0874, less than the criti-
cal value of −1.65 at the 5% level of significance, thus rejecting the original hypothesis of
overall convergence. This indicates that the national HQDM level does not show an overall
convergence trend under the premise of considering heterogeneity and time-varying speed
of convergence. Although there was no overall convergence in the HQDM levels of the 30
provinces nationwide, this does not exclude the possibility of club convergence and, so,
further club convergence tests are required.

We first applied the traditional artificially predetermined club method to divide the
30 provinces and cities into three major economic regions—namely, east, central, and
west (the eastern region includes Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu,
Zhejiang, Fujian, Shandong, Guangdong, and Hainan; the central region includes Shanxi,
Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, and Hunan; the western region includes
Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Tibet, Shaanxi, Gansu,
Qinghai, Ningxia, and Xinjiang)—based on traditional geographic information division
criteria, and tested for club convergence in the three major economic regions. The test results
(Table 3) indicated that the t values corresponding to the eastern, central, and western
b̂ values were −11.9733, −11.1466, and −4.7495, respectively, which were also all less
than −1.65 at the 5% significance level, indicating that there was no regional convergence
characteristic of HQDM level within the traditional three major economic regions, also
indicating that the traditional method of artificially presetting clubs is not feasible and does
not accurately reflect the intrinsic connection and similarity of regional HQDM.

3.2.2. Club Convergence Test and Integration Test

In order to find the initial convergence club, we used the club convergence iden-
tification method described previously to analyze the convergence of HQDM levels in
each province of China. This method can better overcome the defects caused by artificial
division and strong assumptions in the traditional convergence test, in order to identify the
convergence characteristics and convergence clubs of Chinese HQDM more scientifically,
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allowing us to summarize their developmental commonalities and explore the reasons for
their differences.

First, we applied the log t test and clustering algorithm as the initial club test for the 30
provinces in China (Table 4). The test results indicated that the t values obtained by fitting
the four initial clubs at the 5% significance level were all greater than −1.65, indicating that
the original hypothesis of HQDM convergence for each initial club held.

Table 4. Results of convergence test for Chinese provincial clubs.

Initial Clubs Estimated
Value Merging Test Final Clubs

Club A 0.2543
(0.1225)

Club A + B
−1.2238

(−4.2839)

Club1:Club A

Club B 0.6019
(0.2771)

Club B + C
−0.7123

(−2.9357)

Club2:Club B

Club C −0.1923
(−0.5220)

Club C + D
−0.8800

(−6.3737)

Club3:Club C

Club D 0.6068
(4.087) Club4:Club D

Notes: The values in round brackets are t-statistics.

Subsequently, we performed a merger test on the four initial clubs obtained, according
to the club integration method, in order to identify whether the original inter-clubs could
be merged to form larger convergent clubs. The results of the merger test for adjacent initial
clubs showed that the t values obtained from the fits of merged Clubs A and B, merged
Clubs B and C, and merged Clubs C and D were less than−1.65 at the 5% significance level,
which means that the four clubs could not be integrated to form a larger club. Therefore,
the initial clubs did not satisfy the conditions of the club merger test, as shown in the last
column of Table 4, thus eventually yielding 4 convergent clubs comprising 2, 2, 16, and 10
provinces, respectively (Table 5).

Table 5. Basic characteristics of convergence clubs.

Club Average Value of
HQDM Index Characteristics Membership

1 0.6035 High level Guangdong, Jiangsu.
2 0.4763 Relatively high level Shanghai, Zhejiang.

3 0.3315 Moderate level

Anhui, Beijing,
Chongqing, Fujian,

Guizhou, Hebei,
Henan, Hubei,
Hunan, Jiangxi,

Liaoning, Shandong,
Shaanxi, Sichuan,
Tianjin, Yunnan.

4 0.2303 Low level

Gansu, Guangxi,
Hainan, Heilongjiang,
Jilin, Inner Mongolia,

Ningxia, Qinghai,
Shanxi, Xinjiang.

