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Abstract: Nonpharmaceutical policies for epidemic prevention and control have been extensively
used since the outbreak of COVID-19. Policies ultimately work by limiting individual behavior. The
aim of this paper is to evaluate the effectiveness of policies by combining macro nonpharmaceutical
policies with micro-individual going-out behavior. For different going out scenarios triggered by
individual physiological safety needs, friendship needs, and family needs, this paper categorizes
policies with significant differences in intensity, parameterizes the key contents of the policies,
and simulates and analyzes the effectiveness of the policies in different going-out scenarios with
simulation methods. The empirical results show that enhancing policy intensity can effectively
improve policy effectiveness. Among different types of policies, restricting the times of going out
is more effective. Further, the effect of controlling going out based on physiological safety needs is
better than other needs. We also evaluate the policy effectiveness of 26 global countries or regions.
The results show that the policy effectiveness varies among 26 countries or regions. The quantifiable
reference provided by this study facilitates decision makers to establish policy and practices for
epidemic prevention and control.

Keywords: nonpharmaceutical epidemic prevention and control policies; policy intensity;
policy evaluation; going-out needs; simulation method; SEIR

1. Introduction

Since the outbreak of coronavirus disease 2019 (COVID-19), the epidemic has spread
rapidly and brought huge losses and threats to the lives of people globally [1]. COVID-19
has received extensive attention from the public and academic domains. Many researchers
have carried out a substantial body of studies on COVID-19, which mainly focus on
(1) research on the risk factors for virus infection [2–6]; (2) prediction models for epidemic
transmission [7–12]; (3) the effects of COVID-19 on the economy [13–15]; (4) the effects of
COVID-19 on people’s psychological health [16–21]; and (5) nonpharmaceutical epidemic
prevention and control policies.

To control the epidemic, governments of various countries have successively im-
plemented many nonpharmaceutical prevention and control policies [22]. According to
statistics, more than 190 countries or regions have released over 13,000 policies [23], includ-
ing (1) policies on case-driven measures such as testing, tracing, and distancing; (2) policies
on personal prevention such as reducing face touching, wearing masks in crowded or
enclosed spaces, and physical distancing; and (3) policies on social distance such as home
order, lockdown, and bans [24]. Furthermore, studies have added evidence that policies
such as lockdown [25,26], physical distancing [27–29], and wearing masks in crowded or
enclosed spaces [30–32] play important roles in slowing down the spread of the epidemic.
From the current practices of epidemic prevention and control, many countries and regions
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have implemented policies with different contents and intensities based on their own public
health and socioeconomic status [23].

Evaluating the effectiveness of nonpharmaceutical policies is essential for policy
design and implementation. Many scholars have studied the effectiveness of policies.
Based on a nonpharmaceutical intervention module and Metropolis–Hastings sampling,
Zhao et al. proposed a susceptible-infected-recovered-vaccinated (SIRV) model, the results
showed that stringent nonpharmaceutical interventions (NPIs) are the key to controlling
the COVID-19 epidemic [33]. With a discontinuous difference-in-difference approach,
Deng et al. found that adopting rigid NPIs could reduce the number of new COVID-19
cases by 10.8% in China, and that contact tracing is much more effective than public infor-
mation provision and social distancing [34]. Wieland assessed the effectiveness of German
interventions such as “lockdown” and found that the effectiveness of most interventions
remained questionable [35]. Naimark et al. developed an agent-based transmission model
to estimate the impact on the number of COVID-19 cases of schools being open or closed
and community-based NPIs. The findings demonstrated that community-based NPIs were
more effective [36]. Lee et al. proposed an agent-based simulation model to assess the
effectiveness of NPIs, including social distancing, face mask use, school closure, testing,
and contact tracing. The results showed that infections could remain low and other NPIs
could be relaxed when face mask use was at least 75% [37]. With the simulation method,
Ge et al. studied the effectiveness of social distancing, contact tracing, and case isola-
tion. They suggested that contact tracing merits further attention to achieve population-
level control of a second-wave epidemic [38]. Cho found that strict lockdown measures
were important in limiting the spread of the COVID-19 infection using a synthetic con-
trol approach [39]. Ilhan examined NPIs applied in Turkey and found that restrictions
implemented in Turkey such as isolation, quarantine, and contact tracing could flatten of
the epidemic curve [40].

The above studies explored the impact of policy intensity and types on epidemic
prevention and control based on simulation models and mathematical models; however,
there is still room for improvement. First, when considering combining different policies,
how to formulate the intensity of each policy is worth further consideration. Second, the
spread of the epidemic occurs in the process of individual going out, so the policy should
also act on different links of the process. Classifying the policy based on individual going-
out behavior and evaluating its effectiveness is more conducive to the formulation and
implementation of the policy. Third, existing studies rarely distinguish the difference in
social networks between individuals. The spread of COVID-19 in different social networks
is different and worthy of further exploration.