Table 5 depicts the basic characteristics of the final four convergence clubs. By com-
paring the map of China, there was no obvious connection between the geographical
distribution and the obtained clubs [22]. The mean HQDM values of the four clubs were
0.6035, 0.4763, 0.3315, and 0.2303, respectively, in decreasing order. To further explore the
dynamic change characteristics of these four convergence clubs, the relative transfer paths
of each convergence club also needed to be examined.
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3.2.3. Relative Transfer Path Results for Each Convergence Club

According to Phillips et al. (2009), although club members will converge to the same
steady-state over time, there will be different convergence paths for each member, due to
the heterogeneity of the initial state. To further explore the HQDM convergence path in
each province, we plotted the relative transfer paths of HQDM levels in each convergence
club member province for 2008–2019 by calculating the relative transfer coefficient hit for
each convergence club member province (see Figures 4–7).
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From the convergence paths of the member provinces of Club 1, although the initial
levels of HQDM in Jiangsu Province and Guangdong Province were similar, the gap
between Jiangsu Province and Guangdong Province, in terms of HQDM level, widened
during 2010–2014, where the HQDM level of Jiangsu Province was always higher than that
of Guangdong Province. After 2015, the level of HQDM of Guangdong Province was in the
state of “accelerated catching up”, gradually narrowing the gap with Jiangsu Province, and
successfully overtaking Jiangsu Province and moving into the “leading” position in 2017.

From the convergence paths of Club 2 member provinces, Shanghai and Zhejiang
HQDM presented the phenomenon of “catching up with each other”, with Shanghai’s
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HQDM level being higher than Zhejiang during 2009–2011, Zhejiang’s HQDM level catch-
ing up with Shanghai during 2012–2015, Shanghai’s HQDM level briefly exceeding Zhejiang
in 2016, and Zhejiang catching up with Shanghai again after 2017.

The convergence paths of the member provinces of Club 3 can be roughly divided into
high-, medium-, and low-level groups, according to the initial HQDM level. The high-level
group included Shandong province, Beijing city, and Tianjin city, whose initial HQDM level
was high in 2008 and was in the “leading” state during the observation period of 2008–2019.
The medium-level group included Sichuan Province, Hunan Province, Hubei Province,
Hebei Province, Henan Province, Anhui Province, and Fujian Province, whose HQDM
levels remained around the club average during 2008–2019; however, Anhui Province
and Fujian Province succeeded in “catching up” with Tianjin City in the high-level group
during 2018–2019. The low-level group included Liaoning, Chongqing, Jiangxi, Shaanxi,
Guizhou, and Yunnan provinces, whose initial level of HQDM in 2008 was low and an
overall “catching up” status was presented in the period 2008–2019, among which Guizhou
and Yunnan provinces had the most obvious “catching up” characteristics, which gradually
narrowed the development gap with other club member provinces during 2008–2019.

Looking at the convergence paths of the member provinces of Club 4, the HQDM
level of Hainan Province was always in the “leading” position during 2008–2019, while
the “catching up” feature was most obvious in Qinghai Province. Other provinces, such as
Gansu, Guangxi, and Heilongjiang, generally remained near the average level of the club.

Based on the members included in each convergence club, it can be seen that the
member provinces belonging to the same convergence club differed significantly from
the traditional geographic division of the situation, and they were entirely endogenously
determined based on the HQDM data of each province. Combined with Figure 4, the
geographical location of each club member was further examined. The results indicated
that, in terms of the geographical distribution of each province, Clubs 1 and 2 both include
two eastern regions; Club 3 includes six eastern, five central, and five western regions;
Club 4 includes one eastern, three central, and six western regions. It can be seen that
there was no obvious similarity in the geographical distribution of the member regions in
each club, which also indicates, to some extent, that the division of clubs based only on a
single indicator such as geographical location or other criteria lacks rationality, and also
demonstrates that the factors influencing the convergence of HQDM clubs in China are
more complex and need to be further explored.

3.3. Factors Influencing Club Convergence

The four convergence clubs based on HQDM in China were obtained by “letting the
data speak for itself,” as detailed above. A question thus arose: what are the factors that
determine whether a province belongs to a certain convergence club? In the following, we
detail our further investigation of the factors influencing the convergence clubs based on
the ordered logit model.

3.3.1. Variable Selection

The following five variables were selected, in order to examine their influence on
the convergence clubs based on the HQDM: (1) environmental regulation (ER)—as an
effective means of environmental protection by the government, the intensity of environ-
mental regulation affects manufacturing production decisions to a certain extent, and can
stimulate technological innovation and promote transformation and upgrading, which
may affect the convergence of the HQDM. The frequency of environmental protection
words in the government work report was chosen to reflect the intensity of environmental
regulation. The higher the word frequency, the greater the intensity of environmental
regulation, and vice versa; (2) environmental preference (EP)—we used the urban green-
ing coverage to measure this variable; (3) openness (OPEN)—foreign trade can increase
technology spillover, promote industrial upgrading, and contribute to the high-quality
development of manufacturing, which we measured in terms of the share of total imports
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and exports in GDP; (4) organizational management change (OMC)—measured by the
share of the number of non-state enterprises in industrial enterprises above the scale; (5)
urban population density (UPD)—urban population density can promote manufacturing
industrial upgrading by releasing investment and consumption demand, which, in turn,
affects HQDM club convergence. Referring to Huang et al. (2018), population per unit
area was used to measure this variable [20]. The descriptive statistics of the variables are
provided in Table 6.

Table 6. Descriptive statistics of variables.

Variable Obs Mean SD Min Max

ER 30 65.6269 14.4579 42.8488 113.2422
EP 30 38.7243 3.5536 30.4646 46.8173

OPEN 30 27.0244 28.8921 2.5337 119.0657
OMC 30 89.5992 7.0538 73.7419 98.3274

lnUPD 30 7.8707 0.4039 7.1745 8.5395

3.3.2. Model Setting

Given that the average level of HQDM for Clubs 1–4 showed a decreasing trend, we
constructed ordered discrete variables of clubs on the basis of the identification results of
the convergence clubs, with values 1–4 denoting Clubs 1–4, respectively (i.e., Club 1 takes
the value of 1, Club 2 takes the value of 2, and so on). In order to identify and analyze the
causes of club convergence, we used an ordered logit model to explore the influence of the
above variables on the convergence of HQDM clubs. The model was established as follows:

club = β1ER + β2EP + β3OPEN + β4OMC + β5 ln UPD + ε (16)

where club represents the convergence clubs. As the first two clubs each contained only two
provinces, referring to Bartkowska and Riedl (2012) [23], the first two clubs were combined
into one club as Club 1, and the last two clubs were Clubs 2 and 3, so club = 1, 2 and 3,
representing high, medium, and low levels of HQDM, respectively. Furthermore, ε is the
perturbation term of the model, obeying a logit distribution with mean 0 and variance
π2/3. As the explanatory variables were cross-sectional data, in order to avoid statistical
errors caused by the selection of data for only one year, referring to Bai C. et al., (2020) [24],
the values for each explanatory variable were taken as the mean of the values over the
period 2008–2019.

3.3.3. Empirical Results

The ordered logit model regression results indicated that the pseudo R2 was 0.7155
and the Wald statistic was 16.48, corresponding to a p-value of 0.0056. The joint significance
of all coefficients in the overall regression model was high, demonstrating that the ordered
logit regression model was valid. As ordered logit regression is a nonlinear model using
maximum likelihood estimation, its estimated coefficients only reflect the direction of the
influence of the explanatory variables on the club division, and do not include marginal
effects; therefore, in order to explore the influence of individual variables on the probability
of membership in a particular club, we further calculated the marginal effects of each
explanatory variable at the mean; the specific results are shown in Table 7.
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Table 7. Regression results of club convergence factors and their marginal effects.

Variables Coefficient
Marginal Effects

Club 1 Club 2 Club 3

ER −0.1576 ***
(−2.60)

0.0033 ***
(3.04)

0.0071 ***
(2.65)

−0.0105 ***
(−3.14)

EP −0.2607 *
(−1.95)

0.0055
(1.61)

0.0118 ***
(3.11)

−0.0173 **
(−2.47)

OPEN −0.1997 **
(−2.36)

0.0042 ***
(3.68)

0.0091 ***
(2.65)

−0.0133 ***
(−3.32)

OMC −0.5318 ***
(−3.50)

0.0113 ***
(3.36)

0.0241 ***
(3.15)

−0.0354 ***
(−3.87)

lnUPD −4.8485 **
(−2.00)

0.1026 **
(2.18)

0.2199 **
(2.18)

−0.3225 **
(−2.36)

t-statistics in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01.