It is generally believed that if more policies are implemented and the intensity of each
policy is stricter, epidemic prevention and control will be more effective. However, at the
same time, such measures will have a greater effect on people’s daily lives. How to choose
appropriate policies and reasonable policy intensities according to the actual situation
requires a solution to the problem of policy comparison and evaluation. Specifically,
how to quantitatively compare the effectiveness of different types of policies and how to
accurately evaluate the effectiveness of certain policies under different intensities are the
critical problems that currently challenge the formulation and implementation of epidemic
prevention and control policies.

The aim of this paper is to solve the scientific problems mentioned above. From the
perspective of individual going-out behavior, we built a model of individual going-out
and epidemic spread using a simulation-based method. The spread of the epidemic and
the infection process are simulated in various scenarios, and the infection curves under
different scenarios are estimated. Therefore, policy effectiveness can be evaluated and
compared. Except for the robustness test, all scenarios in the simulation process of this
paper are composed of 2000 individuals.
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2. Research Methods
2.1. Study Design

The mechanism diagram of individual going-out behavior is shown in Figure 1. We
assume that individuals have three kinds of needs: family needs, friendship needs, and
physiological safety needs. When individuals go out, they will contact a certain number of
people, and in this process, there is a risk of the epidemic spreading further.
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From the perspective of individuals going out, we have divided various nonphar-
maceutical prevention and control policies into three types. The three types of policies
play certain restrictive roles in different links. The first type is the policy of restricting
going out (RGOUT), which affects individuals’ decisions on whether to go out or not, with
the purpose of reducing unnecessary times of going out, such as a stay-at-home order
and lockdown. The second type is the policy of restricting contact (RCONT), which acts
on individuals after they go out and aims to reduce large-scale gatherings and minimize
unnecessary contact, such as restrictions of mass gatherings. The third type is the policy
of restricting infection (RINFE) when individuals go to crowded places. The purpose is
to reduce the infection rate as much as possible through measures such as maintaining
physical distance, reducing face touching, and wearing masks in crowded or enclosed
spaces. The three types of policies have different effects on different links. To effectively
prevent and control the epidemic in combination with the actual situation, it is necessary to
select suitable policies and the rational intensity of policy implementation.

We propose a quantitative policy simulation comparison and evaluation model for
COVID-19 epidemic prevention and control, combining the SEIR model, going-out behavior
modeling, social networks, and other methods.

First, we use the classic disease transmission model (SEIR model) [41,42] and fully
consider the characteristics of COVID-19. All individuals can be in one of the four states:
susceptible, exposed (in the incubation period, showing no obvious symptoms but in-
fectious), infectious (after the incubation period, showing obvious symptoms, and more
infectious), and recovered (assumed to be no longer infected). When an individual with
exposed or infectious status contacts a susceptible individual, there is a certain probability
that the susceptible individual will be transformed into the exposed status. In addition,
exposed individuals will change to the infectious state with a corresponding probability
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over time during the incubation period (assuming no asymptomatic infections). Infectious
individuals will change to the recovered state with a corresponding probability over time.

Second, individuals’ subjective needs determine their behaviors [43], and the model
proposed in this paper adequately considers their needs. According to Maslow’s hierarchy
of needs, there are five different levels of needs: physiological needs, safety needs, social
needs, esteem needs, and self-actualization needs [44]. During COVID-19, people still need
to go to restaurants [45] and hospitals [46] for their basic needs. In addition, people still
need to fulfill higher-order psychological needs [47]. Therefore, we selected physiological
safety needs and social needs. Physiological safety needs mainly refer to the acquisition of
things that are vital to basic survival and safety, such as water and food. Social needs are the
needs for affection and belonging, which can be divided into friendship needs and family
needs. Friendship needs refer to the need to integrate into the social circle, communicate
with friends, and feel love and acceptance from friends. Family needs refers to the need
to avoid problems such as loneliness and anxiety, involvement with family members and
feeling care and belonging from families. The three kinds of need-driven behaviors are
different, and the individuals they contact are also different. This means that the social
networks generated by the three needs are different, which may lead to differences in the
spread of the epidemic. The randomness of individual contact based on the three kinds
of needs is different. Contact based on family needs is relatively fixed, and contact based
on physiological safety needs is random. The randomness of contact based on friendship
needs is somewhere in between.

Finally, we build the network based on three needs and simulate the relationship
between family, friends, and strangers in the real world by networks. Based on the similarity
of features such as geographic location, age, and blood relationship, people with higher
family similarity are connected as family members; based on the similarity of features such
as interest, occupation, income, mutual friends, and interaction, people with higher social
similarity are connected as friends; for the construction of the stranger network, we assume
that every individual has ten basic physiological safety needs. For each need, individuals
with a high similarity are connected based on similarities of occupation, geographic location,
and other features as the list of strangers under this need. The networks generated based
on different needs have different characteristics: if individuals are identified by geographic
location, the network formed by family needs has more clusters in form, which is similar
to multiple families in real life, and the friend network is relatively scattered. A stranger
network is more scattered, and there will be many hub nodes in the network (that is,
nodes with a large number of connections in the network), similar to departments with
key functions in real life, such as supermarkets and hospitals. These characteristics are also
consistent with the randomness of individual contacts.

2.2. Social Network Construction

This paper builds a family network, a friend network, and a stranger network
based on three needs of going out. First, the family network is built based on family
needs. Each individual is assigned twenty features, and each feature is represented by
an integer from 1 to 10. Then, the similarity between every two individuals is calculated
by the Pearson correlation coefficient. The calculation method of the Pearson correlation
coefficient is as follows:

ρX,Y =
cov(X, Y)

σXσY
=

E[(X− µX)(Y− µY)]

σXσY

For each individual, the other individuals are sorted in descending order of similarity
with the individual, and the top 20 individuals are taken as the individual’s family members.
For each individual, the family list is fixed throughout the simulation process.

Next, the friend network is built based on friendship needs. Each individual is
also assigned twenty features. Two of the features are the mutual friend ratio and the
interaction ratio. To be more realistic, we construct a small-world network composed
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of 2000 individuals and suppose that each individual has 2 neighbors on average, and
the random reconnection rate is 0.3. Subsequently, a weight in the interval of 0~100 is
randomly generated for each connection in the network, which represents the interaction
frequency of two individuals connected to each other. Finally, the mutual friend ratio and
interaction ratio of each pair of individuals are calculated based on the network connection.
The mutual friend ratio is the ratio of the number of mutual friends of the two to the
number of all friends of the individual. The interaction ratio is the ratio of the interaction
frequency of the two to the total number of interactions of the individual. The values
of the mutual friend ratio and interaction ratio are in the range of 0~1. The remaining
18 features are represented by integers from 1 to 10. First, the weighted sum of the mutual
friend ratio and the interaction ratio are calculated to obtain the social interest degree,
and the weights of both are 0.5. Second, based on the remaining 18 features, the Pearson
correlation coefficient is used to calculate the similarity between every two individuals as
the interest similarity. Finally, the social interest degree and the interest similarity degree
are weighted and summed to obtain the similarity between every two individuals, and the
weight of both is 0.5. For each individual, the other individuals are sorted according to
the similarity with the individual from high to low. After removing the members of the
individual’s family list, the top 20 individuals are taken as the individual’s friend list. For
each individual, the friend list is fixed throughout the simulation process.

Finally, a stranger network is built based on physiological safety needs. The twenty
features of each individual are represented by an integer from 1 to 10. It is assumed that
each individual has ten types of physiological safety needs, and each type of need is a
20-dimensional vector. For each need, the similarity between the other individuals’ feature
vector and this need vector is calculated by the vector cosine, and the similarity is sorted
from high to low. After removing the members of the individual’s family and friends list,
the top 20 individuals are taken as the individual’s list of strangers under this need. Each
individual has 10 stranger lists. Each time an individual goes out, one need is randomly
selected and corresponds to one stranger list. For each individual, in the entire simulation
process, the stranger list changes with the different physiological safety needs of going out.

2.3. Simulation Model Establishment

Based on the classic SEIR model, considering the actual situation of COVID-19, our
model assumes that individuals may be in one of the four different states: susceptible (S),
exposed (E), infectious (I), or recovered (R). The virus can spread through contacts, and the
specific process is illustrated in Figure 2.

The simulation process is as follows:

1. A certain number of individuals are randomly selected as the initial infected individ-
uals (ninitial), and their state (E or I) and the time in that state (Texposed or Tin f ectious)
are initialized. The remaining individuals are initialized to be susceptible. This paper
does not consider asymptomatic infections.

2. Every day, the times of going out for all individuals are generated according to
the maximum times of going out per day (Daily Go Out Times Threshold), which
is determined by the RGOUT policy. During each time of going out, the number
of contacts is generated according to the maximum number of contacts at a time
(Daily Everytime Contact Threshold), which is determined by the RCONT policy.
At each contact, the infection rate (Infection Rate) is determined by the RINFE policy
and individual states.

3. Every day, an individual i is randomly selected from the list of individuals who can
go out on that particular day, with the remaining times of going out not zero. Then, a
type of needs is randomly selected. The individual list of contacts is selected from the
corresponding network with the probability pcontact. Individual i makes contact with
each individual in the list.
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4. The infected individual (E or I) infects a susceptible individual (S) at a certain rate
(pin f ection). After completing a time of going out, step 3 is repeated until all of the
day’s going out times of all individuals are used up.

5. An exposed individual (E) will transform into the infectious state (I) with prob-
ability pE−I , which is related to the incubation period. After being infectious for
a certain period, the infectious individual recovers with probability pI−R. The
probability is influenced by the infection period. Once recovered, individuals will
no longer be infected.