4. Discussion

In this paper, we analyzed the factors influencing the convergence of HQDM clubs,
taking 30 provinces of China as the research subject. The regression results in Table 7
demonstrate that environmental regulation (ER) had a negative coefficient at the 1% signif-
icance level and, in terms of marginal effects, for every 1 unit increase in environmental
regulation at the mean, the probability of belonging to Club 1 or 2 increases by 0.33%
and 0.71%, respectively, while the probability of belonging to Club 3 decreases by 1.05%.
This suggests that the higher the intensity of environmental regulations, the higher the
probability that a region belongs to the high-level HQDM club, consistent with the “inno-
vation compensation effect” proposed by Porter (1991), based on the Porter hypothesis [36].
In other words, environmental regulation can improve the quality of the environment
while promoting economic performance, thus achieving a win–win situation in terms of
both economic and environmental performance. Environmental regulation can stimulate
firms to develop new technologies, reduce costs by reducing resource inputs or increasing
efficiency, optimize the quality of production and upgrade the production rating, produce
new and more environmentally friendly products [37], and increase firm productivity [38].
Appropriate environmental regulation can promote manufacturing [39,40], which has a
significant positive effect on HQDM.

Environmental preference (EP) had a negative coefficient at the 10% level of signifi-
cance, and the marginal effects indicated that, for every 1-unit increase in environmental
regulation at the mean, the probability of belonging to Clubs 1 or 2 increases by 0.55% and
1.18%, respectively, while the probability of belonging to Club 3 decreases by 1.73%. This
indicates that the higher the degree of environmental preference, the greater the probability
that the region belongs to the high-level club of HQDM. Environmental preference reflects
the social environment of green development, and regions with higher environmental pref-
erence pay more attention to ecological and environmental protection, insist on achieving
a win–win situation between industrial development and environmental protection, and
realize green development of the manufacturing industry, which will undoubtedly drive
HQDM positively. As such, environmental preference has a significant positive influence
on HQDM.

Openness (OPEN) had a negative coefficient at the 5% significance level, and, for every
1 unit increase in the level of openness at the mean, the probability of belonging to Clubs
1 or 2 increases by 0.42% and 0.91%, respectively, while the probability of belonging to
Club 3 decreases by 1.33%. This indicates that the higher the level of external openness, the
higher the probability that the region belongs to the HQDM high-level club. Opening up to
the outside world can increase sensitivity to foreign external shocks; promote technology
spillover effects [41]; open up more resources and markets; allow for the absorbing of
capital, advanced knowledge, and new technologies from all over the world; generate
collision and integration of various experiences and knowledge [28], and stimulate local
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technological progress and industrial upgrading, thus promoting HQDM. Collectively, the
level of openness has a significant positive effect on HQDM.

The coefficient of organizational management change (OMC) was negative at 1%
level of significance, and for every 1 unit increase in organizational management change
at the mean, the probability of belonging to Clubs 1 or 2 increases by 1.13% and 2.41%,
respectively, while the probability of belonging to Club 3 decreases by 3.54%. This indicates
that the greater the intensity of organizational management change, the greater the proba-
bility that the region belongs to the HQDM high-level club. The strength of organizational
management change is reflected by the share of non-state-owned enterprises. Private
enterprises are an important microsupport for the efficiency of the Chinese economy, being
more innovative and cost-effective [42], having a positive impact on productivity [43],
operational management that tends to be more efficient than that of state-owned enter-
prises [44], scientific and rational changes that are beneficial to enhance marketability, and
improved input–output efficiency. All of these aspects promote the level of HQDM, and,
so, organizational management changes have a significant positive impact on HQDM.