6. Steps 2, 3, 4, and 5 are repeated. The simulation is terminated until the state of all
individuals is in S or R.
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Note that individuals in both the exposed and infectious states are infectious. Gen-
erally, the infection rate of the exposed individual is lower than that in the infectious
state. This paper assumes that the infection rate of the exposed individual is half of that
in the infectious state [48].

When selecting individuals to be contacted for each time of going out, the selection
probability is defined as pcontact. In the network of family and friends, pcontact is the
similarity between individuals, as calculated by the Pearson correlation coefficient based
on the features of the individuals. The more similar the two individuals are, the higher the
probability of contact is. In the stranger network, pcontact represents the matching degree of
the physiological safety needs between two individuals. It is calculated by cosine similarity
based on the need vector of the individual and the feature vector of other individuals. Here,
it is assumed that the higher the matching degree between two individual features, the
higher the probability of contact is.

The probability of an individual changing from an exposed state to an infectious state
(pE−I) is calculated by the following formula:

pE−I =
Texposed

TMaxExposed

where TMaxExposed represents the longest exposure time; that is, when the longest exposure
time is reached, the exposed individual will automatically become the infectious state.

The probability of an individual changing from an infectious state to a recovered state
(pI−R) is calculated as:

pI−R =
Tin f ectious − Tthreshold

TMaxIn f ectious − Tthreshold

where Tthreshold represents a threshold after which the individual has the probability of trans-
ferring from infectious to recovered. TMaxIn f ectious represents the longest infectious time.
When the longest infectious time is reached, the infectious individual will automatically
change to the state of recovery and no longer be infected.

2.4. Quantitative Design Strategies for Prevention and Control Policies

In this paper, the policies for epidemic prevention and control are divided into three
types: RGOUT policy, RCONT policy, and RINFE policy. RGOUT policies such as stay-
at-home orders and lockdowns mainly limit the times of going out. In the simulation
model, the policy is quantified as a parameter named Daily Go Out Times Threshold.
Different values of this parameter correspond to different intensities of the RGOUT policy.
Many countries and regions (Israel, Germany, China, etc.) instructed not to go out unless
absolutely necessary and some have restricted the specific number of times of going out:
Colombia (Medellin) limited one member of each family to be able to go out twice a week
(on the 2 April 2020); and Uzbekistan, Namangan and Uchqo’rg’on Districts of Namangan
Region instruct residents to go out once a day (on the 13 April 2020) [23]. RCONT poli-
cies, such as restrictions on mass gatherings, mainly limit the number of contacts while
people go out. In the simulation model, the policy is quantified as a parameter named
Daily Every Time Contact Threshold. Different values of this parameter correspond to
different intensities of the RCONT policy. Many countries and regions have imposed
restrictions on the number of people gathered. For example, the Australian Government
announced gatherings will be restricted to two persons only (on the 29 March 2020); Geor-
gia banned gatherings of more than three people (on the 31 March 2020); and in Indonesia,
the Jakarta provincial government issued a restriction on mass gatherings of up to 5 people
(on 10 April 2020) [23]. RINFE policies, such as reducing face touching and wearing masks
in crowded or enclosed spaces, mainly standardize people’s personal health protection. In
the simulation model, the policy is quantified as a parameter called Infection Rate, which
refers the per-contact transmission probability that an infectious individual transmits the
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virus to a susceptible individual. Different values of this parameter correspond to different
intensities of the RINFE policy. The infection rate is between 0.002–0.1 [49].

The quantitative design strategies for the three types of prevention and control policies
are indicated in Table 1.

Table 1. Quantitative design strategies for prevention and control policies.

Policies Loose Moderate Strict

RGOUT policy (Daily Go Out Times Threshold) 2 1 0.5
RCONT policy (Daily Every Time Contact Threshold) 6 4 2

RINFE policy (Infection Rate) 0.15 0.12 0.09

2.5. Simulation Parameter Description

Except for the robustness test, the number of individuals in the simulation process in
this paper is set as 2000. In the robustness test, the numbers of individuals are 4000 and 5000,
respectively. In addition, the other parameters are as follows: the initial number of infected
individuals is 3, the longest exposed time is 14 (the incubation period of ranges typically
from 2–14 days [50]), the threshold for starting the transformation from the infected state to
the recovered state is 10, and the longest infected time is 21 (infectious period is estimated
between 10–20 days [50]).

2.6. Experimental Scenario Design Strategy

The experimental scenario design strategy mainly consists of two aspects. One is
to set different policy intensities by adjusting the parameter values controlled by three
types of policies, and the other is to set different kinds of going-out needs. In this way,
multiple scenarios can be combined based on different going-out needs, different policies,
and different policy intensities.

In this paper, a variety of simulation experiments are conducted. The first set of experi-
ments consists of basic experiments based on three kinds of going-out needs
(Table 2, experiments 1-1, 1-2, and 1-3). By setting the intensity of the three policies
to be loose, moderate and strict, their effectiveness in epidemic prevention and control
could be compared.

Table 2. Basic experiments based on three kinds of going out needs.

Experimental
Scenarios

Daily Go Out Times
Threshold

Daily Everytime
Contact Threshold Infection Rate

Experiment 1-1 2 6 0.15
Experiment 1-2 1 4 0.12
Experiment 1-3 0.5 2 0.09

Then, a second set of variation experiments based on three kinds of going-out
needs (Table 3, Experiments 2-1 to 2-6) is set up to compare the differences in policy
effectiveness by fixing the intensity of two policies in a loose state and varying the
intensity of the other policy. Similarly, a third set of variation experiments based on three
going-out needs (Table 3, Experiments 3-1 to 3-6) is set up to compare the differences in
policy effectiveness by fixing the intensity of two policies under strict conditions and
varying the intensity of the other policy.

Finally, a fourth set of basic experiments based on different kinds of going-out
needs (Table 4, Experiments 4-1 to 4-3) is set up to explore the impact of different needs
on policy effectiveness.

The experiments in all scenarios are simulated 50 times, and the average value is taken.
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Table 3. Variation experiments based on three kinds of going-out needs.

Experimental
Scenarios

Daily Go Out Times
Threshold

Daily Everytime
Contact Threshold Infection Rate

Experiment 2-1 1 6 0.15

Experiment 2-2 0.5 6 0.15

Experiment 2-3 2 4 0.15

Experiment 2-4 2 2 0.15

Experiment 2-5 2 6 0.12

Experiment 2-6 2 6 0.09

Experiment 3-1 2 2 0.09

Experiment 3-2 1 2 0.09

Experiment 3-3 0.5 6 0.09

Experiment 3-4 0.5 4 0.09

Experiment 3-5 0.5 2 0.15

Experiment 3-6 0.5 2 0.12

Table 4. Basic experiments based on different kinds of going-out needs.

Experimental
Scenarios Policy Intensity Sub-Experiment

Scenarios Going-Out Needs

Experiment 4-1 The intensity of all three
policies is strict

Experiment 4-1-1 Family needs
Experiment 4-1-2 Friendship needs
Experiment 4-1-3 Physical safety needs

Experiment 4-2 The intensity of all three
policies is loose

Experiment 4-2-1 Family needs
Experiment 4-2-2 Friendship needs
Experiment 4-2-3 Physical safety needs

Experiment 4-3 The intensity of all three
policies is moderate

Experiment 4-3-1 Family needs
Experiment 4-3-2 Friendship needs
Experiment 4-3-3 Physical safety needs

2.7. Comparison and Evaluation Methods of Actual Epidemic Prevention and Control Policies

To cross-compare the real new daily infection data from different countries and regions
around the world with the new daily infection data obtained by simulation, an improved
curve similarity indicator based on dynamic time warping (DTW) is proposed in this paper
to allow the actual effectiveness of epidemic prevention and control policies could be
analyzed and evaluated.

Dynamic time warping (DTW), a method of time warping using dynamic program-
ming (DP), can automatically scale time series of different lengths and complete the sim-
ilarity calculation of time series with different lengths and rhythms. It was proposed by
Japanese scholar Itakura in the 1960s.

Suppose there are two time series, Q = {q1, q2, · · · , qn} and C = {c1, c2, · · · , cn},
with lengths n and m, respectively. The similarity calculation process between the two time
series Q and C using dynamic time warping is as follows:

1. An n ∗ m matrix D = {dij
∣∣dij = dist

(
qi, cj

)
, i = 1, 2, · · · , n; j = 1, 2, · · · , m

}
is

constructed where dist(x, y) represents the distance calculation function and the
Euclidean distance based on a one-dimensional vector is used, namely,

dist
(
qi, cj

)
=
√(

qi − cj
)2

=
∣∣qi − cj

∣∣;
2. Using a dynamic programming algorithm, the shortest path from d11 to dnm in matrix

D is searched. At position dij, there are only three cases for the path search direction,
that is, d(i+1)j, di(j+1), d(i+1)(j+1);
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3. According to dynamic programming, a shortest path from d11 to dnm that satisfies the
path search direction is obtained, and it is named the warping path, expressed by W.
The k-th element of W is defined as Wk =

(
qi, cj

)
k, W = w1, w2, . . . , wk, . . . , wK, where

max(m, n) ≤ K < m + n − 1. The calculated shortest path length is output as

the similarity; that is, DTW(Q, C) =
K
∑

k=1
dist(wk), which is the dynamic time warping

similarity between the time series Q and C.