Urban population density (UPD) had a negative coefficient at the 5% significance
level, and for every 1% increase in urban population density at the mean, the probability of
belonging to Clubs 1 or 2 increases by 10.26% and 21.99%, respectively, while the probability
of belonging to Club 3 decreases by 32.25%. This indicates that the higher the population
density, the higher the probability that the region belongs to the HQDM high-level club.
Increased population density causes the labor supply and market potential to increase,
which enables the development base and sufficient production capacity for manufacturing
enterprises and promotes diversification in the manufacturing industry. At the same time,
the market potential and consumer demand stimulate enterprises to optimize production
and improve industrial development, and, so, the urban population density has a significant
positive effect on HQDM.

In summary, environmental regulation and other variables are important factors influ-
encing the convergence of HQDM clubs, all of which presented a positive promoting effect.
Regions with greater intensity of environmental regulation, environmental preference, level
of openness to the outside world, strength of organizational and management change,
and urban population density are more inclined to converge to clubs with higher levels
of HQDM, and are less likely to belong to low-level clubs; in other words, enhancement
of these variables is conducive to promoting HQDM and reducing regional disparities.
Among them, the effect of environmental preference on Club 1 was not significant, while
the rest of the variables had significant effects on each club, indicating that environmental
preference does not play a significant role in Club 1.

5. Conclusions, Recommendations, and Outlook
5.1. Conclusions

In this paper, we investigated the spatial and temporal evolution characteristics and
club effects of HQDM in China by measuring the level of HQDM in 30 provinces. It was
found that: (1) The overall HQDM has gone through the three stages of expansion, culti-
vation, and promotion, and has shifted from high-growth to high-quality development.
(2) There are no manufacturing convergence characteristics in the overall nation or the
three traditional economic zones. Notably, the four convergence clubs of HQDM were not
significantly similar in the geographical distribution. (3) Factors such as environmental reg-
ulation intensity, environmental preference, and so on can significantly affect the category
of HQDM convergence club to which a region belongs. The higher the level of these factors,
the higher the probability that the region belongs to a high-level club.

5.2. Recommendations

In response to the above findings, the following recommendations are made:
First, to promote the development of the manufacturing industry “from big to strong,”

we must place the issue of development quality in a more prominent position. Relevant
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departments should select feasible new development strategies with a new systematic way
of thinking and a new concept, and start from the five dimensions of HQDM to form a new
power mechanism.

Secondly, according to the divided clubs, relevant departments should adapt to local
conditions, formulate differentiated development strategies, and constantly consolidate
and optimize the manufacturing development of Clubs 1 and 2, focus on tapping the
development potential of Club 3, and inject new development momentum into Club 4. To
achieve this, they must give full play to the leading role of the “outstanding and outliers,”
pull the progress of the “backward and outliers,” and form a “trickle-down effect,” thus
achieving complementary advantages and win–win cooperation.

Third, from the various influencing factors of HQDM club convergence, (1) the gov-
ernment should introduce reasonable policies and regulations, appropriately increase the
intensity of environmental regulations, and maximize the incentive effect of environmen-
tal regulations on HQDM; (2) while developing manufacturing industries, the greening
coverage of cities should be increased to achieve a win–win situation between industrial
development and ecological environment optimization; (3) advanced enterprises should
strengthen their foreign communication and exchange, absorb advanced knowledge and
technology, and optimize their own industrial development; (4) the reform of state-owned
enterprises should be actively promoted, particularly in terms of enhancing the social
responsibility of state-owned enterprises in independent innovation. Policy protection
should be implemented for private enterprises, giving full play to their innovation and
efficiency advantages, thus improving the market competition system and developing a
reasonable competition mechanism; (5) the efficiency of labor resource allocation should
be improved through financial support and the establishment of a sound mechanism for
releasing information on labor supply and demand, among other aspects, in order to realize
the transformation from quantitative to qualitative advantages of the labor force.

5.3. Outlook

Overall, this study revealed convergent patterns and regional differences in HQDM.
Future work may consider differences specific to the prefecture level or enterprise level, in
order to analyze the club effect of high-quality manufacturing development from a more
microscopic perspective. In addition, the development paths of different clubs can be
explored, according to the various dimensions of HQDM.
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