Considering that the similarity obtained by the traditional dynamic time warping
method is accumulated by the point-to-point distance of two time series, its output value
is affected by both the number range and the length of the time series itself. Affected by
the above two factors, the similarity obtained by the traditional dynamic time warping
method is unsuitable for achieving horizontal comparisons between fixed sequences and
other sequences with different lengths and ranges. In response to this problem, based on
dynamic time warping, we propose an improved curve similarity calculation method that
is suitable for this scenario. More specifically, the calculation consists of the following steps:

Suppose there are two time series Q = {q1, q2, · · · , qn} and C = {c1, c2, · · · , cn}, with
lengths of n and m, respectively,

The sequence of Q and C is normalized into the 0–1000 interval with min-max normal-
ization, that is,

1. Qnormed = {
(
q′1, q′2, · · · , q′n

)
|q′i = (qi−qmin)∗1000

(qmax−qmin)
, qmax = maxi(qi), qmin = mini(qi),

i ∈ 1, 2, · · · , n}, and Cnormed can be obtained in the same way.
2. The DTW similarity of Qnormed and Cnormed is calculated with dynamic time warping.
3. The maximum value of the time series length is used to normalize DTW(Qnormed, Cnormed),

that is, sim(Q, C) = DTW(Qnormed ,Cnormed)
max(m,n) . Then, the final sequence similarity between

Q and C is obtained, denoted as sim(Q, C).

3. Results

This paper set up various experimental scenarios by simulation, including basic
experiments based on three kinds of going-out needs, variation experiments based on three
kinds of going-out needs, and basic experiments based on different kinds of going-out
needs. We obtained the number of infections over time during the spread of the epidemic.
Then, the infection curves under different experimental scenarios could be estimated
to compare and evaluate the prevention and control effectiveness of different epidemic
prevention and control policies. Here, the policy effectiveness refers to the effect of the
policy in slowing down the spread of the epidemic, which can be reflected in the flatness of
the infection curve. The flatness of the infection curve is mainly related to the peak value of
infections and the epidemic duration. Therefore, to quantitatively compare the flatness of
different infection curves, the flatness index of the infection curve is defined to serve as
a basis for comparing the effectiveness of different policies. The definition of the flatness
index of the infection curve is as follows:

flatness index of infection curve = epidemic duration/peak value

A larger flatness index of the infection curve indicates a smoother corresponding
infection curve and the slower spread of the epidemic. This also means that the effectiveness
of the prevention and control policy is better.

The peak value of infections, peak arrival time, epidemic duration, and flatness index
of the infection curve corresponding to all experimental scenarios are shown in Table S1.

3.1. Results of Basic Experiments Based on Three Kinds of Going-Out Needs

There are significant differences in the effectiveness of all three types of policies. When
all three policies are in a strict state, the effect of epidemic prevention and control is the
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best. The flatness indices of the infection curve are 37.93 times and 145.10 times those of
the three policies in the moderate and loose states, respectively.

Figure 3 shows the infection curves of the first set of experiments (experiment 1-1 to
experiment 1-3). The x-axis represents time (days), and the y-axis indicates the number of
infected individuals (E or I). The blue curve represents the experimental scenario when
the intensity of the three policies is strict (that is, the parameters controlled by the three
policies are at the minimum). The curve is the flattest, with a flatness index of 3.5840, a
peak value of 119.42, and an epidemic duration of 428 days. The green curve represents
the experimental scenario when the intensity of the three policies is moderate (that is, the
parameters controlled by the three policies are intermediate values). The curve is slightly
flat, with a flatness index of 0.0945, a peak value of 1259.68, and an epidemic duration of
119 days. The red curve represents the experimental scenario when the intensity of the three
policies is loose (that is, the parameters controlled by the three policies are maximized).
The curve is very steep, with a flatness index of 0.0247, a peak value of 1944.56, and an
epidemic duration of 48 days. Compared with the infection curves when the three policies
are at moderate and loose intensity, the infection curve when the three policies are in a
strict state can be flattened: the peak values drop by 90.52 and 93.86%, the peak arrival
times are delayed by 237.78 and 623.81%, and the epidemic durations are extended by
259.66 and 791.67%, respectively.
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Note: Experiments 1-1 to 1-3 indicate that the three types of policies are all in strict, moderate
and loose states, respectively. Specific parameter values are presented in Table 2.

Overall, the strict control of policy has a more obvious inhibitory effect on decreasing
the peak value, delaying the peak arrival time and extending the epidemic duration than
the loose and moderate control.

3.2. Results of Variation Experiments Based on Three Kinds of Going-Out Needs

The effect of the RGOUT policy is relatively better in the three types of epidemic
prevention and control policies. When the other two types of policies are loose, increasing
the intensities of the RGOUT, RCONT, and RINFE policies from loose to moderate and
strict states, the flatness index of the corresponding infection curve could be increased by
85.27, 208.45, 38.69, 135.43, 15.61, and 56.36%, respectively. When the other two types of
policies are strict, increasing the intensities of the RGOUT, RCONT, and RINFE policies
from a loose to a moderate state, the flatness index of the corresponding infection curve
could be increased by 357.73, 103.49, and 65.19%, respectively.

In the second set of experiments (experiment 2-1 to experiment 2-6), policy effec-
tiveness is compared by fixing the intensity of two types of policies in the loose state
and varying the intensity of the other policy. When the intensities of the RCONT and
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RINFE policies are loose and the intensity of the RGOUT policy is increased from loose to
moderate and strict, the infection curve is gradually flattened (Figure 4): the peak values
decrease by 13.41 and 29.08%, the peak arrival times are delayed by 47.62 and 90.48%,
and the epidemic durations are prolonged by 60.42 and 118.75%, respectively. Similarly,
when the intensities of the RGOUT and RINFE policies are loose and the intensity of
the RCONT policy is increased from loose to moderate and strict, the infection curve is
gradually flattened (Figure S1), the peak values decrease by 5.36 and 19.47%, the peak
arrival times are delayed by 19.05 and 61.90%, and the epidemic durations are prolonged by
31.25 and 89.58%, respectively. When the intensities of the RGOUT and RCONT policies
are loose and the intensity of the RINFE policy is increased from loose to moderate and
strict, the infection curve is gradually flattened (Figure S2), the peak values decrease by
2.69 and 9.40%, the peak arrival times are delayed by 9.52 and 38.10%, and the epidemic
durations are prolonged by 12.50 and 41.67%, respectively.
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In summary, improving the intensity of one policy can effectively slow down the
spread of the epidemic when the other two policies are fixed in a loose state. However, the
effectiveness of the three policies is different: the RGOUT policy is the most effective in
reducing peak value, delaying the peak arrival time and extending the epidemic duration;
the second most effective is the RCONT policy, and the relatively weakest prevention and
control policy is the RINFE policy.

In the third set of experiments (experiment 3-1 to experiment 3-6), policy effectiveness
is compared by fixing the intensities of two types of policies in a strict state and varying
the intensity of the other policy. When the intensities of the RCONT and RINFE policies
are strict and the intensity of the RGOUT policy increases from loose to moderate, the
infection curve is flattened (Figure 5): the peak value decreases by 58.22%, the peak
arrival time is delayed by 81.25% and the epidemic duration is prolonged by 91.23%.
Similarly, when the intensities of the RGOUT and RINFE policies are strict and the intensity
of the RCONT policy increases from loose to moderate, the infection curve is flattened
(Figure S3): the peak value decreases by 33.28%, the peak arrival time is delayed by 31.67%,
and the epidemic duration is prolonged by 35.77%. When the intensities of the RGOUT
and RCONT policies are strict and the intensity of the RINFE policy increases from loose to
moderate, the infection curve is flattened (Figure S4): the peak value decreases by 34.95%, the
peak arrival time is delayed by 32.05%, and the epidemic duration is prolonged by 7.46%.
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In summary, improving the intensity of one policy can effectively slow down the
spread of the epidemic when the other two policies are fixed in a strict state. However, the
effectiveness of the three policies is different: the RGOUT policy is the most effective in
reducing peak value, delaying the peak arrival time and extending the epidemic duration;
the second most effective policies are the RCONT and RINFE policies.

3.3. Results of Basic Experiments Based on Different Kinds of Going-Out Needs

From the perspective of the speed of spread of the epidemic based on different kinds
of going-out needs, the effect of controlling the physiological safety needs is better than the
effects of controlling family and friendship needs. When the three types of policies are in a
strict state, the flatness indices of the infection curve based on physiological safety needs
are 64.37 and 55.23% of family needs and friendship needs.

In the fourth set of experiments (experiment 4-1 to experiment 4-3), this paper explores
the impact of different going-out needs on the effectiveness of policy prevention and
control. The infection curves of different kinds of going-out needs when the intensity
of three policies is strict are presented in Figure 6, and the differences between infection
curves are significant. Compared with physiological safety needs, the infection curves
based on family needs and friendship needs can be flattened: the peak values decrease by
30.70 and 29.70%, while the peak arrival times are delayed by 27.34 and 11.51%, and the
epidemic durations are extended by 7.65 and 27.30%. Similar results are found when the
intensity of three policies is loose (Figure S5) and moderate (Figure S6).
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The structure of family networks based on family needs and friend networks based
on friendship needs are relatively stable, while stranger networks based on physiological
safety needs are more random, which leads to more random contact and a more rapid
spread of epidemics.

3.4. Results of the Comparison and Evaluation of Actual Epidemic Prevention and Control Policies

Through the improved curve similarity indicator based on dynamic time warping
(DTW), we compared the real new daily infection data from 26 countries, regions, and cities
around the world with the new daily infection data obtained by the basic experiments
based on three kinds of going-out needs.

The similarity between the real and simulated data was calculated to obtain the
curve similarity indicator. The smaller the calculated similarity of curves, the closer the
policy implemented in the country, region, or city is to the corresponding experimental
scenario. The results show that the countries, regions, and cities that are relatively close to
Experiment 1-1 include Wuhan (China), the Republic of Korea, Germany, Norway, Rus-
sia, California (USA), and Australia; the countries, regions, and cities that are closer to
Experiment 1-2 include Beijing (China), Japan, Singapore, the United Kingdom, Italy,
New York (USA), Canada, and Egypt; and the countries, regions, and cities that are closer
to Experiment 1-3 include Czech, Belgium and Peru.

Figures S7–S25 show the new daily infections of 19 countries, regions, and cities.
Among them, Wuhan, China, the Republic of Korea, Norway, Germany, Spain, and
Australia may have adopted stricter epidemic prevention and control policies when the
number of new daily infections starts to increase, allowing the curve to reach a peak in
a short period of time and to bend more quickly. Countries such as Japan, Singapore,
Pakistan, Hungary, Canada, Egypt, and South Africa may have adopted relatively loose
policies when the number of new daily infections begins to increase. The process of
reaching the peak takes a long time, but after reaching the peak, it can also effectively
reduce the number of infections.

3.5. Robustness Test

To explore the influence of individual quantity on the results, this paper also provides
the infection curves of basic experiments based on three kinds of going-out needs with
4000 and 5000 individuals (Figures 7 and 8). There is an obvious difference among the
three infection curves, and the results are consistent with the results when the number of
individuals is 2000. It is proven that the conclusion of this paper has a certain stability and
can be applied to larger networks.
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4. Discussion

From the perspective of individuals going out, we built a social network based on
the going-out needs of individuals and combined it with the SEIR model to simulate the
process of individuals going out and the spread of epidemics. At the same time, various
prevention and control policies were classified and parameterized to act on different
links in the individual going out process to realize the comparison and evaluation of
policy effectiveness. In the basic experiments based on the three kinds of going-out
needs, the epidemic ends in a network consisting of 2000 individuals in 428 days when
the intensity of all three types of policy is strict, and the infection curve is quite flat.
However, when the intensity of all three policies is moderate and loose, the epidemic
ends at 119 and 48 days, respectively, and the infection curve becomes steeper. Therefore,
if the intensity of prevention and control policies is as strict as possible, the infection
curve can be flattened and the spread of the epidemic can be slowed. This is consistent
with the conclusions of some existing studies [33,34,39]. At the same time, the number of
new daily infections can be kept at a low level, ensuring that limited medical resources
can be put to good use.

In the variation experiments based on the three kinds of going-out needs, when
keeping the intensity of two types of policies fixed and only varying the intensity of the
other policy, it can be found that the stricter the varied policy, the more effective it is in
preventing and controlling the epidemic, with the RGOUT policy being the most effective.
When it is difficult to control the intensity of all policies to a very strict level, the most
effective RGOUT policy can be prioritized.

In the basic experiments based on different kinds of going-out needs, under the
same policy intensity conditions, going out based on physiological safety needs increases
the randomness of contacts in the network, which in turn accelerates the spread of the
epidemic, especially when all three policy intensities are all in a strict state. Going out
based on physiological safety needs is not conducive to epidemic prevention and control,
but this is a basic need that has to be met. Therefore, some tasks, such as purchasing
daily necessities, can be carried out by community volunteers, which can effectively
reduce random contact.

This paper still has some shortcomings. First, in terms of going-out needs, only
family needs, friendship needs and physiological safety needs are considered for the
time being, while the needs for school and work have yet to be taken into consideration.
Second, the number of individuals simulated in this paper is only 2000. Since individual-
based models are often time intensive and computationally expensive to implement,
requiring a high degree of expertise and computational resources [51], simulation ex-
periments have not been conducted with a larger number of individuals, except for the
robustness test. Third, this paper does not consider asymptomatic infections and some
policy such as contact tracing.
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5. Conclusions

In summary, this paper innovatively parameterizes nonpharmacological prevention
and control policies combined with social network and SEIR models from the perspective
of individuals going out behavior based on human needs to simulate the process of
individuals going out and the spread of epidemics. We realize the comparison and
evaluation of the effectiveness of different intensities of the same type of policy and
of different types of policies. The simulation results show that: (1) enhancing policy
implementation can effectively prevent and control the epidemic; (2) among the different
types of policies, policies that limit the time of going out are most effective; and (3) the
effect of controlling the physiological safety needs is better than the effects of controlling
family and friendship needs.

The experimental results of this paper will have important theoretical and practical
implications for the formulation of epidemic prevention and control policies, the selection of
intensity and combination decision-making. Future studies could include more individuals
and consider asymptomatic infections and some policy such as contact tracing when
studying the effectiveness of policies.
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duration and infection curve flatness index corresponding to all experimental scenarios.
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